THE LARGEST KNOWN PRIMES
                     (The 5,000 largest known primes)
        (selected smaller primes which have comments are included)
    Originally Compiled by Samuel Yates -- Continued by Chris Caldwell and now maintained by Reginald McLean
                       (Sat Jun  7 13:37:35 UTC 2025)


So that I can maintain this database of the 5,000 largest known primes
(plus selected smaller primes with 1,000 or more digits), please send
any new primes (that are large enough) to:

  https://t5k.org/bios/submission.php

This list in a searchable form (plus information such as how to find
large primes and how to prove primality) is available at the interactive
web site:

  https://t5k.org/primes/

See the last pages for information about the provers.

The letters after the rank refer to when the prime was submitted.
'a' is this month, 'b' last month...
-----  ------------------------------- -------- ----- ---- --------------
 rank  description                     digits   who   year comment
-----  ------------------------------- -------- ----- ---- --------------
    1  2^136279841-1                   41024320 MP1   2024 Mersenne 52??
    2  2^82589933-1                    24862048 G16   2018 Mersenne 51?
    3  2^77232917-1                    23249425 G15   2018 Mersenne 50?
    4  2^74207281-1                    22338618 G14   2016 Mersenne 49?
    5  2^57885161-1                    17425170 G13   2013 Mersenne 48
    6  2^43112609-1                    12978189 G10   2008 Mersenne 47
    7  2^42643801-1                    12837064 G12   2009 Mersenne 46
    8  516693^2097152-516693^1048576+1 11981518 L4561 2023 Generalized unique
    9  465859^2097152-465859^1048576+1 11887192 L4561 2023 Generalized unique
   10  2^37156667-1                    11185272 G11   2008 Mersenne 45
   11  2^32582657-1                     9808358 G9    2006 Mersenne 44
   12  10223*2^31172165+1               9383761 SB12  2016 
   13  2^30402457-1                     9152052 G9    2005 Mersenne 43
   14  4*5^11786358+1                   8238312 A2    2024 Generalized Fermat
   15  2^25964951-1                     7816230 G8    2005 Mersenne 42
   16c 4052186*69^4052186+1             7451366 A61   2025 Generalized Cullen
   17  69*2^24612729-1                  7409172 A2    2024 
   18  2^24036583-1                     7235733 G7    2004 Mersenne 41
   19  107347*2^23427517-1              7052391 A2    2024 
   20  3843236^1048576+1                6904556 L6094 2024 Generalized Fermat
   21  3*2^22103376-1                   6653780 L6075 2024 
   22  1963736^1048576+1                6598776 L4245 2022 Generalized Fermat
   23  1951734^1048576+1                6595985 L5583 2022 Generalized Fermat
   24  202705*2^21320516+1              6418121 L5181 2021 
   25  2^20996011-1                     6320430 G6    2003 Mersenne 40
   26  1059094^1048576+1                6317602 L4720 2018 Generalized Fermat
   27  3*2^20928756-1                   6300184 L5799 2023 
   28  919444^1048576+1                 6253210 L4286 2017 Generalized Fermat
   29  81*2^20498148+1                  6170560 L4965 2023 Generalized Fermat
   30  7*2^20267500+1                   6101127 L4965 2022 
          Divides GF(20267499,12) [GG]
   31  4*5^8431178+1                    5893142 A2    2024 Generalized Fermat
   32  168451*2^19375200+1              5832522 L4676 2017 
   33  69*2^19374980-1                  5832452 L4965 2022 
   34  3*2^18924988-1                   5696990 L5530 2022 
   35  69*2^18831865-1                  5668959 L4965 2021 
   36  2*3^11879700+1                   5668058 A2    2024 
   37  97139*2^18397548-1               5538219 L4965 2023 
   38  7*2^18233956+1                   5488969 L4965 2020 
          Divides Fermat F(18233954)
   39  3*2^18196595-1                   5477722 L5461 2022 
   40  4*3^11279466+1                   5381674 A2    2024 Generalized Fermat
   41  3*2^17748034-1                   5342692 L5404 2021 
   42  123447^1048576-123447^524288+1   5338805 L4561 2017 Generalized unique
   43  3622*5^7558139-1                 5282917 L4965 2022 
   44  7*6^6772401+1                    5269954 L4965 2019 
   45  2*3^10852677+1                   5178044 L4965 2023 Divides phi
   46  8508301*2^17016603-1             5122515 L4784 2018 Woodall
   47  8*10^5112847-1                   5112848 A19   2024 Near-repdigit
   48  13*2^16828072+1                  5065756 A2    2023 
   49  3*2^16819291-1                   5063112 L5230 2021 
   50  5287180*3^10574360-1             5045259 A20   2024 
          Generalized Woodall
   51  3*2^16408818+1                   4939547 L5171 2020 
          Divides GF(16408814,3), GF(16408817,5)
   52  2329989*2^16309923-1             4909783 A20   2024 
          Generalized Woodall
   53  69*2^15866556-1                  4776312 L4965 2021 
   54  2036*3^10009192+1                4775602 A2    2024 
   55  2525532*73^2525532+1             4705888 L5402 2021 Generalized Cullen
   56  1419499*2^15614489-1             4700436 A20   2024 
          Generalized Woodall
   57  11*2^15502315+1                  4666663 L4965 2023 
          Divides GF(15502313,10) [GG]
   58  (10^2332974+1)^2-2               4665949 p405  2024 
   59  37*2^15474010+1                  4658143 L4965 2022 
   60  93839*2^15337656-1               4617100 L4965 2022 
   61  2^15317227+2^7658614+1           4610945 L5123 2020 
          Gaussian Mersenne norm 41?, generalized unique
   62  13*2^15294536+1                  4604116 A2    2023 
   63  6*5^6546983+1                    4576146 L4965 2020 
   64  4788920*3^9577840-1              4569798 A20   2024 
          Generalized Woodall
   65e 31*2^15145093-1                  4559129 A2    2025 
   66  69*2^14977631-1                  4508719 L4965 2021 
   67  192971*2^14773498-1              4447272 L4965 2021 
   68  4*3^9214845+1                    4396600 A2    2024 
   69  9145334*3^9145334+1              4363441 A6    2023 Generalized Cullen
   70  4*5^6181673-1                    4320805 L4965 2022 
   71  396101*2^14259638-1              4292585 A20   2024 
          Generalized Woodall
   72  6962*31^2863120-1                4269952 L5410 2020 
   73  37*2^14166940+1                  4264676 L4965 2022 
   74  99739*2^14019102+1               4220176 L5008 2019 
   75  69*2^13832885-1                  4164116 L4965 2022 
   76  404849*2^13764867+1              4143644 L4976 2021 Generalized Cullen
   77  25*2^13719266+1                  4129912 L4965 2022 Generalized Fermat
   78  81*2^13708272+1                  4126603 L4965 2022 Generalized Fermat
   79  2740879*2^13704395-1             4125441 L4976 2019 
          Generalized Woodall
   80  479216*3^8625889-1               4115601 L4976 2019 
          Generalized Woodall
   81b 13*2^13584543-1                  4089357 A2    2025 
   82e 31*2^13514933-1                  4068402 A2    2025 
   83  143332^786432-143332^393216+1    4055114 L4506 2017 Generalized unique
   84  81*2^13470584+1                  4055052 L4965 2022 Generalized Fermat
   85  2^13466917-1                     4053946 G5    2001 Mersenne 39
   86  5778486*5^5778486+1              4038996 A6    2024 Generalized Cullen
   87  9*2^13334487+1                   4014082 L4965 2020 
          Divides GF(13334485,3)
   88  206039*2^13104952-1              3944989 L4965 2021 
   89  2805222*5^5610444+1              3921539 L4972 2019 Generalized Cullen
   90  5128*22^2919993+1                3919869 L5811 2024 
   91  19249*2^13018586+1               3918990 SB10  2007 
   92  2293*2^12918431-1                3888839 L4965 2021 
   93  81*2^12804541+1                  3854553 L4965 2022 
   94c 67612*5^5501582+1                3845446 A60   2025 
   95  4*5^5380542+1                    3760839 L4965 2023 Generalized Fermat
   96e 13520762^524288+1                3738699 L6221 2025 Generalized Fermat
   97d 13427472^524288+1                3737122 L5775 2025 Generalized Fermat
   98  9*2^12406887+1                   3734847 L4965 2020 
          Divides GF(12406885,3)
   99f 12900356^524288+1                3728004 L5639 2025 Generalized Fermat
  100f 12693488^524288+1                3724323 L6096 2025 Generalized Fermat
  101  11937916^524288+1                3710349 L6080 2024 Generalized Fermat
  102  7*2^12286041-1                   3698468 L4965 2023 
  103  10913140^524288+1                3689913 L6043 2024 Generalized Fermat
  104  69*2^12231580-1                  3682075 L4965 2021 
  105  27*2^12184319+1                  3667847 L4965 2021 
  106  9332124^524288+1                 3654278 L5025 2024 Generalized Fermat
  107  8630170^524288+1                 3636472 L5543 2024 Generalized Fermat
  108  863282*5^5179692-1               3620456 A20   2024 
          Generalized Woodall
  109  670490*12^3352450-1              3617907 A20   2024 
          Generalized Woodall
  110  4*3^7578378+1                    3615806 A2    2024 Generalized Fermat
  111  11*2^11993994-1                  3610554 A2    2024 
  112  3761*2^11978874-1                3606004 L4965 2022 
  113  95*2^11954552-1                  3598681 A29   2024 
  114  259072*5^5136295-1               3590122 A45   2024 
  115  3*2^11895718-1                   3580969 L4159 2015 
  116  37*2^11855148+1                  3568757 L4965 2022 
  117  6339004^524288+1                 3566218 L1372 2023 Generalized Fermat
  118  763795*6^4582771+1               3566095 A6    2023 Generalized Cullen
  119  5897794^524288+1                 3549792 x50   2022 Generalized Fermat
  120  3*2^11731850-1                   3531640 L4103 2015 
  121  69*2^11718455-1                  3527609 L4965 2020 
  122  8629*2^11708579-1                3524638 A2    2024 
  123  41*2^11676439+1                  3514960 L4965 2022 
  124  4896418^524288+1                 3507424 L4245 2022 Generalized Fermat
  125  81*2^11616017+1                  3496772 L4965 2022 
  126  69*2^11604348-1                  3493259 L4965 2020 
  127  4450871*6^4450871+1              3463458 L5765 2023 Generalized Cullen
  128  9*2^11500843+1                   3462100 L4965 2020 
          Divides GF(11500840,12)
  129  3*2^11484018-1                   3457035 L3993 2014 
  130  193997*2^11452891+1              3447670 L4398 2018 
  131  29914*5^4930904+1                3446559 A41   2024 
  132  3638450^524288+1                 3439810 L4591 2020 Generalized Fermat
  133  9221*2^11392194-1                3429397 L5267 2021 
  134  9*2^11366286+1                   3421594 L4965 2020 Generalized Fermat
  135  5*2^11355764-1                   3418427 L4965 2021 
  136  732050*6^4392301+1               3417881 L5765 2023 Generalized Cullen
  137  3214654^524288+1                 3411613 L4309 2019 Generalized Fermat
  138  632760!-1                        3395992 A43   2024 Factorial
  139  146561*2^11280802-1              3395865 L5181 2020 
  140  51208*5^4857576+1                3395305 A30   2024 
  141  2985036^524288+1                 3394739 L4752 2019 Generalized Fermat
  142f 4591*2^11270837-1                3392864 A2    2025 
  143  6929*2^11255424-1                3388225 L4965 2022 
  144  2877652^524288+1                 3386397 L4250 2019 Generalized Fermat
  145  2788032^524288+1                 3379193 L4584 2019 Generalized Fermat
  146  2733014^524288+1                 3374655 L4929 2019 Generalized Fermat
  147  9*2^11158963+1                   3359184 L4965 2020 
          Divides GF(11158962,5)
  148  9271*2^11134335-1                3351773 L4965 2021 
  149  136804*5^4777253-1               3339162 A23   2024 
  150  2312092^524288+1                 3336572 L4720 2018 Generalized Fermat
  151  987324*48^1974648-1              3319866 A20   2024 
          Generalized Woodall
  152  2061748^524288+1                 3310478 L4783 2018 Generalized Fermat
  153  1880370^524288+1                 3289511 L4201 2018 Generalized Fermat
  154  27*2^10902757-1                  3282059 L4965 2022 
  155  3*2^10829346+1                   3259959 L3770 2014 
          Divides GF(10829343,3), GF(10829345,5)
  156  11*2^10803449+1                  3252164 L4965 2022 
          Divides GF(10803448,6)
  157  11*2^10797109+1                  3250255 L4965 2022 
  158  7*2^10612737-1                   3194754 L4965 2022 
  159  7351117#+1                       3191401 p448  2024 Primorial
  160  37*2^10599476+1                  3190762 L4965 2022 
          Divides GF(10599475,10)
  161  5*2^10495620-1                   3159498 L4965 2021 
  162  3^6608603-3^3304302+1            3153105 L5123 2023 Generalized unique
  163  5*2^10349000-1                   3115361 L4965 2021 
  164  844833^524288-844833^262144+1    3107335 L4506 2017 Generalized unique
  165  52922*5^4399812-1                3075342 A1    2023 
  166  712012^524288-712012^262144+1    3068389 L4506 2017 Generalized unique
  167  177742*5^4386703-1               3066180 L5807 2023 
  168  4*3^6402015+1                    3054539 A2    2024 
  169  874208*54^1748416-1              3028951 L4976 2019 
          Generalized Woodall
  170  475856^524288+1                  2976633 L3230 2012 Generalized Fermat
  171  2*3^6236772+1                    2975697 L4965 2022 
  172  15*2^9830108+1                   2959159 A2    2023 
  173  9*2^9778263+1                    2943552 L4965 2020 
  174  198*558^1061348+1                2915138 A28   2024 
  175  1806676*41^1806676+1             2913785 L4668 2018 Generalized Cullen
  176  356926^524288+1                  2911151 L3209 2012 Generalized Fermat
  177  341112^524288+1                  2900832 L3184 2012 Generalized Fermat
  178  213988*5^4138363-1               2892597 L5621 2022 
  179  43*2^9596983-1                   2888982 L4965 2022 
  180  121*2^9584444+1                  2885208 L5183 2020 Generalized Fermat
  181  15*2^9482269-1                   2854449 A2    2024 
  182  6533299#-1                       2835864 p447  2024 Primorial
  183  11*2^9381365+1                   2824074 L4965 2020 
          Divides GF(9381364,6)
  184  15*2^9312889+1                   2803461 L4965 2023 
  185b 97*2^9305542+1                   2801250 A2    2025 
  186b 93*2^9235048+1                   2780029 A2    2025 
  187  49*2^9187790+1                   2765803 L4965 2022 Generalized Fermat
  188  6369619#+1                       2765105 p445  2024 Primorial
  189  27653*2^9167433+1                2759677 SB8   2005 
  190  6354977#-1                       2758832 p446  2024 Primorial
  191  90527*2^9162167+1                2758093 L1460 2010 
  192  6795*2^9144320-1                 2752719 L4965 2021 
  193  31*2^9088085-1                   2735788 A2    2024 
  194  75*2^9079482+1                   2733199 L4965 2023 
  195  1323365*116^1323365+1            2732038 L4718 2018 Generalized Cullen
  196  57*2^9075622-1                   2732037 L4965 2022 
  197  10^2718281-5*10^1631138-5*10^1087142-1
                                        2718281 p423  2024 Palindrome
  198  63838*5^3887851-1                2717497 L5558 2022 
  199  13*2^8989858+1                   2706219 L4965 2020 
  200  4159*2^8938471-1                 2690752 L4965 2022 
  201  273809*2^8932416-1               2688931 L1056 2017 
  202  93*2^8898285+1                   2678653 A2    2024 
  203  2*3^5570081+1                    2657605 L4965 2020 
          Divides Phi(3^5570081,2) [g427]
  204  25*2^8788628+1                   2645643 L5161 2021 Generalized Fermat
  205  2038*366^1028507-1               2636562 L2054 2016 
  206  64598*5^3769854-1                2635020 L5427 2022 
  207  63*2^8741225+1                   2631373 A2    2024 
  208  8*785^900325+1                   2606325 L4786 2022 
  209  17*2^8636199+1                   2599757 L5161 2021 
          Divides GF(8636198,10)
  210  75898^524288+1                   2558647 p334  2011 Generalized Fermat
  211  25*2^8456828+1                   2545761 L5237 2021 
          Divides GF(8456827,12), generalized Fermat
  212  39*2^8413422+1                   2532694 L5232 2021 
  213  31*2^8348000+1                   2513000 L5229 2021 
  214  27*2^8342438-1                   2511326 L3483 2021 
  215  3687*2^8261084-1                 2486838 L4965 2021 
  216  101*2^8152967+1                  2454290 A2    2023 
          Divides GF(8152966,12)
  217  273662*5^3493296-1               2441715 L5444 2021 
  218  81*2^8109236+1                   2441126 L4965 2022 Generalized Fermat
  219  11*2^8103463+1                   2439387 L4965 2020 
          Divides GF(8103462,12)
  220  102818*5^3440382-1               2404729 L5427 2021 
  221  11*2^7971110-1                   2399545 L2484 2019 
  222  27*2^7963247+1                   2397178 L5161 2021 
          Divides Fermat F(7963245)
  223  3177*2^7954621-1                 2394584 L4965 2021 
  224  39*2^7946769+1                   2392218 L5226 2021 
          Divides GF(7946767,12)
  225  7*6^3072198+1                    2390636 L4965 2019 
  226  3765*2^7904593-1                 2379524 L4965 2021 
  227  29*2^7899985+1                   2378134 L5161 2021 
          Divides GF(7899984,6)
  228  5113*2^7895471-1                 2376778 L4965 2022 
  229  861*2^7895451-1                  2376771 L4965 2021 
  230  75*2^7886683+1                   2374131 A2    2023 
  231  2661*2^7861390-1                 2366518 A2    2024 
  232  99*2^7830910+1                   2357341 A2    2024 
  233  28433*2^7830457+1                2357207 SB7   2004 
  234  2589*2^7803339-1                 2349043 L4965 2022 
  235  59*2^7792307+1                   2345720 A2    2024 
  236  101*2^7784453+1                  2343356 A2    2024 
  237  95*2^7778585+1                   2341590 A2    2024 
  238  8401*2^7767655-1                 2338302 L4965 2023 
  239  9693*2^7767343-1                 2338208 A2    2023 
  240  5*2^7755002-1                    2334489 L4965 2021 
  241  2945*2^7753232-1                 2333959 L4965 2022 
  242  2*836^798431+1                   2333181 L4294 2024 
  243  63*2^7743186+1                   2330934 A2    2024 
  244  2545*2^7732265-1                 2327648 L4965 2021 
  245  5539*2^7730709-1                 2327180 L4965 2021 
  246  4817*2^7719584-1                 2323831 L4965 2021 
  247  183*558^842752+1                 2314734 A28   2024 
  248  1341174*53^1341174+1             2312561 L4668 2017 Generalized Cullen
  249  9467*2^7680034-1                 2311925 L4965 2022 
  250  45*2^7661004+1                   2306194 L5200 2020 
  251  15*2^7619838+1                   2293801 L5192 2020 
  252  3597*2^7580693-1                 2282020 L4965 2021 
  253  5256037#+1                       2281955 p444  2024 Primorial
  254  3129*2^7545557-1                 2271443 L4965 2023 
  255  7401*2^7523295-1                 2264742 L4965 2021 
  256  45*2^7513661+1                   2261839 L5179 2020 
  257  558640^393216-558640^196608+1    2259865 L4506 2017 Generalized unique
  258b 2739*2^7483537-1                 2252773 A2    2025 
  259  9*2^7479919-1                    2251681 L3345 2023 
  260  1875*2^7474308-1                 2249995 L4965 2022 
  261  69*2^7452023+1                   2243285 L4965 2023 
          Divides GF(7452020,3) [GG]
  262  1281979*2^7447178+1              2241831 A8    2023 
  263b 9107*2^7417464-1                 2232884 A2    2025 
  264  4*5^3189669-1                    2229484 L4965 2022 
  265  29*2^7374577+1                   2219971 L5169 2020 
          Divides GF(7374576,3)
  266  2653*2^7368343-1                 2218096 A2    2024 
  267  21555*2^7364128-1                2216828 A11   2024 
  268  3197*2^7359542-1                 2215447 L4965 2022 
  269  109838*5^3168862-1               2214945 L5129 2020 
  270  95*2^7354869+1                   2214039 A2    2023 
  271  101*2^7345194-1                  2211126 L1884 2019 
  272  85*2^7333444+1                   2207589 A2    2023 
  273  15*2^7300254+1                   2197597 L5167 2020 
  274  422429!+1                        2193027 p425  2022 Factorial
  275  1759*2^7284439-1                 2192838 L4965 2021 
  276  1909683*14^1909683+1             2188748 L5765 2023 Generalized Cullen
  277  737*2^7269322-1                  2188287 L4665 2017 
  278  6909*2^7258896-1                 2185150 A2    2024 
  279  93*2^7241494+1                   2179909 A2    2023 
  280  118568*5^3112069+1               2175248 L690  2020 
  281  4215*2^7221386-1                 2173858 A2    2024 
  282  40*257^901632+1                  2172875 A11   2024 
  283c 1685*2^7213108-1                 2171366 A2    2025 
  284  580633*2^7208783-1               2170066 A11   2024 
  285  6039*2^7207973-1                 2169820 L4965 2021 
  286  502573*2^7181987-1               2162000 L3964 2014 
  287  402539*2^7173024-1               2159301 L3961 2014 
  288  3343*2^7166019-1                 2157191 L1884 2016 
  289c 4137*2^7132569-1                 2147121 A2    2025 
  290  161041*2^7107964+1               2139716 L4034 2015 
  291  294*213^918952-1                 2139672 L5811 2023 
  292  27*2^7046834+1                   2121310 L3483 2018 
  293  1759*2^7046791-1                 2121299 L4965 2021 
  294  327*2^7044001-1                  2120459 L4965 2021 
  295  5*2^7037188-1                    2118406 L4965 2021 
  296  3*2^7033641+1                    2117338 L2233 2011 
          Divides GF(7033639,3)
  297  625783*2^7031319-1               2116644 A11   2024 
  298  33661*2^7031232+1                2116617 SB11  2007 
  299  237804^393216-237804^196608+1    2114016 L4506 2017 Generalized unique
  300  207494*5^3017502-1               2109149 L5083 2020 
  301  15*2^6993631-1                   2105294 L4965 2021 
  302  8943501*2^6972593-1              2098967 L466  2022 
  303  6020095*2^6972593-1              2098967 L466  2022 
  304  2^6972593-1                      2098960 G4    1999 Mersenne 38
  305  273*2^6963847-1                  2096330 L4965 2022 
  306  6219*2^6958945-1                 2094855 L4965 2021 
  307  51*2^6945567+1                   2090826 L4965 2020 
          Divides GF(6945564,12) [p286]
  308a 8*10^2084563-1                   2084564 A2    2025 Near-repdigit
  309  3323*2^6921196-1                 2083492 A2    2024 
  310  238694*5^2979422-1               2082532 L5081 2020 
  311  4*72^1119849-1                   2079933 L4444 2016 
  312  33*2^6894190-1                   2075360 L4965 2021 
  313  4778027#-1                       2073926 p442  2024 Primorial
  314  2345*2^6882320-1                 2071789 L4965 2022 
  315  57*2^6857990+1                   2064463 A2    2023 
  316  146264*5^2953282-1               2064261 L1056 2020 
  317  69*2^6838971-1                   2058738 L5037 2020 
  318  35816*5^2945294-1                2058677 L5076 2020 
  319  127*2^6836153-1                  2057890 L1862 2018 
  320b 105*2^6835099+1                  2057572 L5517 2025 
  321  19*2^6833086+1                   2056966 L5166 2020 
  322  65*2^6810465+1                   2050157 A2    2023 
  323  40597*2^6808509-1                2049571 L3749 2013 
  324  283*2^6804731-1                  2048431 L2484 2020 
  325b 64074894^262144+1                2046477 L5696 2025 Generalized Fermat
  326b 64010198^262144+1                2046362 L5361 2025 Generalized Fermat
  327b 63833640^262144+1                2046047 L6006 2025 Generalized Fermat
  328b 8*10^2045966-1                   2045967 A2    2025 Near-repdigit
  329b 63784742^262144+1                2045960 L4387 2025 Generalized Fermat
  330b 63558122^262144+1                2045555 L6255 2025 Generalized Fermat
  331b 63448958^262144+1                2045359 L5019 2025 Generalized Fermat
  332b 63286690^262144+1                2045068 L4387 2025 Generalized Fermat
  333b 62767176^262144+1                2044129 L5639 2025 Generalized Fermat
  334b 62747994^262144+1                2044095 L5639 2025 Generalized Fermat
  335  1861709*2^6789999+1              2044000 L5191 2020 
  336  5781*2^6789459-1                 2043835 L4965 2021 
  337b 62311952^262144+1                2043301 L5156 2025 Generalized Fermat
  338b 62199610^262144+1                2043095 L5697 2025 Generalized Fermat
  339b 62152830^262144+1                2043010 L5639 2025 Generalized Fermat
  340b 62136706^262144+1                2042980 L5639 2025 Generalized Fermat
  341  8435*2^6786180-1                 2042848 L4965 2021 
  342c 61238184^262144+1                2041322 L5526 2025 Generalized Fermat
  343b 119*2^6777781+1                  2040318 L5517 2025 
  344d 59145944^262144+1                2037364 L4591 2025 Generalized Fermat
  345d 58936230^262144+1                2036960 L5465 2025 Generalized Fermat
  346d 58870004^262144+1                2036832 L6238 2025 Generalized Fermat
  347d 58846688^262144+1                2036787 L4591 2025 Generalized Fermat
  348d 58333324^262144+1                2035789 L4591 2025 Generalized Fermat
  349d 58288282^262144+1                2035701 L4526 2025 Generalized Fermat
  350d 57643582^262144+1                2034435 L4772 2025 Generalized Fermat
  351d 57594478^262144+1                2034338 L5464 2025 Generalized Fermat
  352d 57478518^262144+1                2034108 L6085 2025 Generalized Fermat
  353d 57429230^262144+1                2034011 L5639 2025 Generalized Fermat
  354  51*2^6753404+1                   2032979 L4965 2020 
  355  93*2^6750726+1                   2032173 A2    2023 
  356d 56303352^262144+1                2031757 L4920 2025 Generalized Fermat
  357d 56295176^262144+1                2031740 L5378 2025 Generalized Fermat
  358d 55952434^262144+1                2031045 L5586 2025 Generalized Fermat
  359d 55892864^262144+1                2030923 L5948 2025 Generalized Fermat
  360  69*2^6745775+1                   2030683 L4965 2023 
  361d 55702322^262144+1                2030535 L4772 2025 Generalized Fermat
  362d 55695224^262144+1                2030520 L4387 2025 Generalized Fermat
  363d 55169618^262144+1                2029441 L6236 2025 Generalized Fermat
  364d 55007338^262144+1                2029105 L4201 2025 Generalized Fermat
  365d 54852328^262144+1                2028784 L5375 2025 Generalized Fermat
  366d 54528918^262144+1                2028111 L5375 2025 Generalized Fermat
  367d 54044092^262144+1                2027094 L5069 2025 Generalized Fermat
  368d 53903472^262144+1                2026797 L5543 2025 Generalized Fermat
  369d 53750036^262144+1                2026473 L4309 2025 Generalized Fermat
  370d 53616962^262144+1                2026191 L4889 2025 Generalized Fermat
  371d 53311612^262144+1                2025540 L6235 2025 Generalized Fermat
  372d 53008094^262144+1                2024890 L6036 2025 Generalized Fermat
  373d 52648144^262144+1                2024115 L5088 2025 Generalized Fermat
  374d 52599274^262144+1                2024009 L4776 2025 Generalized Fermat
  375d 52592976^262144+1                2023995 L5543 2025 Generalized Fermat
  376b 117*2^6719464+1                  2022763 L5995 2025 
  377d 51992174^262144+1                2022687 L5639 2025 Generalized Fermat
  378d 51852794^262144+1                2022382 L4387 2025 Generalized Fermat
  379d 51714136^262144+1                2022077 L4591 2025 Generalized Fermat
  380d 51283286^262144+1                2021124 L4884 2025 Generalized Fermat
  381d 51125138^262144+1                2020773 L5543 2025 Generalized Fermat
  382  9995*2^6711008-1                 2020219 L4965 2021 
  383d 50454356^262144+1                2019269 L5543 2025 Generalized Fermat
  384d 50449664^262144+1                2019259 L5586 2025 Generalized Fermat
  385d 50366208^262144+1                2019070 L5275 2025 Generalized Fermat
  386e 50121532^262144+1                2018516 L4904 2025 Generalized Fermat
  387e 49536902^262144+1                2017180 L5639 2025 Generalized Fermat
  388e 49235348^262144+1                2016485 L5543 2025 Generalized Fermat
  389e 49209090^262144+1                2016424 L5275 2025 Generalized Fermat
  390e 48055302^262144+1                2013723 L5069 2025 Generalized Fermat
  391e 47707672^262144+1                2012896 L4939 2025 Generalized Fermat
  392  39*2^6684941+1                   2012370 L5162 2020 
  393e 47351862^262144+1                2012044 L6204 2025 Generalized Fermat
  394e 47281922^262144+1                2011876 L5974 2025 Generalized Fermat
  395e 47255958^262144+1                2011813 L5948 2025 Generalized Fermat
  396  6679881*2^6679881+1              2010852 L917  2009 Cullen
  397e 46831458^262144+1                2010786 L4456 2025 Generalized Fermat
  398e 46378776^262144+1                2009680 L6178 2025 Generalized Fermat
  399f 45073202^262144+1                2006429 L6129 2025 Generalized Fermat
  400f 45007104^262144+1                2006262 L5639 2025 Generalized Fermat
  401f 44819108^262144+1                2005786 L5632 2025 Generalized Fermat
  402f 44666524^262144+1                2005397 L5775 2025 Generalized Fermat
  403  37*2^6660841-1                   2005115 L3933 2014 
  404  44144624^262144+1                2004059 L5974 2024 Generalized Fermat
  405  44030166^262144+1                2003764 L5974 2024 Generalized Fermat
  406  43330794^262144+1                2001941 L5588 2024 Generalized Fermat
  407  39*2^6648997+1                   2001550 L5161 2020 
  408  42781592^262144+1                2000489 L5460 2024 Generalized Fermat
  409  10^2000007-10^1127194-10^872812-1
                                        2000007 p423  2024 Palindrome
  410  10^2000005-10^1051046-10^948958-1
                                        2000005 p423  2024 Palindrome
  411  304207*2^6643565-1               1999918 L3547 2013 
  412  42474318^262144+1                1999668 L5416 2024 Generalized Fermat
  413  69*2^6639971-1                   1998833 L5037 2020 
  414  42006214^262144+1                1998406 L5512 2024 Generalized Fermat
  415  6471*2^6631137-1                 1996175 L4965 2021 
  416  40460760^262144+1                1994139 L5460 2024 Generalized Fermat
  417  39896728^262144+1                1992541 L6047 2024 Generalized Fermat
  418  39164812^262144+1                1990433 L6038 2024 Generalized Fermat
  419b 8*10^1990324-1                   1990325 A2    2025 Near-repdigit
  420  38786786^262144+1                1989328 L6035 2024 Generalized Fermat
  421  38786700^262144+1                1989328 L4245 2024 Generalized Fermat
  422  38738332^262144+1                1989186 L6033 2024 Generalized Fermat
  423  9935*2^6603610-1                 1987889 L4965 2023 
  424  38214850^262144+1                1987637 L5412 2024 Generalized Fermat
  425  38108804^262144+1                1987321 L4764 2024 Generalized Fermat
  426  37986650^262144+1                1986955 L6027 2024 Generalized Fermat
  427  37787006^262144+1                1986355 L4622 2024 Generalized Fermat
  428  37700936^262144+1                1986096 L5416 2024 Generalized Fermat
  429  37689944^262144+1                1986063 L5416 2024 Generalized Fermat
  430  37349040^262144+1                1985028 L5543 2024 Generalized Fermat
  431  37047448^262144+1                1984105 L5746 2024 Generalized Fermat
  432  36778106^262144+1                1983274 L5998 2024 Generalized Fermat
  433  36748386^262144+1                1983182 L5998 2024 Generalized Fermat
  434  36717890^262144+1                1983088 L4760 2024 Generalized Fermat
  435  36210400^262144+1                1981503 L6006 2024 Generalized Fermat
  436  35196086^262144+1                1978269 L5543 2024 Generalized Fermat
  437  34443124^262144+1                1975807 L5639 2024 Generalized Fermat
  438  33798406^262144+1                1973655 L4656 2024 Generalized Fermat
  439  33491530^262144+1                1972617 L5030 2024 Generalized Fermat
  440  33061466^262144+1                1971146 L5275 2024 Generalized Fermat
  441  32497152^262144+1                1969186 L5586 2024 Generalized Fermat
  442  32171198^262144+1                1968038 L4892 2024 Generalized Fermat
  443  32067848^262144+1                1967672 L4684 2024 Generalized Fermat
  444  31371484^262144+1                1965172 L5847 2024 Generalized Fermat
  445  30941436^262144+1                1963601 L4362 2024 Generalized Fermat
  446  554051*2^6517658-1               1962017 L5811 2023 
  447c 115*2^6515714+1                  1961428 L5161 2025 
  448  29645358^262144+1                1958729 L5024 2023 Generalized Fermat
  449  29614286^262144+1                1958610 L5870 2023 Generalized Fermat
  450  1319*2^6506224-1                 1958572 L4965 2021 
  451  3163*2^6504943-1                 1958187 L4965 2023 
  452  29445800^262144+1                1957960 L4726 2023 Generalized Fermat
  453  322498*5^2800819-1               1957694 L4954 2019 
  454  29353924^262144+1                1957604 L4387 2023 Generalized Fermat
  455  99*2^6502814+1                   1957545 A2    2023 
  456  29333122^262144+1                1957524 L5869 2023 Generalized Fermat
  457  88444*5^2799269-1                1956611 L3523 2019 
  458  29097000^262144+1                1956604 L5375 2023 Generalized Fermat
  459  28342134^262144+1                1953611 L5864 2023 Generalized Fermat
  460  28259150^262144+1                1953277 L4898 2023 Generalized Fermat
  461  28004468^262144+1                1952246 L5586 2023 Generalized Fermat
  462  27789002^262144+1                1951367 L5860 2023 Generalized Fermat
  463  13*2^6481780+1                   1951212 L4965 2020 
  464  27615064^262144+1                1950652 L4201 2023 Generalized Fermat
  465  21*2^6468257-1                   1947141 L4965 2021 
  466  26640150^262144+1                1946560 L5839 2023 Generalized Fermat
  467  26128000^262144+1                1944350 L5821 2023 Generalized Fermat
  468  25875054^262144+1                1943243 L5070 2023 Generalized Fermat
  469  25690360^262144+1                1942427 L5809 2023 Generalized Fermat
  470  25635940^262144+1                1942186 L4307 2023 Generalized Fermat
  471  25461468^262144+1                1941408 L4210 2023 Generalized Fermat
  472  25333402^262144+1                1940834 L5802 2023 Generalized Fermat
  473  24678636^262144+1                1937853 L5586 2023 Generalized Fermat
  474  138514*5^2771922+1               1937496 L4937 2019 
  475  24429706^262144+1                1936699 L4670 2023 Generalized Fermat
  476  33*2^6432160-1                   1936275 L4965 2022 
  477  15*2^6429089-1                   1935350 L4965 2021 
  478  23591460^262144+1                1932724 L5720 2023 Generalized Fermat
  479  23479122^262144+1                1932181 L5773 2023 Generalized Fermat
  480  398023*2^6418059-1               1932034 L3659 2013 
  481  22984886^262144+1                1929758 L4928 2023 Generalized Fermat
  482  3^4043119+3^2021560+1            1929059 L5123 2023 Generalized unique
  483  22790808^262144+1                1928793 L5047 2023 Generalized Fermat
  484c 141*2^6406088+1                  1928427 L5783 2025 
          Divides GF(6406084,6)
  485  22480000^262144+1                1927230 L4307 2023 Generalized Fermat
  486  22479752^262144+1                1927229 L5159 2023 Generalized Fermat
  487  22470828^262144+1                1927183 L4201 2023 Generalized Fermat
  488  55*2^6395254+1                   1925166 A2    2023 
  489  20866766^262144+1                1918752 L4245 2023 Generalized Fermat
  490  4*3^4020126+1                    1918089 A2    2024 Generalized Fermat
  491  20710506^262144+1                1917896 L5676 2023 Generalized Fermat
  492  20543682^262144+1                1916975 L5663 2023 Generalized Fermat
  493  20105956^262144+1                1914523 L5005 2023 Generalized Fermat
  494  631*2^6359347-1                  1914357 L4965 2021 
  495  4965*2^6356707-1                 1913564 L4965 2022 
  496  19859450^262144+1                1913119 L5025 2023 Generalized Fermat
  497  19527922^262144+1                1911202 L4745 2023 Generalized Fermat
  498  19322744^262144+1                1910000 L4775 2023 Generalized Fermat
  499  1995*2^6333396-1                 1906546 L4965 2021 
  500  1582137*2^6328550+1              1905090 L801  2009 Cullen
  501  18395930^262144+1                1904404 x50   2022 Generalized Fermat
  502  17191822^262144+1                1896697 x50   2022 Generalized Fermat
  503  87*2^6293522+1                   1894541 A2    2023 
  504  16769618^262144+1                1893866 L4677 2022 Generalized Fermat
  505d 141*2^6286573+1                  1892450 L5178 2025 
  506  16048460^262144+1                1888862 L5127 2022 Generalized Fermat
  507  10^1888529-10^944264-1           1888529 p423  2021 
          Near-repdigit, palindrome
  508  15913772^262144+1                1887902 L4387 2022 Generalized Fermat
  509  15859176^262144+1                1887511 L5544 2022 Generalized Fermat
  510  3303*2^6264946-1                 1885941 L4965 2021 
  511  15417192^262144+1                1884293 L5051 2022 Generalized Fermat
  512  14741470^262144+1                1879190 L4204 2022 Generalized Fermat
  513  4328927#+1                       1878843 p442  2024 Primorial
  514d 165*2^6237224+1                  1877594 L5178 2025 
  515  14399216^262144+1                1876516 L4745 2021 Generalized Fermat
  516  1344935*2^6231985+1              1876021 L161  2023 
  517  14103144^262144+1                1874151 L5254 2021 Generalized Fermat
  518  13911580^262144+1                1872594 L5068 2021 Generalized Fermat
  519d 165*2^6213489+1                  1870449 L5517 2025 
  520  13640376^262144+1                1870352 L4307 2021 Generalized Fermat
  521  13553882^262144+1                1869628 L4307 2021 Generalized Fermat
  522  8825*2^6199424-1                 1866217 A2    2023 
  523  13039868^262144+1                1865227 L5273 2021 Generalized Fermat
  524  7*6^2396573+1                    1864898 L4965 2019 
  525  12959788^262144+1                1864525 L4591 2021 Generalized Fermat
  526  69*2^6186659+1                   1862372 L4965 2023 
  527  12582496^262144+1                1861162 L5202 2021 Generalized Fermat
  528  12529818^262144+1                1860684 L4871 2020 Generalized Fermat
  529e 141*2^6175704+1                  1859075 L5969 2025 
  530  12304152^262144+1                1858615 L4591 2020 Generalized Fermat
  531  12189878^262144+1                1857553 L4905 2020 Generalized Fermat
  532  39*2^6164630+1                   1855741 L4087 2020 
          Divides GF(6164629,5)
  533e 119*2^6150335+1                  1851438 L5178 2025 
  534  11081688^262144+1                1846702 L5051 2020 Generalized Fermat
  535  10979776^262144+1                1845650 L5088 2020 Generalized Fermat
  536  10829576^262144+1                1844082 L4677 2020 Generalized Fermat
  537  194368*5^2638045-1               1843920 L690  2018 
  538  10793312^262144+1                1843700 L4905 2020 Generalized Fermat
  539  10627360^262144+1                1841936 L4956 2020 Generalized Fermat
  540  10578478^262144+1                1841411 L4307 2020 Generalized Fermat
  541  66916*5^2628609-1                1837324 L690  2018 
  542  521921*2^6101122-1               1836627 L5811 2023 
  543  3*2^6090515-1                    1833429 L1353 2010 
  544  9812766^262144+1                 1832857 L4245 2020 Generalized Fermat
  545  9750938^262144+1                 1832137 L4309 2020 Generalized Fermat
  546  8349*2^6082397-1                 1830988 L4965 2021 
  547  9450844^262144+1                 1828578 L5020 2020 Generalized Fermat
  548  71*2^6070943+1                   1827538 L4965 2023 
  549  32*470^683151+1                  1825448 L4064 2021 
  550  9125820^262144+1                 1824594 L5002 2019 Generalized Fermat
  551  8883864^262144+1                 1821535 L4715 2019 Generalized Fermat
  552  21*2^6048861+1                   1820890 L5106 2020 
          Divides GF(6048860,5)
  553  9999*2^6037057-1                 1817340 L4965 2021 
  554  8521794^262144+1                 1816798 L4289 2019 Generalized Fermat
  555  6285*2^6027986-1                 1814609 A2    2024 
  556  33*2^6019138-1                   1811943 L4965 2022 
  557  67*2^6018626+1                   1811789 L4965 2023 
  558  122*123^865890+1                 1809631 L4294 2024 
  559b 6*10^1807300-1                   1807301 A2    2025 Near-repdigit
  560  1583*2^5989282-1                 1802957 L4036 2015 
  561e 55*2^5982526+1                   1800922 L5554 2025 
          Divides GF(5982524,10)
  562  101806*15^1527091-1              1796004 L5765 2023 
          Generalized Woodall
  563e 91*2^5960816+1                   1794387 L5969 2025 
  564e 163*2^5945098+1                  1789656 L5554 2025 
  565e 189*2^5932506+1                  1785865 L5995 2025 
  566  6291332^262144+1                 1782250 L4864 2018 Generalized Fermat
  567  6287774^262144+1                 1782186 L4726 2018 Generalized Fermat
  568d 32*402^683113-1                  1778983 A11   2025 
  569  327926*5^2542838-1               1777374 L4807 2018 
  570  81556*5^2539960+1                1775361 L4809 2018 
  571e 179*2^5894939+1                  1774556 L5261 2025 
  572  5828034^262144+1                 1773542 L4720 2018 Generalized Fermat
  573  993*10^1768283-1                 1768286 L4879 2019 Near-repdigit
  574e 135*2^5854694+1                  1762441 L5997 2025 
  575  9*10^1762063-1                   1762064 L4879 2020 Near-repdigit
  576  93606^354294+93606^177147+1      1761304 p437  2023 Generalized unique
  577  5205422^262144+1                 1760679 L4201 2018 Generalized Fermat
  578  5152128^262144+1                 1759508 L4720 2018 Generalized Fermat
  579f 195*2^5841059+1                  1758337 L5178 2025 
  580f 183*2^5814122+1                  1750228 L5612 2025 
  581f 205*2^5805562+1                  1747651 L5261 2025 
  582f 99*2^5798449+1                   1745510 L5517 2025 
          Divides Fermat F(5798447)
  583  4489246^262144+1                 1743828 L4591 2018 Generalized Fermat
  584  2240501*6^2240501+1              1743456 L5765 2023 Generalized Cullen
  585f 57*2^5785428+1                   1741590 L5302 2025 
  586  2*3^3648969+1                    1741001 L5043 2020 
          Divides Phi(3^3648964,2) [g427]
  587  7*2^5775996+1                    1738749 L3325 2012 
  588f 101*2^5774879+1                  1738414 L5537 2025 
  589  4246258^262144+1                 1737493 L4720 2018 Generalized Fermat
  590b 13*2^5769387-1                   1736760 L1862 2025 
  591f 57*2^5759943+1                   1733918 L5517 2025 
  592  3933508^262144+1                 1728783 L4309 2018 Generalized Fermat
  593  3853792^262144+1                 1726452 L4715 2018 Generalized Fermat
  594  3673932^262144+1                 1721010 L4649 2017 Generalized Fermat
  595  (10^859669-1)^2-2                1719338 p405  2022 Near-repdigit
  596  3596074^262144+1                 1718572 L4689 2017 Generalized Fermat
  597  3547726^262144+1                 1717031 L4201 2017 Generalized Fermat
  598  8*10^1715905-1                   1715906 L4879 2020 Near-repdigit
  599  1243*2^5686715-1                 1711875 L1828 2016 
  600  65*2^5671355+1                   1707250 L5294 2024 
  601  25*2^5658915-1                   1703505 L1884 2021 
  602  1486287*14^1486287+1             1703482 L5765 2023 Generalized Cullen
  603  41*2^5651731+1                   1701343 L1204 2020 
  604  3060772^262144+1                 1700222 L4649 2017 Generalized Fermat
  605  9*2^5642513+1                    1698567 L3432 2013 
  606  165*2^5633373+1                  1695817 L5178 2024 
  607  10*3^3550446+1                   1693995 L4965 2020 
  608  2622*11^1621920-1                1689060 L2054 2015 
  609  141*2^5600116+1                  1685806 L6089 2024 
  610  81*2^5600028+1                   1685779 L4965 2022 Generalized Fermat
  611  2676404^262144+1                 1684945 L4591 2017 Generalized Fermat
  612  301562*5^2408646-1               1683577 L4675 2017 
  613  2611294^262144+1                 1682141 L4250 2017 Generalized Fermat
  614  55599^354294+55599^177147+1      1681149 p437  2023 Generalized unique
  615  171362*5^2400996-1               1678230 L4669 2017 
  616  2514168^262144+1                 1677825 L4564 2017 Generalized Fermat
  617  31*2^5560820+1                   1673976 L1204 2020 
          Divides GF(5560819,6)
  618  163*2^5550632+1                  1670909 L5517 2024 
  619  205*2^5532904+1                  1665573 L5517 2024 
  620  191*2^5531015+1                  1665004 L5517 2024 
  621  13*2^5523860+1                   1662849 L1204 2020 
          Divides Fermat F(5523858)
  622  89*2^5519481+1                   1661532 L5178 2024 
  623  252191*2^5497878-1               1655032 L3183 2012 
  624  2042774^262144+1                 1654187 L4499 2016 Generalized Fermat
  625b 8*10^1652593-1                   1652594 A2    2025 Near-repdigit
  626  247*2^5477512+1                  1648898 L5373 2024 
  627  129*2^5453363+1                  1641628 L6083 2024 
  628  1828858^262144+1                 1641593 L4200 2016 Generalized Fermat
  629  258317*2^5450519+1               1640776 g414  2008 
  630  7*6^2104746+1                    1637812 L4965 2019 
  631  91*2^5435752+1                   1636327 L5214 2024 
  632  159*2^5432226+1                  1635266 L6082 2024 
  633  193*2^5431414+1                  1635021 L5214 2024 
  634  5*2^5429494-1                    1634442 L3345 2017 
  635  77*2^5422903+1                   1632459 A2    2024 
          Divides GF(5422902,12)
  636  165*2^5416628+1                  1630570 L5537 2024 
  637  147*2^5410159+1                  1628623 L5517 2024 
  638  285*2^5408709+1                  1628187 L5178 2024 
  639  43*2^5408183-1                   1628027 L1884 2018 
  640  8*815^559138-1                   1627740 A26   2024 
  641  1615588^262144+1                 1627477 L4200 2016 Generalized Fermat
  642  245*2^5404089+1                  1626796 L5282 2024 
  643  2*296598^296598-1                1623035 L4965 2022 
  644  127*2^5391378+1                  1622969 L5178 2024 
  645  1349*2^5385004-1                 1621051 L1828 2017 
  646  1488256^262144+1                 1618131 L4249 2016 Generalized Fermat
  647  153*2^5369765+1                  1616463 L5969 2024 
  648  1415198^262144+1                 1612400 L4308 2016 Generalized Fermat
  649  84*730^560037+1                  1603569 A12   2024 
  650  93*2^5323466+1                   1602525 L5537 2024 
  651  237*2^5315983+1                  1600273 L6064 2024 
  652  45*2^5308037+1                   1597881 L4761 2019 
  653  5468*70^864479-1                 1595053 L5410 2022 
  654  131*2^5298475+1                  1595003 L5517 2024 
  655  237*2^5291999+1                  1593053 L5532 2024 
  656  221*2^5284643+1                  1590839 L5517 2024 
  657  92*10^1585996-1                  1585998 L4789 2023 Near-repdigit
  658b 9*10^1585829-1                   1585830 A2    2025 Near-repdigit
  659  1082083^262144-1082083^131072+1  1581846 L4506 2017 Generalized unique
  660  247*2^5254234+1                  1581685 L5923 2024 
  661  273*2^5242597+1                  1578182 L5192 2024 
  662  7*2^5229669-1                    1574289 L4965 2021 
  663  180062*5^2249192-1               1572123 L4435 2016 
  664  124125*6^2018254+1               1570512 L4001 2019 
  665  27*2^5213635+1                   1569462 L3760 2015 
  666  227*2^5213195+1                  1569331 L5517 2024 
  667  9992*10^1567410-1                1567414 L4879 2020 Near-repdigit
  668  27*252^652196+1                  1566186 A21   2024 
  669  149*2^5196375+1                  1564267 L5174 2024 
  670  277*2^5185268+1                  1560924 L5888 2024 
  671  308084!+1                        1557176 p425  2022 Factorial
  672  843575^262144-843575^131072+1    1553498 L4506 2017 Generalized unique
  673  25*2^5152151-1                   1550954 L1884 2020 
  674  125*2^5149981+1                  1550301 L6042 2024 
  675  147*2^5146964+1                  1549393 L5559 2024 
  676  53546*5^2216664-1                1549387 L4398 2016 
  677  773620^262144+1                  1543643 L3118 2012 Generalized Fermat
  678  39*2^5119458+1                   1541113 L1204 2019 
  679  607*26^1089034+1                 1540957 L5410 2021 
  680  81*2^5115131+1                   1539810 L4965 2022 
          Divides GF(5115128,12) [GG]
  681  223*2^5105835-1                  1537012 L2484 2019 
  682  99*10^1536527-1                  1536529 L4879 2019 Near-repdigit
  683  81*2^5100331+1                   1535355 L4965 2022 
          Divides GF(5100327,6) [GG]
  684  992*10^1533933-1                 1533936 L4879 2019 Near-repdigit
  685  51*2^5085142-1                   1530782 L760  2014 
  686  3*2^5082306+1                    1529928 L780  2009 
          Divides GF(5082303,3), GF(5082305,5)
  687  676754^262144+1                  1528413 L2975 2012 Generalized Fermat
  688  296024*5^2185270-1               1527444 L671  2016 
  689  181*2^5057960+1                  1522600 L5178 2024 
  690  5359*2^5054502+1                 1521561 SB6   2003 
  691  175*2^5049344+1                  1520007 L5178 2024 
  692  183*2^5042357+1                  1517903 L5178 2024 
  693  1405486*12^1405486-1             1516781 L5765 2023 
          Generalized Woodall
  694  53*2^5019181+1                   1510926 L4965 2023 
  695  131*2^5013361+1                  1509175 L5178 2024 
  696  13*2^4998362+1                   1504659 L3917 2014 
  697  525094^262144+1                  1499526 p338  2012 Generalized Fermat
  698  92158*5^2145024+1                1499313 L4348 2016 
  699  499238*10^1497714-1              1497720 L4976 2019 
          Generalized Woodall
  700  357*2^4972628+1                  1496913 L5783 2024 
  701  77072*5^2139921+1                1495746 L4340 2016 
  702  175*2^4965756+1                  1494844 L5888 2024 
  703  221*2^4960867+1                  1493373 L5178 2024 
  704  375*2^4950021+1                  1490108 L5178 2024 
  705  2*3^3123036+1                    1490068 L5043 2020 
  706  75*2^4940218+1                   1487156 L5517 2024 
          Divides GF(4940214,12)
  707  95*2^4929067+1                   1483799 L5172 2024 
  708  161*2^4928111+1                  1483512 L5961 2024 
  709  51*2^4923905+1                   1482245 L4965 2023 
  710  289*2^4911870+1                  1478623 L5178 2024 Generalized Fermat
  711  519397*2^4908893-1               1477730 L5410 2022 
  712  306398*5^2112410-1               1476517 L4274 2016 
  713  183*2^4894125+1                  1473281 L5961 2024 
          Divides GF(4894123,3), GF(4894124,5)
  714  39*684^519468-1                  1472723 L5410 2023 
  715  195*2^4887935+1                  1471418 L5261 2024 
  716  281*2^4886723+1                  1471053 L5971 2024 
  717  281*2^4879761+1                  1468957 L5961 2024 
  718  96*789^506568+1                  1467569 A14   2024 
  719  243*2^4872108+1                  1466654 L5178 2024 
  720  213*2^4865126+1                  1464552 L5803 2024 
  721  265711*2^4858008+1               1462412 g414  2008 
  722  154222*5^2091432+1               1461854 L3523 2015 
  723  1271*2^4850526-1                 1460157 L1828 2012 
  724  333*2^4846958-1                  1459083 L5546 2022 
  725  357*2^4843507+1                  1458044 L5178 2024 
  726  156*532^534754-1                 1457695 L5410 2023 
  727  362978^262144-362978^131072+1    1457490 p379  2015 Generalized unique
  728  361658^262144+1                  1457075 p332  2011 Generalized Fermat
  729  231*2^4836124+1                  1455821 L5517 2024 
  730  7*10^1454508+1                   1454509 p439  2024 
  731  303*2^4829593+1                  1453855 L5706 2024 
  732  100186*5^2079747-1               1453686 L4197 2015 
  733  375*2^4824253+1                  1452248 L5625 2024 
  734  288465!+1                        1449771 p3    2022 Factorial
  735  15*2^4800315+1                   1445040 L1754 2019 
          Divides GF(4800313,3), GF(4800310,5)
  736  235*2^4799708+1                  1444859 L5971 2024 
  737  347*2^4798851+1                  1444601 L5554 2024 
  738  239*2^4795541+1                  1443605 L5995 2024 
  739  2^4792057-2^2396029+1            1442553 L3839 2014 
          Gaussian Mersenne norm 40, generalized unique
  740  92*10^1439761-1                  1439763 L4789 2020 Near-repdigit
  741  269*2^4777025+1                  1438031 L5683 2024 
  742  653*10^1435026-1                 1435029 p355  2014 
  743  197*2^4765318-1                  1434506 L5175 2021 
  744  1401*2^4759435-1                 1432736 L4965 2023 
  745  2169*2^4754343-1                 1431204 L4965 2023 
  746  188*468^535963+1                 1431156 L4832 2019 
  747  1809*2^4752792-1                 1430737 L4965 2022 
  748  61*2^4749928+1                   1429873 L5285 2024 
  749  2427*2^4749044-1                 1429609 L4965 2022 
  750  303*2^4748019-1                  1429299 L5545 2023 
  751  2259*2^4746735-1                 1428913 L4965 2022 
  752  309*2^4745713-1                  1428605 L5545 2023 
  753  183*2^4740056+1                  1426902 L5945 2024 
  754  2223*2^4729304-1                 1423666 L4965 2022 
  755  1851*2^4727663-1                 1423172 L4965 2022 
  756  1725*2^4727375-1                 1423085 L4965 2022 
  757  1611*2^4724014-1                 1422074 L4965 2022 
  758  1383*2^4719270-1                 1420645 L4965 2022 
  759  1749*2^4717431-1                 1420092 L4965 2022 
  760  321*2^4715725+1                  1419578 L5178 2024 
  761  371*2^4715211+1                  1419423 L5527 2024 
  762  2325*2^4713991-1                 1419057 L4965 2022 
  763  3267113#-1                       1418398 p301  2021 Primorial
  764  291*2^4708553+1                  1417419 L5308 2024 
  765  100*406^543228+1                 1417027 L5410 2020 Generalized Fermat
  766  2337*2^4705660-1                 1416549 L4965 2022 
  767  1229*2^4703492-1                 1415896 L1828 2018 
  768  303*2^4694937+1                  1413320 L5977 2024 
  769  3719*30^956044-1                 1412197 L5410 2023 
  770  6*894^478421-1                   1411983 L4294 2023 
  771  263*2^4688269+1                  1411313 L5904 2024 
  772  155*2^4687127+1                  1410969 L5969 2024 
  773  144052*5^2018290+1               1410730 L4146 2015 
  774  195*2^4685711-1                  1410542 L5175 2021 
  775  9*2^4683555-1                    1409892 L1828 2012 
  776  31*2^4673544+1                   1406879 L4990 2019 
  777  34*993^469245+1                  1406305 L4806 2018 
  778  197*2^4666979+1                  1404903 L5233 2024 
  779  79*2^4658115-1                   1402235 L1884 2018 
  780  39*2^4657951+1                   1402185 L1823 2019 
  781  4*650^498101-1                   1401116 L4294 2021 
  782  11*2^4643238-1                   1397755 L2484 2014 
  783  884411*38^884411+1               1397184 L5765 2023 Generalized Cullen
  784  68*995^465908-1                  1396712 L4001 2017 
  785  7*6^1793775+1                    1395830 L4965 2019 
  786  269*2^4636583+1                  1395753 L5509 2024 
  787  117*2^4632990+1                  1394672 L5960 2024 
  788  213*2^4625484+1                  1392412 L5956 2024 
  789e 2*914^469757+1                   1390926 A11   2025 
  790  1425*2^4618342+1                 1390263 L1134 2024 
  791  4*7^1640811+1                    1386647 A2    2024 
  792  192098^262144-192098^131072+1    1385044 p379  2015 Generalized unique
  793  339*2^4592225+1                  1382401 L5302 2024 
  794  6*10^1380098+1                   1380099 L5009 2023 
  795  27*2^4583717-1                   1379838 L2992 2014 
  796  221*2^4578577+1                  1378292 L5710 2024 
  797  359*2^4578161+1                  1378167 L5894 2024 
  798  3^2888387-3^1444194+1            1378111 L5123 2023 Generalized unique
  799  1198433*14^1198433+1             1373564 L5765 2023 Generalized Cullen
  800  67*2^4561350+1                   1373105 L5614 2024 
  801  121*2^4553899-1                  1370863 L3023 2012 
  802  231*2^4552115+1                  1370326 L5302 2024 
  803  223*2^4549924+1                  1369666 L5904 2024 
  804  9473*2^4543680-1                 1367788 L5037 2022 
  805  27*2^4542344-1                   1367384 L1204 2014 
  806  29*2^4532463+1                   1364409 L4988 2019 
  807  4*797^468702+1                   1359920 L4548 2017 Generalized Fermat
  808  145310^262144+1                  1353265 p314  2011 Generalized Fermat
  809  2*3^2834778-1                    1352534 A2    2024 
  810  479*2^4492481+1                  1352375 L5882 2024 
  811  373*2^4487274+1                  1350807 L5320 2024 
  812  527*2^4486247+1                  1350498 L5178 2024 
  813  25*2^4481024+1                   1348925 L4364 2019 Generalized Fermat
  814  83*2^4479409+1                   1348439 L5178 2024 
  815  417*2^4473466+1                  1346651 L5178 2024 
  816  81*536^493229+1                  1346106 p431  2023 
  817  303*2^4471002-1                  1345909 L5545 2022 
  818  1425*2^4469783+1                 1345542 L1134 2023 
  819  2*1283^432757+1                  1345108 L4879 2019 
          Divides Phi(1283^432757,2)
  820  1-V(-2,-2,3074821)-2^3074821     1342125 p437  2024 
  821  447*2^4457132+1                  1341734 L5875 2024 
  822  36772*6^1723287-1                1340983 L1301 2014 
  823  583854*14^1167708-1              1338349 L4976 2019 
          Generalized Woodall
  824  20*634^476756-1                  1335915 L4975 2023 
  825  297*2^4432947+1                  1334453 L5178 2023 
  826  85*2^4432870+1                   1334429 L4965 2023 
  827  151*2^4424321-1                  1331856 L1884 2016 
  828  231*2^4422227+1                  1331226 L5192 2023 
  829  131*2^4421071+1                  1330878 L5178 2023 
  830  225*2^4419349+1                  1330359 L5866 2023 
  831  1485*2^4416137+1                 1329393 L1134 2024 
  832  469*2^4414802+1                  1328991 L5830 2023 
  833  549*2^4411029+1                  1327855 L5862 2023 
  834  445*2^4410256+1                  1327622 L5537 2023 
  835  259*2^4395550+1                  1323195 L5858 2023 
  836  219*2^4394846+1                  1322983 L5517 2023 
  837  165*2^4379097+1                  1318242 L5852 2023 
  838  183*2^4379002+1                  1318214 L5476 2023 
  839  1455*2^4376470+1                 1317452 L1134 2023 
  840  165*2^4375458+1                  1317147 L5851 2023 
  841  195*2^4373994-1                  1316706 L5175 2020 
  842  381*2^4373129+1                  1316446 L5421 2023 
  843f 2008551*2^4371904+1              1316081 g431  2025 
  844  (10^657559-1)^2-2                1315118 p405  2022 Near-repdigit
  845  49*2^4365175-1                   1314051 L1959 2017 
  846  49*2^4360869-1                   1312755 L1959 2017 
  847  253*2^4358512+1                  1312046 L875  2023 
  848  219*2^4354805+1                  1310930 L5848 2023 
  849  249*2^4351621+1                  1309971 L5260 2023 
  850  159*2^4348734+1                  1309102 L5421 2023 
  851  115*2^4347620+1                  1308767 L5178 2023 
  852  533*2^4338237+1                  1305943 L5260 2023 
  853  141*2^4337804+1                  1305812 L5178 2023 
  854  363*2^4334518+1                  1304823 L5261 2023 
  855  299*2^4333939+1                  1304649 L5517 2023 
  856  13*2^4333087-1                   1304391 L1862 2018 
  857  353159*2^4331116-1               1303802 L2408 2011 
  858  195*2^4330189+1                  1303520 L5178 2023 
  859  145*2^4327756+1                  1302787 L5517 2023 
  860c 31*980^433853-1                  1297754 A11   2025 
  861  9959*2^4308760-1                 1297071 L5037 2022 
  862  195*2^4304861+1                  1295895 L5178 2023 
  863  23*2^4300741+1                   1294654 L4147 2019 
  864  682156*79^682156+1               1294484 L4472 2016 Generalized Cullen
  865  141941*2^4299438-1               1294265 L689  2011 
  866  87*2^4297718+1                   1293744 L4965 2023 
  867  22*905^437285-1                  1292900 L5342 2024 
  868  435*2^4292968+1                  1292315 L5783 2023 
  869  993149*20^993149+1               1292123 L5765 2023 Generalized Cullen
  870  415*2^4280864+1                  1288672 L5818 2023 
  871  79*2^4279006+1                   1288112 L4965 2023 
  872  205*2^4270310+1                  1285494 L5517 2023 
  873  483*2^4270112+1                  1285435 L5178 2023 
  874  123*2^4266441+1                  1284329 L5178 2023 
  875  612749*2^4254500-1               1280738 L5410 2022 
  876c 3883403*2^4254462-1              1280728 L5327 2025 
  877  223*2^4252660+1                  1280181 L5178 2023 
  878  1644731*6^1644731+1              1279856 L5765 2023 Generalized Cullen
  879  38*380^495986-1                  1279539 L5410 2023 
  880  2*1151^417747+1                  1278756 L4879 2019 
          Divides Phi(1151^417747,2)
  881  15*2^4246384+1                   1278291 L3432 2013 
          Divides GF(4246381,6)
  882  3*2^4235414-1                    1274988 L606  2008 
  883  2*1259^411259+1                  1274914 L4879 2020 
          Divides Phi(1259^411259,2)
  884  93*2^4232892+1                   1274230 L4965 2023 
  885  131*2^4227493+1                  1272605 L5226 2023 
  886  45*436^481613+1                  1271213 L5410 2020 
  887  109208*5^1816285+1               1269534 L3523 2014 
  888  435*2^4216447+1                  1269280 L5178 2023 
  889  1091*2^4215518-1                 1269001 L1828 2018 
  890  191*2^4203426-1                  1265360 L2484 2012 
  891  269*2^4198809+1                  1263970 L5226 2023 
  892  545*2^4198333+1                  1263827 L5804 2023 
  893  53*2^4197093+1                   1263453 L5563 2023 
  894  1259*2^4196028-1                 1263134 L1828 2016 
  895  329*2^4193199+1                  1262282 L5226 2023 
  896  141*2^4192911+1                  1262195 L5226 2023 
          Divides Fermat F(4192909)
  897  325918*5^1803339-1               1260486 L3567 2014 
  898e 1160*745^438053-1                1258160 L4189 2025 
  899f 16723*820^431579+1               1257546 A11   2025 
  900  345*2^4173969+1                  1256493 L5226 2023 
  901  161*2^4164267+1                  1253572 L5178 2023 
  902  135*2^4162529+1                  1253049 L5178 2023 
          Divides GF(4162525,10)
  903  177*2^4162494+1                  1253038 L5796 2023 
  904  237*2^4153348+1                  1250285 L5178 2023 
  905  69*2^4151165+1                   1249628 L4965 2023 
  906  133778*5^1785689+1               1248149 L3903 2014 
  907  201*2^4146003+1                  1248074 L5161 2023 
  908  329*2^4136019+1                  1245069 L5178 2023 
  909  81*2^4131975+1                   1243851 L4965 2022 
  910  459*2^4129577+1                  1243130 L5226 2023 
  911  551*2^4126303+1                  1242144 L5226 2023 
  912  363*2^4119017+1                  1239951 L5226 2023 
  913  105*2^4113039+1                  1238151 L5178 2023 
  914  204*532^454080-1                 1237785 L5410 2023 
  915  41*684^436354+1                  1237090 L4444 2023 
  916  17*2^4107544-1                   1236496 L4113 2015 
  917  261*2^4106385+1                  1236148 L5178 2023 
  918  24032*5^1768249+1                1235958 L3925 2014 
  919  172*159^561319-1                 1235689 L4001 2017 
  920  10^1234567-20342924302*10^617278-1
                                        1234567 p423  2021 Palindrome
  921  10^1234567-1927633367291*10^617277-1
                                        1234567 p423  2023 Palindrome
  922  10^1234567-3626840486263*10^617277-1
                                        1234567 p423  2021 Palindrome
  923  10^1234567-4708229228074*10^617277-1
                                        1234567 p423  2021 Palindrome
  924  67*2^4100746+1                   1234450 L5178 2023 
  925  191*2^4099097+1                  1233954 L5563 2023 
  926  325*2^4097700+1                  1233534 L5226 2023 
  927  519*2^4095491+1                  1232869 L5226 2023 
  928  111*2^4091044+1                  1231530 L5783 2023 
          Divides GF(4091041,3)
  929  1182072*11^1182072-1             1231008 L5765 2023 
          Generalized Woodall
  930  64*425^467857-1                  1229712 p268  2021 
  931  8*558^447047+1                   1227876 A28   2024 
  932  163*778^424575+1                 1227440 A11   2024 
  933  381*2^4069617+1                  1225080 L5226 2023 
  934b 9*10^1224889-1                   1224890 A2    2025 Near-repdigit
  935  97*2^4066717-1                   1224206 L2484 2019 
  936  95*2^4063895+1                   1223357 L5226 2023 
  937  79*2^4062818+1                   1223032 L5178 2023 
  938  1031*2^4054974-1                 1220672 L1828 2017 
  939  309*2^4054114+1                  1220413 L5178 2023 
  940  2022202116^131072+1              1219734 L4704 2022 Generalized Fermat
  941  37*2^4046360+1                   1218078 L2086 2019 
  942  141*2^4043116+1                  1217102 L5517 2023 
  943d 172*360^474814+1                 1213771 A28   2025 
  944  39653*430^460397-1               1212446 L4187 2016 
  945  1777034894^131072+1              1212377 L4704 2022 Generalized Fermat
  946  141*2^4024411+1                  1211471 L5226 2023 
  947  515*2^4021165+1                  1210494 L5174 2023 
  948  73*2^4016912+1                   1209213 L5226 2023 
  949  40734^262144+1                   1208473 p309  2011 Generalized Fermat
  950  235*2^4013398+1                  1208156 L5178 2023 
  951  9*2^4005979-1                    1205921 L1828 2012 
  952  417*2^4003224+1                  1205094 L5764 2023 
  953  12*68^656921+1                   1203815 L4001 2016 
  954  67*688^423893+1                  1202836 L4001 2017 
  955  221*2^3992723+1                  1201932 L5178 2023 
  956  213*2^3990702+1                  1201324 L5216 2023 
  957  1993191*2^3986382-1              1200027 L3532 2015 
          Generalized Woodall
  958b 1429787556^131072+1              1200000 x54   2025 Generalized Fermat
  959  163*2^3984604+1                  1199488 L5756 2023 
  960  725*2^3983355+1                  1199113 L5706 2023 
  961  (146^276995+1)^2-2               1199030 p405  2022 
  962  455*2^3981067+1                  1198424 L5724 2023 
  963  138172*5^1714207-1               1198185 L3904 2014 
  964  50*383^463313+1                  1196832 L2012 2021 
  965  339*2^3974295+1                  1196385 L5178 2023 
  966  699*2^3974045+1                  1196310 L5750 2023 
  967  1202113^196608-1202113^98304+1   1195366 L4506 2016 Generalized unique
  968  29*2^3964697+1                   1193495 L1204 2019 
  969  599*2^3963655+1                  1193182 L5226 2023 
  970  683*2^3962937+1                  1192966 L5226 2023 
  971  39*2^3961129+1                   1192421 L1486 2019 
  972  165*2^3960664+1                  1192281 L5178 2023 
  973  79*2^3957238+1                   1191250 L5745 2023 
  974  687*2^3955918+1                  1190853 L5554 2023 
          Divides GF(3955915,6)
  975  163*2^3954818+1                  1190522 L5178 2023 
  976  431*2^3953647+1                  1190169 L5554 2023 
  977c 466542*355^466542-1              1189795 L6249 2025 
          Generalized Woodall
  978  1110815^196608-1110815^98304+1   1188622 L4506 2016 Generalized unique
  979  341*2^3938565+1                  1185629 L5554 2023 
  980  503*2^3936845+1                  1185112 L5706 2023 
  981  717*2^3934760+1                  1184484 L5285 2023 
  982  493*2^3929192+1                  1182808 L5161 2023 
  983  273*2^3929128+1                  1182788 L5554 2023 
  984  609*2^3928682+1                  1182654 L5178 2023 
  985  609*2^3928441+1                  1182582 L5527 2023 
  986  281*2^3926467+1                  1181987 L5174 2023 
  987  153*2^3922478+1                  1180786 L5554 2023 
  988  69*2^3920863+1                   1180300 L5554 2023 
  989  273*2^3919321+1                  1179836 L5706 2023 
  990  531*2^3918985+1                  1179735 L5706 2023 
  991  1000032472^131072+1              1179650 L4704 2022 Generalized Fermat
  992  555*2^3916875+1                  1179100 L5302 2023 
  993  571*2^3910616+1                  1177216 L5178 2023 
  994  421*2^3905144+1                  1175569 L5600 2023 
  995  P1174253                         1174253 p414  2022 
  996  567*2^3897588+1                  1173294 L5600 2023 
  997  417*2^3895404+1                  1172637 L5600 2023 
  998  539*2^3894953+1                  1172501 L5285 2023 
  999  645*2^3893849+1                  1172169 L5600 2023 
 1000  818764*3^2456293-1               1171956 L4965 2023 
          Generalized Woodall
 1001  22478*5^1675150-1                1170884 L3903 2014 
 1002  1199*2^3889576-1                 1170883 L1828 2018 
 1003  298989*2^3886857+1               1170067 L2777 2014 Generalized Cullen
 1004  93*10^1170023-1                  1170025 L4789 2022 Near-repdigit
 1005  711*2^3886480+1                  1169950 L5320 2023 
 1006  375*2^3884634+1                  1169394 L5600 2023 
 1007e 445583*2^3883406-1               1169028 L5327 2025 
 1008  94*872^397354+1                  1168428 L5410 2019 
 1009  269*2^3877485+1                  1167242 L5649 2023 
 1010  163*2^3874556+1                  1166360 L5646 2023 
          Divides GF(3874552,5)
 1011  1365*2^3872811+1                 1165836 L1134 2023 
 1012  313*2^3869536+1                  1164849 L5600 2023 
 1013  159*2^3860863+1                  1162238 L5226 2023 
 1014  445*2^3860780+1                  1162214 L5640 2023 
 1015  397*2^3859450+1                  1161813 L5226 2023 
 1016  685*2^3856790+1                  1161013 L5226 2023 
 1017  27*2^3855094-1                   1160501 L3033 2012 
 1018  537*2^3853860+1                  1160131 L5636 2022 
 1019  164*978^387920-1                 1160015 L4700 2018 
 1020  175*2^3850344+1                  1159072 L5226 2022 
 1021  685*2^3847268+1                  1158146 L5226 2022 
 1022  655*2^3846352+1                  1157871 L5282 2022 
 1023  583*2^3846196+1                  1157824 L5226 2022 
 1024  615*2^3844151+1                  1157208 L5226 2022 
 1025  14772*241^485468-1               1156398 L5410 2022 
 1026  525*2^3840963+1                  1156248 L5613 2022 
 1027  313*2^3837304+1                  1155147 L5298 2022 
 1028  49*2^3837090+1                   1155081 L4979 2019 Generalized Fermat
 1029  431*2^3835247+1                  1154528 L5161 2022 
 1030  97*2^3833722+1                   1154068 L5226 2022 
 1031  2*839^394257+1                   1152714 L4879 2019 
          Divides Phi(839^394257,2)
 1032  125*392^444161+1                 1151839 L4832 2022 
 1033  255*2^3824348+1                  1151246 L5226 2022 
 1034  30*514^424652-1                  1151218 L4001 2017 
 1035  569*2^3823191+1                  1150898 L5226 2022 
 1036  24518^262144+1                   1150678 g413  2008 Generalized Fermat
 1037  563*2^3819237+1                  1149708 L5178 2022 
 1038  345*2^3817949+1                  1149320 L5373 2022 
 1039  700219^196608-700219^98304+1     1149220 L4506 2016 Generalized unique
 1040  241*2^3815727-1                  1148651 L2484 2019 
 1041  351*2^3815467+1                  1148573 L5226 2022 
 1042b 9*10^1148275-1                   1148276 A2    2025 Near-repdigit
 1043  109*980^383669-1                 1147643 L4001 2018 
 1044  427*2^3811610+1                  1147412 L5614 2022 
 1045  569*2^3810475+1                  1147071 L5610 2022 
 1046  213*2^3807864+1                  1146284 L5609 2022 
 1047  87*2^3806438+1                   1145854 L5607 2022 
 1048  369*2^3805321+1                  1145519 L5541 2022 
 1049  123547*2^3804809-1               1145367 L2371 2011 
 1050  2564*75^610753+1                 1145203 L3610 2014 
 1051  539*2^3801705+1                  1144430 L5161 2022 
 1052  159*2^3801463+1                  1144357 L5197 2022 
 1053  235*2^3801284+1                  1144303 L5608 2022 
 1054  660955^196608-660955^98304+1     1144293 L4506 2016 Generalized unique
 1055  519*2^3800625+1                  1144105 L5315 2022 
 1056  281*2^3798465+1                  1143455 L5178 2022 
 1057  166*443^432000+1                 1143249 L5410 2020 
 1058  85*2^3797698+1                   1143223 L5161 2022 
 1059  326834*5^1634978-1               1142807 L3523 2014 
 1060  459*2^3795969+1                  1142704 L5161 2022 
 1061  105*298^461505-1                 1141866 L5841 2023 
 1062  447*2^3780151+1                  1137942 L5596 2022 
 1063  345*2^3779921+1                  1137873 L5557 2022 
 1064  477*2^3779871+1                  1137858 L5197 2022 
 1065  251*2^3774587+1                  1136267 L5592 2022 
 1066  439*2^3773958+1                  1136078 L5557 2022 
 1067  43*182^502611-1                  1135939 L4064 2020 
 1068  415267*2^3771929-1               1135470 L2373 2011 
 1069  11*2^3771821+1                   1135433 p286  2013 
 1070  427*2^3768104+1                  1134315 L5192 2022 
 1071  1455*2^3768024-1                 1134292 L1134 2022 
 1072  711*2^3767492+1                  1134131 L5161 2022 
 1073  265*2^3765189-1                  1133438 L2484 2018 
 1074  297*2^3765140+1                  1133423 L5197 2022 
 1075  381*2^3764189+1                  1133137 L5589 2022 
 1076  115*2^3763650+1                  1132974 L5554 2022 
 1077  411*2^3759067+1                  1131595 L5589 2022 
 1078  405*2^3757192+1                  1131031 L5590 2022 
 1079f 1981*2^3754984+1                 1130367 A24   2025 
 1080  938237*2^3752950-1               1129757 L521  2007 Woodall
 1081b 21*2^3745951-1                   1127645 L4881 2025 
 1082  399866798^131072+1               1127471 L4964 2019 Generalized Fermat
 1083  701*2^3744713+1                  1127274 L5554 2022 
 1084  207394*5^1612573-1               1127146 L3869 2014 
 1085  684*10^1127118+1                 1127121 L4036 2017 
 1086  535386^196608-535386^98304+1     1126302 L4506 2016 Generalized unique
 1087  104944*5^1610735-1               1125861 L3849 2014 
 1088  23451*2^3739388+1                1125673 L591  2015 
 1089  78*622^402915-1                  1125662 L5645 2023 
 1090  615*2^3738023+1                  1125260 L5161 2022 
 1091  347*2^3737875+1                  1125216 L5178 2022 
 1092  163*2^3735726+1                  1124568 L5477 2022 
          Divides GF(3735725,6)
 1093  375*2^3733510+1                  1123902 L5584 2022 
 1094  25*2^3733144+1                   1123790 L2125 2019 Generalized Fermat
 1095  629*2^3731479+1                  1123290 L5283 2022 
 1096  113*2^3728113+1                  1122276 L5161 2022 
 1097  303*2^3725438+1                  1121472 L5161 2022 
 1098  187*2^3723972+1                  1121030 L5178 2022 
 1099  2*1103^368361+1                  1120767 L4879 2019 
          Divides Phi(1103^368361,2)
 1100  105*2^3720512+1                  1119988 L5493 2022 
 1101  447*2^3719024+1                  1119541 L5493 2022 
 1102  177*2^3717746+1                  1119156 L5279 2022 
 1103  2*131^528469+1                   1118913 L4879 2019 
          Divides Phi(131^528469,2)
 1104  123*2^3716758+1                  1118858 L5563 2022 
 1105  313*2^3716716+1                  1118846 L5237 2022 
 1106a 338188646^131072+1               1117934 L4387 2025 Generalized Fermat
 1107a 337982668^131072+1               1117900 L4387 2025 Generalized Fermat
 1108a 337667556^131072+1               1117847 L6260 2025 Generalized Fermat
 1109b 337377976^131072+1               1117798 L6259 2025 Generalized Fermat
 1110b 337239448^131072+1               1117774 L4387 2025 Generalized Fermat
 1111b 336909928^131072+1               1117719 L6256 2025 Generalized Fermat
 1112  367*2^3712952+1                  1117713 L5264 2022 
 1113b 336776604^131072+1               1117696 L6080 2025 Generalized Fermat
 1114b 336659214^131072+1               1117676 L5467 2025 Generalized Fermat
 1115b 336511772^131072+1               1117651 L4387 2025 Generalized Fermat
 1116b 336225072^131072+1               1117603 L4387 2025 Generalized Fermat
 1117b 336163680^131072+1               1117593 L4387 2025 Generalized Fermat
 1118b 336061324^131072+1               1117575 L4387 2025 Generalized Fermat
 1119b 335827642^131072+1               1117536 L4201 2025 Generalized Fermat
 1120b 335774748^131072+1               1117527 L5697 2025 Generalized Fermat
 1121b 335651494^131072+1               1117506 L4387 2025 Generalized Fermat
 1122b 335493020^131072+1               1117479 L4387 2025 Generalized Fermat
 1123b 335369868^131072+1               1117458 L4387 2025 Generalized Fermat
 1124b 334704486^131072+1               1117345 L4387 2025 Generalized Fermat
 1125b 333992848^131072+1               1117224 L5639 2025 Generalized Fermat
 1126b 333867048^131072+1               1117202 L4387 2025 Generalized Fermat
 1127b 333848570^131072+1               1117199 L4387 2025 Generalized Fermat
 1128b 333782588^131072+1               1117188 L4387 2025 Generalized Fermat
 1129b 333605722^131072+1               1117158 L6237 2025 Generalized Fermat
 1130b 333589186^131072+1               1117155 L4387 2025 Generalized Fermat
 1131b 333291568^131072+1               1117104 L5697 2025 Generalized Fermat
 1132b 332896652^131072+1               1117037 L4387 2025 Generalized Fermat
 1133b 332642368^131072+1               1116993 L5639 2025 Generalized Fermat
 1134b 332518718^131072+1               1116972 L5639 2025 Generalized Fermat
 1135b 332328704^131072+1               1116939 L5767 2025 Generalized Fermat
 1136b 332234952^131072+1               1116923 L4387 2025 Generalized Fermat
 1137b 331873856^131072+1               1116861 L5639 2025 Generalized Fermat
 1138b 331689568^131072+1               1116830 L4201 2025 Generalized Fermat
 1139b 331213936^131072+1               1116748 L5416 2025 Generalized Fermat
 1140b 331012838^131072+1               1116714 L4899 2025 Generalized Fermat
 1141b 330733978^131072+1               1116666 L6036 2025 Generalized Fermat
 1142b 330629260^131072+1               1116648 L5606 2025 Generalized Fermat
 1143  53*2^3709297+1                   1116612 L5197 2022 
 1144b 329898286^131072+1               1116522 L6252 2025 Generalized Fermat
 1145b 329482500^131072+1               1116450 L4387 2025 Generalized Fermat
 1146c 329433542^131072+1               1116441 L4201 2025 Generalized Fermat
 1147c 329320574^131072+1               1116422 L5696 2025 Generalized Fermat
 1148c 329310030^131072+1               1116420 L4201 2025 Generalized Fermat
 1149c 329136932^131072+1               1116390 L4892 2025 Generalized Fermat
 1150c 328941060^131072+1               1116356 L5974 2025 Generalized Fermat
 1151c 328110906^131072+1               1116212 L4387 2025 Generalized Fermat
 1152c 328048726^131072+1               1116202 L6250 2025 Generalized Fermat
 1153c 328036906^131072+1               1116200 L4201 2025 Generalized Fermat
 1154c 327703514^131072+1               1116142 L5974 2025 Generalized Fermat
 1155c 327549800^131072+1               1116115 L6129 2025 Generalized Fermat
 1156c 327476480^131072+1               1116102 L4201 2025 Generalized Fermat
 1157c 327239720^131072+1               1116061 L4984 2025 Generalized Fermat
 1158c 326302488^131072+1               1115898 L5722 2025 Generalized Fermat
 1159c 326104126^131072+1               1115863 L4684 2025 Generalized Fermat
 1160c 325957720^131072+1               1115838 L5186 2025 Generalized Fermat
 1161c 325927678^131072+1               1115832 L6245 2025 Generalized Fermat
 1162c 325913944^131072+1               1115830 L4387 2025 Generalized Fermat
 1163c 325084378^131072+1               1115685 L4201 2025 Generalized Fermat
 1164c 325043708^131072+1               1115678 L4201 2025 Generalized Fermat
 1165c 324844530^131072+1               1115643 L4939 2025 Generalized Fermat
 1166c 324830528^131072+1               1115640 L4599 2025 Generalized Fermat
 1167c 324563740^131072+1               1115594 L5639 2025 Generalized Fermat
 1168c 324342882^131072+1               1115555 L4201 2025 Generalized Fermat
 1169c 323718292^131072+1               1115445 L4201 2025 Generalized Fermat
 1170c 323626506^131072+1               1115429 L4201 2025 Generalized Fermat
 1171d 323033558^131072+1               1115325 L6073 2025 Generalized Fermat
 1172d 322955442^131072+1               1115311 L5767 2025 Generalized Fermat
 1173d 322525546^131072+1               1115235 L4201 2025 Generalized Fermat
 1174d 322451080^131072+1               1115222 L5452 2025 Generalized Fermat
 1175d 322434876^131072+1               1115219 L4201 2025 Generalized Fermat
 1176d 322396080^131072+1               1115212 L6237 2025 Generalized Fermat
 1177d 322011364^131072+1               1115144 L4201 2025 Generalized Fermat
 1178d 321847328^131072+1               1115115 L4387 2025 Generalized Fermat
 1179d 321745654^131072+1               1115097 L4201 2025 Generalized Fermat
 1180d 321738090^131072+1               1115096 L4760 2025 Generalized Fermat
 1181d 321725062^131072+1               1115094 L6090 2025 Generalized Fermat
 1182d 321586916^131072+1               1115069 L4201 2025 Generalized Fermat
 1183  2^3704053+2^1852027+1            1115032 L3839 2014 
          Gaussian Mersenne norm 39, generalized unique
 1184d 321054002^131072+1               1114975 L6092 2025 Generalized Fermat
 1185d 320959460^131072+1               1114958 L4774 2025 Generalized Fermat
 1186d 320925816^131072+1               1114952 L6229 2025 Generalized Fermat
 1187d 320693846^131072+1               1114911 L6230 2025 Generalized Fermat
 1188d 320244692^131072+1               1114831 L6227 2025 Generalized Fermat
 1189d 319727682^131072+1               1114739 L4477 2025 Generalized Fermat
 1190d 319569620^131072+1               1114711 L5156 2025 Generalized Fermat
 1191d 319473204^131072+1               1114694 L6085 2025 Generalized Fermat
 1192d 319461008^131072+1               1114692 L4760 2025 Generalized Fermat
 1193d 317844906^131072+1               1114403 L5069 2025 Generalized Fermat
 1194d 317488260^131072+1               1114339 L5069 2025 Generalized Fermat
 1195  395*2^3701693+1                  1114324 L5536 2022 
 1196e 317365236^131072+1               1114317 L6036 2025 Generalized Fermat
 1197d 317303160^131072+1               1114306 L5707 2025 Generalized Fermat
 1198e 317185514^131072+1               1114285 L4201 2025 Generalized Fermat
 1199e 317005818^131072+1               1114252 L5069 2025 Generalized Fermat
 1200e 316699096^131072+1               1114197 L5234 2025 Generalized Fermat
 1201e 316650634^131072+1               1114189 L5698 2025 Generalized Fermat
 1202e 316586358^131072+1               1114177 L4747 2025 Generalized Fermat
 1203e 316525620^131072+1               1114166 L4835 2025 Generalized Fermat
 1204e 316291718^131072+1               1114124 L4835 2025 Generalized Fermat
 1205e 315974676^131072+1               1114067 L5069 2025 Generalized Fermat
 1206e 315889316^131072+1               1114052 L5234 2025 Generalized Fermat
 1207e 315747878^131072+1               1114026 L5989 2025 Generalized Fermat
 1208d 315608702^131072+1               1114001 L5577 2025 Generalized Fermat
 1209e 315329034^131072+1               1113950 L5378 2025 Generalized Fermat
 1210e 315314084^131072+1               1113948 L5718 2025 Generalized Fermat
 1211e 315134738^131072+1               1113915 L5697 2025 Generalized Fermat
 1212e 314548296^131072+1               1113809 L4774 2025 Generalized Fermat
 1213e 314518672^131072+1               1113804 L5720 2025 Generalized Fermat
 1214  589*2^3699954+1                  1113800 L5576 2022 
 1215e 314283852^131072+1               1113761 L6220 2025 Generalized Fermat
 1216  314187728^131072+1               1113744 L4704 2019 Generalized Fermat
 1217e 313957156^131072+1               1113702 L4201 2025 Generalized Fermat
 1218d 313807832^131072+1               1113675 L4309 2025 Generalized Fermat
 1219e 313698494^131072+1               1113655 L4791 2025 Generalized Fermat
 1220e 313043470^131072+1               1113536 L4870 2025 Generalized Fermat
 1221e 312959344^131072+1               1113521 L5989 2025 Generalized Fermat
 1222e 312907040^131072+1               1113512 L4835 2025 Generalized Fermat
 1223e 312372774^131072+1               1113414 L5732 2025 Generalized Fermat
 1224e 312306760^131072+1               1113402 L5782 2025 Generalized Fermat
 1225  119*2^3698412-1                  1113336 L2484 2018 
 1226e 311769070^131072+1               1113304 L5378 2025 Generalized Fermat
 1227e 311345600^131072+1               1113227 L4201 2025 Generalized Fermat
 1228e 311340274^131072+1               1113226 L5234 2025 Generalized Fermat
 1229e 311041040^131072+1               1113171 L5974 2025 Generalized Fermat
 1230e 310877094^131072+1               1113141 L5378 2025 Generalized Fermat
 1231e 310324620^131072+1               1113040 L5069 2025 Generalized Fermat
 1232e 310092052^131072+1               1112997 L4201 2025 Generalized Fermat
 1233e 310040910^131072+1               1112988 L5989 2025 Generalized Fermat
 1234e 310039364^131072+1               1112987 L5452 2025 Generalized Fermat
 1235e 309765652^131072+1               1112937 L5069 2025 Generalized Fermat
 1236e 309739652^131072+1               1112932 L4201 2025 Generalized Fermat
 1237e 309664690^131072+1               1112919 L4904 2025 Generalized Fermat
 1238e 309512820^131072+1               1112891 L4672 2025 Generalized Fermat
 1239e 309489574^131072+1               1112886 L4285 2025 Generalized Fermat
 1240e 309442124^131072+1               1112878 L4763 2025 Generalized Fermat
 1241e 309322056^131072+1               1112856 L5763 2025 Generalized Fermat
 1242e 309290162^131072+1               1112850 L4984 2025 Generalized Fermat
 1243e 309274552^131072+1               1112847 L4870 2025 Generalized Fermat
 1244e 309198216^131072+1               1112833 L6220 2025 Generalized Fermat
 1245e 309023380^131072+1               1112801 L5586 2025 Generalized Fermat
 1246e 308604278^131072+1               1112723 L5814 2025 Generalized Fermat
 1247e 308406372^131072+1               1112687 L5069 2025 Generalized Fermat
 1248e 308191838^131072+1               1112647 L4411 2025 Generalized Fermat
 1249e 308154186^131072+1               1112640 L4672 2025 Generalized Fermat
 1250e 308065536^131072+1               1112624 L5617 2025 Generalized Fermat
 1251e 307819786^131072+1               1112579 L4733 2025 Generalized Fermat
 1252e 307711366^131072+1               1112558 L5375 2025 Generalized Fermat
 1253e 307525070^131072+1               1112524 L5234 2025 Generalized Fermat
 1254e 307305996^131072+1               1112483 L5871 2025 Generalized Fermat
 1255e 307211976^131072+1               1112466 L5234 2025 Generalized Fermat
 1256e 306999614^131072+1               1112427 L6215 2025 Generalized Fermat
 1257e 306293130^131072+1               1112295 L4252 2025 Generalized Fermat
 1258e 306021044^131072+1               1112245 L5029 2025 Generalized Fermat
 1259e 305985812^131072+1               1112238 L4672 2025 Generalized Fermat
 1260e 305909498^131072+1               1112224 L5869 2025 Generalized Fermat
 1261e 305710338^131072+1               1112187 L5155 2025 Generalized Fermat
 1262e 305485026^131072+1               1112145 L6217 2025 Generalized Fermat
 1263e 305470708^131072+1               1112142 L4245 2025 Generalized Fermat
 1264e 305377046^131072+1               1112125 L4775 2025 Generalized Fermat
 1265e 305014830^131072+1               1112057 L5041 2025 Generalized Fermat
 1266e 304591806^131072+1               1111978 L5069 2025 Generalized Fermat
 1267  391*2^3693728+1                  1111926 L5493 2022 
 1268e 303660042^131072+1               1111804 L5548 2025 Generalized Fermat
 1269e 303569754^131072+1               1111787 L5041 2025 Generalized Fermat
 1270e 303297636^131072+1               1111736 L5069 2025 Generalized Fermat
 1271e 303057534^131072+1               1111691 L5797 2025 Generalized Fermat
 1272e 302824086^131072+1               1111647 L4252 2025 Generalized Fermat
 1273e 302491876^131072+1               1111585 L5273 2025 Generalized Fermat
 1274e 302240442^131072+1               1111537 L5375 2025 Generalized Fermat
 1275e 302186970^131072+1               1111527 L5030 2025 Generalized Fermat
 1276e 302150100^131072+1               1111520 L5586 2025 Generalized Fermat
 1277e 301715144^131072+1               1111438 L5234 2025 Generalized Fermat
 1278e 301702734^131072+1               1111436 L6205 2025 Generalized Fermat
 1279e 301006780^131072+1               1111304 L5375 2025 Generalized Fermat
 1280e 300951448^131072+1               1111294 L6092 2025 Generalized Fermat
 1281e 300789064^131072+1               1111263 L5041 2025 Generalized Fermat
 1282e 300359914^131072+1               1111182 L6207 2025 Generalized Fermat
 1283  1089049*2^3691010+1              1111111 A51   2024 
 1284e 299617962^131072+1               1111041 L6170 2025 Generalized Fermat
 1285e 299465954^131072+1               1111012 L5378 2025 Generalized Fermat
 1286e 299453316^131072+1               1111010 L6207 2025 Generalized Fermat
 1287e 299319324^131072+1               1110984 L5378 2025 Generalized Fermat
 1288e 298464340^131072+1               1110822 L5019 2025 Generalized Fermat
 1289e 298459970^131072+1               1110821 L4477 2025 Generalized Fermat
 1290e 297844594^131072+1               1110703 L5029 2025 Generalized Fermat
 1291e 297797756^131072+1               1110694 L6096 2025 Generalized Fermat
 1292e 297561734^131072+1               1110649 L5070 2025 Generalized Fermat
 1293e 297347764^131072+1               1110608 L4201 2025 Generalized Fermat
 1294e 297200042^131072+1               1110580 L5143 2025 Generalized Fermat
 1295e 296855808^131072+1               1110514 L6205 2025 Generalized Fermat
 1296e 296366230^131072+1               1110420 L6019 2025 Generalized Fermat
 1297e 296322752^131072+1               1110412 L5462 2025 Generalized Fermat
 1298e 296139756^131072+1               1110377 L5696 2025 Generalized Fermat
 1299e 296013472^131072+1               1110352 L5156 2025 Generalized Fermat
 1300e 295817758^131072+1               1110315 L5974 2025 Generalized Fermat
 1301  485*2^3688111+1                  1110235 L5237 2022 
 1302e 295265516^131072+1               1110208 L5391 2025 Generalized Fermat
 1303e 295158064^131072+1               1110188 L4201 2025 Generalized Fermat
 1304e 295116084^131072+1               1110179 L6202 2025 Generalized Fermat
 1305e 295038452^131072+1               1110164 L6201 2025 Generalized Fermat
 1306e 294901286^131072+1               1110138 L5880 2025 Generalized Fermat
 1307e 294581562^131072+1               1110076 L4933 2025 Generalized Fermat
 1308e 294287308^131072+1               1110019 L5029 2025 Generalized Fermat
 1309e 294282868^131072+1               1110018 L5069 2025 Generalized Fermat
 1310e 293950920^131072+1               1109954 L5019 2025 Generalized Fermat
 1311e 293846126^131072+1               1109934 L4387 2025 Generalized Fermat
 1312e 293634610^131072+1               1109893 L4659 2025 Generalized Fermat
 1313e 293593596^131072+1               1109885 L5457 2025 Generalized Fermat
 1314e 293229954^131072+1               1109814 L5069 2025 Generalized Fermat
 1315  341*2^3686613+1                  1109784 L5573 2022 
 1316  87*2^3686558+1                   1109767 L5573 2022 
 1317e 292906440^131072+1               1109752 L5069 2025 Generalized Fermat
 1318e 292462072^131072+1               1109665 L5586 2025 Generalized Fermat
 1319e 291939158^131072+1               1109563 L5586 2025 Generalized Fermat
 1320e 291644784^131072+1               1109506 L4201 2025 Generalized Fermat
 1321e 291616626^131072+1               1109500 L5676 2025 Generalized Fermat
 1322e 291515852^131072+1               1109481 L5697 2025 Generalized Fermat
 1323e 291463322^131072+1               1109470 L5025 2025 Generalized Fermat
 1324e 291165334^131072+1               1109412 L5637 2025 Generalized Fermat
 1325e 290922092^131072+1               1109365 L5069 2025 Generalized Fermat
 1326e 290470932^131072+1               1109276 L5069 2025 Generalized Fermat
 1327e 290470146^131072+1               1109276 L5069 2025 Generalized Fermat
 1328e 290289574^131072+1               1109241 L5586 2025 Generalized Fermat
 1329e 290289300^131072+1               1109241 L5491 2025 Generalized Fermat
 1330e 290203860^131072+1               1109224 L4835 2025 Generalized Fermat
 1331e 290075834^131072+1               1109199 L5234 2025 Generalized Fermat
 1332e 289805958^131072+1               1109146 L5234 2025 Generalized Fermat
 1333e 289390778^131072+1               1109064 L5639 2025 Generalized Fermat
 1334e 289176522^131072+1               1109022 L5041 2025 Generalized Fermat
 1335e 288601570^131072+1               1108909 L6189 2025 Generalized Fermat
 1336e 288168976^131072+1               1108823 L6187 2025 Generalized Fermat
 1337e 287625360^131072+1               1108716 L4747 2025 Generalized Fermat
 1338  675*2^3682616+1                  1108581 L5231 2022 
 1339e 286460772^131072+1               1108485 L5069 2025 Generalized Fermat
 1340e 286434328^131072+1               1108480 L4904 2025 Generalized Fermat
 1341  569*2^3682167+1                  1108446 L5488 2022 
 1342e 285803202^131072+1               1108354 L5473 2025 Generalized Fermat
 1343e 285447574^131072+1               1108283 L5586 2025 Generalized Fermat
 1344e 285446536^131072+1               1108283 L5687 2025 Generalized Fermat
 1345e 284918308^131072+1               1108178 L4201 2025 Generalized Fermat
 1346e 284831742^131072+1               1108160 L6085 2025 Generalized Fermat
 1347e 284805838^131072+1               1108155 L5025 2025 Generalized Fermat
 1348e 284753240^131072+1               1108145 L6185 2025 Generalized Fermat
 1349e 284745724^131072+1               1108143 L5869 2025 Generalized Fermat
 1350e 284001924^131072+1               1107994 L5416 2025 Generalized Fermat
 1351e 283824490^131072+1               1107959 L5470 2025 Generalized Fermat
 1352e 283699626^131072+1               1107934 L5234 2025 Generalized Fermat
 1353e 283216606^131072+1               1107837 L5711 2025 Generalized Fermat
 1354e 282839136^131072+1               1107761 L4756 2025 Generalized Fermat
 1355e 281755198^131072+1               1107542 L5234 2025 Generalized Fermat
 1356e 281635050^131072+1               1107518 L5697 2025 Generalized Fermat
 1357  330286*5^1584399-1               1107453 L3523 2014 
 1358e 281238556^131072+1               1107438 L5041 2025 Generalized Fermat
 1359e 281131678^131072+1               1107416 L4584 2025 Generalized Fermat
 1360  34*951^371834-1                  1107391 L5410 2019 
 1361e 280984376^131072+1               1107386 L5844 2025 Generalized Fermat
 1362e 280877312^131072+1               1107364 L6178 2025 Generalized Fermat
 1363e 280515348^131072+1               1107291 L5029 2025 Generalized Fermat
 1364e 280391126^131072+1               1107266 L5011 2025 Generalized Fermat
 1365e 280207586^131072+1               1107229 L5322 2025 Generalized Fermat
 1366e 279991058^131072+1               1107185 L5526 2025 Generalized Fermat
 1367e 279987304^131072+1               1107184 L5974 2025 Generalized Fermat
 1368e 279919024^131072+1               1107170 L4672 2025 Generalized Fermat
 1369  45*2^3677787+1                   1107126 L1204 2019 
 1370e 279594222^131072+1               1107104 L5814 2025 Generalized Fermat
 1371e 279533226^131072+1               1107091 L6176 2025 Generalized Fermat
 1372e 279393398^131072+1               1107063 L5637 2025 Generalized Fermat
 1373e 279257150^131072+1               1107035 L6177 2025 Generalized Fermat
 1374e 278715552^131072+1               1106925 L6129 2025 Generalized Fermat
 1375e 278620322^131072+1               1106905 L5069 2025 Generalized Fermat
 1376e 278619282^131072+1               1106905 L5378 2025 Generalized Fermat
 1377e 278524906^131072+1               1106886 L4249 2025 Generalized Fermat
 1378e 278507178^131072+1               1106882 L5682 2025 Generalized Fermat
 1379e 278237250^131072+1               1106827 L6182 2025 Generalized Fermat
 1380e 278204564^131072+1               1106820 L5948 2025 Generalized Fermat
 1381e 278190840^131072+1               1106817 L6183 2025 Generalized Fermat
 1382e 277919980^131072+1               1106762 L5974 2025 Generalized Fermat
 1383  625*2^3676300+1                  1106680 L5302 2022 Generalized Fermat
 1384e 277256590^131072+1               1106626 L6170 2025 Generalized Fermat
 1385e 277085600^131072+1               1106591 L5974 2025 Generalized Fermat
 1386e 276836574^131072+1               1106540 L4760 2025 Generalized Fermat
 1387e 276775868^131072+1               1106527 L5549 2025 Generalized Fermat
 1388e 276740330^131072+1               1106520 L6166 2025 Generalized Fermat
 1389e 276607388^131072+1               1106492 L5782 2025 Generalized Fermat
 1390e 276446036^131072+1               1106459 L5011 2025 Generalized Fermat
 1391e 276329786^131072+1               1106435 L5718 2025 Generalized Fermat
 1392  13*2^3675223-1                   1106354 L1862 2016 
 1393e 275170262^131072+1               1106196 L5378 2025 Generalized Fermat
 1394e 274919976^131072+1               1106144 L5378 2025 Generalized Fermat
 1395e 274816000^131072+1               1106123 L6163 2025 Generalized Fermat
 1396e 274753140^131072+1               1106110 L5974 2025 Generalized Fermat
 1397e 274535798^131072+1               1106065 L5816 2025 Generalized Fermat
 1398e 274280236^131072+1               1106012 L5070 2025 Generalized Fermat
 1399e 273579644^131072+1               1105866 L6129 2025 Generalized Fermat
 1400e 273503630^131072+1               1105850 L4309 2025 Generalized Fermat
 1401e 273438512^131072+1               1105837 L5718 2025 Generalized Fermat
 1402e 273327598^131072+1               1105813 L5512 2025 Generalized Fermat
 1403e 273306974^131072+1               1105809 L4892 2025 Generalized Fermat
 1404e 273272188^131072+1               1105802 L5543 2025 Generalized Fermat
 1405e 273237906^131072+1               1105795 L6159 2025 Generalized Fermat
 1406e 273140040^131072+1               1105774 L4210 2025 Generalized Fermat
 1407e 273036074^131072+1               1105753 L5069 2025 Generalized Fermat
 1408e 272998912^131072+1               1105745 L4245 2025 Generalized Fermat
 1409e 272788310^131072+1               1105701 L4720 2025 Generalized Fermat
 1410e 272041540^131072+1               1105545 L5069 2025 Generalized Fermat
 1411  271643232^131072+1               1105462 L4704 2019 Generalized Fermat
 1412e 271370312^131072+1               1105404 L4591 2025 Generalized Fermat
 1413e 271135152^131072+1               1105355 L5718 2025 Generalized Fermat
 1414e 270979532^131072+1               1105322 L5639 2025 Generalized Fermat
 1415e 270832760^131072+1               1105292 L5027 2025 Generalized Fermat
 1416e 270822160^131072+1               1105289 L4726 2025 Generalized Fermat
 1417e 270789102^131072+1               1105282 L5051 2025 Generalized Fermat
 1418e 270682284^131072+1               1105260 L6129 2025 Generalized Fermat
 1419e 270581690^131072+1               1105239 L4870 2025 Generalized Fermat
 1420e 270284868^131072+1               1105176 L5027 2025 Generalized Fermat
 1421  463*2^3671262+1                  1105163 L5524 2022 
 1422e 269993492^131072+1               1105115 L6129 2025 Generalized Fermat
 1423  735*2^3670991+1                  1105082 L5575 2022 
 1424e 269812742^131072+1               1105077 L6129 2025 Generalized Fermat
 1425e 268685690^131072+1               1104838 L4898 2025 Generalized Fermat
 1426  475*2^3670046+1                  1104797 L5524 2022 
 1427e 267783532^131072+1               1104647 L5974 2025 Generalized Fermat
 1428e 267768162^131072+1               1104644 L5974 2025 Generalized Fermat
 1429f 267416848^131072+1               1104569 L5707 2025 Generalized Fermat
 1430f 267414744^131072+1               1104569 L5771 2025 Generalized Fermat
 1431f 266639610^131072+1               1104403 L5069 2025 Generalized Fermat
 1432f 266330322^131072+1               1104337 L5707 2025 Generalized Fermat
 1433f 266249522^131072+1               1104320 L5069 2025 Generalized Fermat
 1434  15*2^3668194-1                   1104238 L3665 2013 
 1435f 265866252^131072+1               1104238 L4591 2025 Generalized Fermat
 1436f 265837862^131072+1               1104232 L5069 2025 Generalized Fermat
 1437f 265643056^131072+1               1104190 L5069 2025 Generalized Fermat
 1438f 265621592^131072+1               1104186 L4201 2025 Generalized Fermat
 1439f 265478490^131072+1               1104155 L5069 2025 Generalized Fermat
 1440f 264860372^131072+1               1104022 L5639 2025 Generalized Fermat
 1441e 264624458^131072+1               1103971 L5416 2025 Generalized Fermat
 1442f 264541844^131072+1               1103954 L5332 2025 Generalized Fermat
 1443f 264360218^131072+1               1103915 L4875 2025 Generalized Fermat
 1444f 264269230^131072+1               1103895 L5526 2025 Generalized Fermat
 1445f 263861882^131072+1               1103807 L5639 2025 Generalized Fermat
 1446f 263506158^131072+1               1103730 L6102 2025 Generalized Fermat
 1447f 262824942^131072+1               1103583 L5586 2025 Generalized Fermat
 1448f 262754910^131072+1               1103568 L4774 2025 Generalized Fermat
 1449f 262470710^131072+1               1103506 L5974 2025 Generalized Fermat
 1450  273*2^3665736+1                  1103499 L5192 2022 
 1451f 262298138^131072+1               1103469 L5864 2025 Generalized Fermat
 1452f 262041482^131072+1               1103413 L5457 2025 Generalized Fermat
 1453f 262005898^131072+1               1103405 L4774 2025 Generalized Fermat
 1454f 261858724^131072+1               1103373 L5639 2025 Generalized Fermat
 1455f 261114224^131072+1               1103211 L4939 2025 Generalized Fermat
 1456  13*2^3664703-1                   1103187 L1862 2016 
 1457  1486*165^497431+1                1103049 A11   2024 
 1458  260265300^131072+1               1103026 L5586 2024 Generalized Fermat
 1459  260050122^131072+1               1102979 L5586 2024 Generalized Fermat
 1460  259881684^131072+1               1102942 L4245 2024 Generalized Fermat
 1461  259576262^131072+1               1102875 L4672 2024 Generalized Fermat
 1462  406515^196608-406515^98304+1     1102790 L4506 2016 Generalized unique
 1463  259130312^131072+1               1102777 L5156 2024 Generalized Fermat
 1464  259042144^131072+1               1102758 L5457 2024 Generalized Fermat
 1465  609*2^3662931+1                  1102655 L5573 2022 
 1466  258337266^131072+1               1102603 L5457 2024 Generalized Fermat
 1467  258336436^131072+1               1102602 L5586 2024 Generalized Fermat
 1468  258197916^131072+1               1102572 L5473 2024 Generalized Fermat
 1469  258109576^131072+1               1102552 L4672 2024 Generalized Fermat
 1470  257401382^131072+1               1102396 L5586 2024 Generalized Fermat
 1471  257047620^131072+1               1102318 L4892 2024 Generalized Fermat
 1472  256963326^131072+1               1102299 L6093 2024 Generalized Fermat
 1473  256943534^131072+1               1102295 L4892 2024 Generalized Fermat
 1474  256089378^131072+1               1102105 L4892 2024 Generalized Fermat
 1475  255856074^131072+1               1102053 L4747 2024 Generalized Fermat
 1476  255812078^131072+1               1102044 L6091 2024 Generalized Fermat
 1477  255666546^131072+1               1102011 L6092 2024 Generalized Fermat
 1478  255648100^131072+1               1102007 L4245 2024 Generalized Fermat
 1479  255555468^131072+1               1101986 L5639 2024 Generalized Fermat
 1480  255339392^131072+1               1101938 L5707 2024 Generalized Fermat
 1481  255189240^131072+1               1101905 L5782 2024 Generalized Fermat
 1482  254954350^131072+1               1101852 L5467 2024 Generalized Fermat
 1483  254731916^131072+1               1101803 L6090 2024 Generalized Fermat
 1484  254713668^131072+1               1101799 L5782 2024 Generalized Fermat
 1485  254450722^131072+1               1101740 L5620 2024 Generalized Fermat
 1486  254193678^131072+1               1101682 L5634 2024 Generalized Fermat
 1487  253875014^131072+1               1101611 L5707 2024 Generalized Fermat
 1488  253866454^131072+1               1101609 L5457 2024 Generalized Fermat
 1489  253210808^131072+1               1101462 L4968 2024 Generalized Fermat
 1490  252934920^131072+1               1101400 L6036 2024 Generalized Fermat
 1491  252637312^131072+1               1101333 L5526 2024 Generalized Fermat
 1492  252545864^131072+1               1101312 L5467 2024 Generalized Fermat
 1493  252369374^131072+1               1101272 L5452 2024 Generalized Fermat
 1494  252171992^131072+1               1101228 L5639 2024 Generalized Fermat
 1495  251361006^131072+1               1101044 L5127 2024 Generalized Fermat
 1496  251085988^131072+1               1100982 L4201 2024 Generalized Fermat
 1497  250775680^131072+1               1100912 L6073 2024 Generalized Fermat
 1498  249754922^131072+1               1100679 L4898 2024 Generalized Fermat
 1499  249751100^131072+1               1100679 L6088 2024 Generalized Fermat
 1500  249735514^131072+1               1100675 L4201 2024 Generalized Fermat
 1501  249634320^131072+1               1100652 L6087 2024 Generalized Fermat
 1502  118*892^373012+1                 1100524 L5071 2020 
 1503  248934378^131072+1               1100492 L5974 2024 Generalized Fermat
 1504  248857694^131072+1               1100475 L6086 2024 Generalized Fermat
 1505  248820272^131072+1               1100466 L5768 2024 Generalized Fermat
 1506  248632632^131072+1               1100423 L5416 2024 Generalized Fermat
 1507  248621940^131072+1               1100421 L5051 2024 Generalized Fermat
 1508  248617468^131072+1               1100420 L5416 2024 Generalized Fermat
 1509  33300*430^417849-1               1100397 L4393 2016 
 1510  247389350^131072+1               1100138 L6085 2024 Generalized Fermat
 1511  247342010^131072+1               1100127 L6073 2024 Generalized Fermat
 1512  247145256^131072+1               1100082 L4939 2024 Generalized Fermat
 1513  246980946^131072+1               1100044 L4249 2024 Generalized Fermat
 1514  246952054^131072+1               1100037 L6084 2024 Generalized Fermat
 1515  246943520^131072+1               1100035 L5746 2024 Generalized Fermat
 1516  (2^2976221-1)*(10^204068-1172064)+1
                                        1100000 p449  2024 
 1517  246677978^131072+1               1099974 L5512 2024 Generalized Fermat
 1518  246634478^131072+1               1099964 L5117 2024 Generalized Fermat
 1519  246394910^131072+1               1099908 L6038 2024 Generalized Fermat
 1520  246207020^131072+1               1099865 L5606 2024 Generalized Fermat
 1521  246012578^131072+1               1099820 L5606 2024 Generalized Fermat
 1522  245507802^131072+1               1099703 L5606 2024 Generalized Fermat
 1523  245461196^131072+1               1099692 L6078 2024 Generalized Fermat
 1524  655*2^3653008+1                  1099668 L5574 2022 
 1525  244873604^131072+1               1099556 L6076 2024 Generalized Fermat
 1526  244660242^131072+1               1099506 L6038 2024 Generalized Fermat
 1527  244342390^131072+1               1099432 L5416 2024 Generalized Fermat
 1528  244202408^131072+1               1099400 L4371 2024 Generalized Fermat
 1529  291*268^452750-1                 1099341 L5410 2022 
 1530  243786926^131072+1               1099303 L6073 2024 Generalized Fermat
 1531  243427990^131072+1               1099219 L4892 2024 Generalized Fermat
 1532  242973858^131072+1               1099113 L6072 2024 Generalized Fermat
 1533  242950108^131072+1               1099107 L4387 2024 Generalized Fermat
 1534  242933064^131072+1               1099103 L5782 2024 Generalized Fermat
 1535  242926826^131072+1               1099102 L5826 2024 Generalized Fermat
 1536  242855212^131072+1               1099085 L4591 2024 Generalized Fermat
 1537  242494358^131072+1               1099000 L5416 2024 Generalized Fermat
 1538  242295536^131072+1               1098953 L5205 2024 Generalized Fermat
 1539  242161196^131072+1               1098922 L6070 2024 Generalized Fermat
 1540  241765100^131072+1               1098829 L6067 2024 Generalized Fermat
 1541  241550882^131072+1               1098778 L6065 2024 Generalized Fermat
 1542  241438172^131072+1               1098752 L4591 2024 Generalized Fermat
 1543  241338084^131072+1               1098728 L4591 2024 Generalized Fermat
 1544  241249426^131072+1               1098707 L5526 2024 Generalized Fermat
 1545  33*2^3649810+1                   1098704 L4958 2019 
 1546  241151312^131072+1               1098684 L4387 2024 Generalized Fermat
 1547  241000970^131072+1               1098648 L5707 2024 Generalized Fermat
 1548  240966866^131072+1               1098640 L4559 2024 Generalized Fermat
 1549  240965802^131072+1               1098640 L6058 2024 Generalized Fermat
 1550  240910640^131072+1               1098627 L5101 2024 Generalized Fermat
 1551  240856112^131072+1               1098614 L4875 2024 Generalized Fermat
 1552  240307734^131072+1               1098484 L4249 2024 Generalized Fermat
 1553  240190808^131072+1               1098457 L5056 2024 Generalized Fermat
 1554  239927858^131072+1               1098394 L4477 2024 Generalized Fermat
 1555  239545562^131072+1               1098304 L4591 2024 Generalized Fermat
 1556  239520486^131072+1               1098298 L5634 2024 Generalized Fermat
 1557a 262614*5^1571158-1               1098198 A11   2025 
 1558  238968056^131072+1               1098166 L4477 2024 Generalized Fermat
 1559  238871106^131072+1               1098143 L6058 2024 Generalized Fermat
 1560  238852190^131072+1               1098139 L5526 2024 Generalized Fermat
 1561  238698190^131072+1               1098102 L5077 2024 Generalized Fermat
 1562  238653710^131072+1               1098091 L6057 2024 Generalized Fermat
 1563  238627390^131072+1               1098085 L5871 2024 Generalized Fermat
 1564  238438430^131072+1               1098040 L5707 2024 Generalized Fermat
 1565  238381768^131072+1               1098026 L5707 2024 Generalized Fermat
 1566  238193230^131072+1               1097981 L4201 2024 Generalized Fermat
 1567  238168282^131072+1               1097975 L4201 2024 Generalized Fermat
 1568  238109742^131072+1               1097961 L4559 2024 Generalized Fermat
 1569  237601644^131072+1               1097840 L5782 2024 Generalized Fermat
 1570  237260908^131072+1               1097758 L4201 2024 Generalized Fermat
 1571  237185928^131072+1               1097740 L5755 2024 Generalized Fermat
 1572  237108488^131072+1               1097722 L5639 2024 Generalized Fermat
 1573  236924362^131072+1               1097677 L5639 2024 Generalized Fermat
 1574  236602468^131072+1               1097600 L6038 2024 Generalized Fermat
 1575  236500052^131072+1               1097575 L5198 2024 Generalized Fermat
 1576  236417078^131072+1               1097555 L5588 2024 Generalized Fermat
 1577  236278180^131072+1               1097522 L5416 2024 Generalized Fermat
 1578  236240868^131072+1               1097513 L6038 2024 Generalized Fermat
 1579  235947986^131072+1               1097442 L4201 2024 Generalized Fermat
 1580  235577802^131072+1               1097353 L5077 2024 Generalized Fermat
 1581  235566676^131072+1               1097350 L5416 2024 Generalized Fermat
 1582  235108160^131072+1               1097239 L4898 2024 Generalized Fermat
 1583  234962380^131072+1               1097204 L4201 2024 Generalized Fermat
 1584  234806100^131072+1               1097166 L5088 2024 Generalized Fermat
 1585  234661134^131072+1               1097131 L5416 2024 Generalized Fermat
 1586  234566344^131072+1               1097108 L5974 2024 Generalized Fermat
 1587  234523400^131072+1               1097098 L4201 2024 Generalized Fermat
 1588  234385314^131072+1               1097064 L4285 2024 Generalized Fermat
 1589  234307964^131072+1               1097045 L4559 2024 Generalized Fermat
 1590  234291722^131072+1               1097041 L4999 2024 Generalized Fermat
 1591  233937376^131072+1               1096955 L6044 2024 Generalized Fermat
 1592  233903532^131072+1               1096947 L4559 2024 Generalized Fermat
 1593  233559012^131072+1               1096863 L5416 2024 Generalized Fermat
 1594  233447012^131072+1               1096836 L4477 2024 Generalized Fermat
 1595  233349574^131072+1               1096812 L5432 2024 Generalized Fermat
 1596  233034976^131072+1               1096735 L5101 2024 Generalized Fermat
 1597  232796676^131072+1               1096677 L6040 2024 Generalized Fermat
 1598  232485778^131072+1               1096601 L4477 2024 Generalized Fermat
 1599  232050760^131072+1               1096494 L5782 2024 Generalized Fermat
 1600  295*2^3642206+1                  1096416 L5161 2022 
 1601  231583998^131072+1               1096380 L4477 2024 Generalized Fermat
 1602  231295516^131072+1               1096309 L5634 2024 Generalized Fermat
 1603  230663736^131072+1               1096153 L4774 2024 Generalized Fermat
 1604  230655072^131072+1               1096151 L5526 2024 Generalized Fermat
 1605  230396424^131072+1               1096087 L4928 2024 Generalized Fermat
 1606  230275166^131072+1               1096057 L6011 2024 Generalized Fermat
 1607  230267830^131072+1               1096055 L6036 2024 Generalized Fermat
 1608  989*2^3640585+1                  1095929 L5115 2020 
 1609  567*2^3639287+1                  1095538 L4959 2019 
 1610  227669832^131072+1               1095409 L5707 2024 Generalized Fermat
 1611  227406222^131072+1               1095343 L4371 2024 Generalized Fermat
 1612  227239620^131072+1               1095302 L4559 2024 Generalized Fermat
 1613  227135580^131072+1               1095276 L5974 2024 Generalized Fermat
 1614  227009830^131072+1               1095244 L4359 2024 Generalized Fermat
 1615  226881840^131072+1               1095212 L5784 2024 Generalized Fermat
 1616  226782570^131072+1               1095187 L6026 2024 Generalized Fermat
 1617  226710488^131072+1               1095169 L5588 2024 Generalized Fermat
 1618  226639300^131072+1               1095151 L5634 2024 Generalized Fermat
 1619  226453444^131072+1               1095104 L4559 2024 Generalized Fermat
 1620  226341130^131072+1               1095076 L4341 2024 Generalized Fermat
 1621  226249042^131072+1               1095053 L5370 2024 Generalized Fermat
 1622  226100602^131072+1               1095016 L4429 2024 Generalized Fermat
 1623  225580118^131072+1               1094884 L5056 2024 Generalized Fermat
 1624  225124888^131072+1               1094769 L4591 2024 Generalized Fermat
 1625  224635814^131072+1               1094646 L4875 2024 Generalized Fermat
 1626  224347630^131072+1               1094572 L5512 2024 Generalized Fermat
 1627  224330804^131072+1               1094568 L6019 2024 Generalized Fermat
 1628  224249932^131072+1               1094548 L4371 2024 Generalized Fermat
 1629  224072278^131072+1               1094503 L5974 2024 Generalized Fermat
 1630  639*2^3635707+1                  1094460 L1823 2019 
 1631  223490796^131072+1               1094355 L5332 2024 Generalized Fermat
 1632  223074802^131072+1               1094249 L5416 2024 Generalized Fermat
 1633  223010262^131072+1               1094232 L6015 2024 Generalized Fermat
 1634  222996490^131072+1               1094229 L5731 2024 Generalized Fermat
 1635  222888506^131072+1               1094201 L5974 2024 Generalized Fermat
 1636  222593516^131072+1               1094126 L6011 2024 Generalized Fermat
 1637  222486400^131072+1               1094098 L5332 2024 Generalized Fermat
 1638  221636362^131072+1               1093880 L4904 2024 Generalized Fermat
 1639  221528336^131072+1               1093853 L5721 2024 Generalized Fermat
 1640  221330854^131072+1               1093802 L6010 2024 Generalized Fermat
 1641  221325712^131072+1               1093801 L4201 2024 Generalized Fermat
 1642  221174400^131072+1               1093762 L4201 2024 Generalized Fermat
 1643  221008432^131072+1               1093719 L5974 2024 Generalized Fermat
 1644  220956326^131072+1               1093705 L5731 2024 Generalized Fermat
 1645  220838206^131072+1               1093675 L5974 2024 Generalized Fermat
 1646  220325976^131072+1               1093543 L5690 2024 Generalized Fermat
 1647  220317996^131072+1               1093541 L5989 2024 Generalized Fermat
 1648  220288248^131072+1               1093533 L5721 2024 Generalized Fermat
 1649  219984494^131072+1               1093455 L6005 2024 Generalized Fermat
 1650  219556482^131072+1               1093344 L5721 2024 Generalized Fermat
 1651  219525472^131072+1               1093336 L4898 2024 Generalized Fermat
 1652  219447698^131072+1               1093315 L4933 2024 Generalized Fermat
 1653  219430370^131072+1               1093311 L4774 2024 Generalized Fermat
 1654  219331584^131072+1               1093285 L5746 2024 Generalized Fermat
 1655  753*2^3631472+1                  1093185 L1823 2019 
 1656  2*205731^205731-1                1093111 L4965 2022 
 1657  218012734^131072+1               1092942 L4928 2024 Generalized Fermat
 1658  217820568^131072+1               1092892 L5690 2024 Generalized Fermat
 1659  217559364^131072+1               1092823 L4898 2024 Generalized Fermat
 1660  217458668^131072+1               1092797 L5989 2024 Generalized Fermat
 1661  217423702^131072+1               1092788 L5998 2024 Generalized Fermat
 1662  217176690^131072+1               1092723 L5637 2024 Generalized Fermat
 1663  217170570^131072+1               1092722 L4371 2024 Generalized Fermat
 1664  65531*2^3629342-1                1092546 L2269 2011 
 1665  1121*2^3629201+1                 1092502 L4761 2019 
 1666  216307766^131072+1               1092495 L4387 2024 Generalized Fermat
 1667  216084296^131072+1               1092436 L4201 2024 Generalized Fermat
 1668  215*2^3628962-1                  1092429 L2484 2018 
 1669  216039994^131072+1               1092425 L5880 2024 Generalized Fermat
 1670  216027436^131072+1               1092421 L5277 2024 Generalized Fermat
 1671  216018002^131072+1               1092419 L5586 2024 Generalized Fermat
 1672  215949788^131072+1               1092401 L4537 2024 Generalized Fermat
 1673  215945398^131072+1               1092400 L4245 2024 Generalized Fermat
 1674  215783788^131072+1               1092357 L5711 2024 Generalized Fermat
 1675  215717854^131072+1               1092340 L4245 2024 Generalized Fermat
 1676  215462154^131072+1               1092272 L4387 2024 Generalized Fermat
 1677  215237318^131072+1               1092213 L5693 2024 Generalized Fermat
 1678  215004526^131072+1               1092151 L4928 2024 Generalized Fermat
 1679  113*2^3628034-1                  1092150 L2484 2014 
 1680  214992758^131072+1               1092148 L5974 2024 Generalized Fermat
 1681f 1009*2^3627911-1                 1092114 A46   2025 
 1682  214814516^131072+1               1092101 L5746 2024 Generalized Fermat
 1683  1175*2^3627541+1                 1092002 L4840 2019 
 1684  214403112^131072+1               1091992 L4905 2024 Generalized Fermat
 1685  214321816^131072+1               1091970 L5989 2024 Generalized Fermat
 1686  214134178^131072+1               1091920 L5297 2024 Generalized Fermat
 1687  214059556^131072+1               1091900 L4362 2024 Generalized Fermat
 1688  2*431^414457+1                   1091878 L4879 2019 
          Divides Phi(431^414457,2)
 1689  213879170^131072+1               1091852 L5986 2024 Generalized Fermat
 1690  19116*24^791057-1                1091831 A44   2024 
 1691  213736552^131072+1               1091814 L4289 2024 Generalized Fermat
 1692  213656000^131072+1               1091793 L4892 2024 Generalized Fermat
 1693  213580840^131072+1               1091773 L4201 2024 Generalized Fermat
 1694  213425082^131072+1               1091731 L4892 2024 Generalized Fermat
 1695  213162592^131072+1               1091661 L4549 2024 Generalized Fermat
 1696  213151104^131072+1               1091658 L4763 2024 Generalized Fermat
 1697  212912634^131072+1               1091595 L5639 2024 Generalized Fermat
 1698  212894100^131072+1               1091590 L5470 2024 Generalized Fermat
 1699  212865234^131072+1               1091582 L5782 2024 Generalized Fermat
 1700  212862096^131072+1               1091581 L4870 2024 Generalized Fermat
 1701  212838152^131072+1               1091575 L5718 2024 Generalized Fermat
 1702  212497738^131072+1               1091483 L5051 2024 Generalized Fermat
 1703  212121206^131072+1               1091383 L4774 2024 Generalized Fermat
 1704  211719438^131072+1               1091275 L4775 2024 Generalized Fermat
 1705  211448294^131072+1               1091202 L5929 2024 Generalized Fermat
 1706  211407740^131072+1               1091191 L4341 2024 Generalized Fermat
 1707  211326826^131072+1               1091169 L5143 2024 Generalized Fermat
 1708  210908700^131072+1               1091056 L5639 2024 Generalized Fermat
 1709  210564358^131072+1               1090963 L5639 2024 Generalized Fermat
 1710  210434680^131072+1               1090928 L4380 2024 Generalized Fermat
 1711  210397166^131072+1               1090918 L4870 2024 Generalized Fermat
 1712  210160342^131072+1               1090854 L5974 2024 Generalized Fermat
 1713  210088618^131072+1               1090834 L5041 2024 Generalized Fermat
 1714  209917216^131072+1               1090788 L5755 2024 Generalized Fermat
 1715  209839940^131072+1               1090767 L5639 2024 Generalized Fermat
 1716  209637998^131072+1               1090712 L4544 2024 Generalized Fermat
 1717  951*2^3623185+1                  1090691 L1823 2019 
 1718  209494470^131072+1               1090673 L5869 2024 Generalized Fermat
 1719  209385420^131072+1               1090644 L5720 2024 Generalized Fermat
 1720  209108558^131072+1               1090568 L5460 2024 Generalized Fermat
 1721  209101202^131072+1               1090566 L5011 2024 Generalized Fermat
 1722  208565926^131072+1               1090420 L5016 2024 Generalized Fermat
 1723  208497360^131072+1               1090402 L5234 2024 Generalized Fermat
 1724  208392300^131072+1               1090373 L5030 2024 Generalized Fermat
 1725  208374066^131072+1               1090368 L5869 2024 Generalized Fermat
 1726  208352366^131072+1               1090362 L5044 2024 Generalized Fermat
 1727  208236434^131072+1               1090330 L5984 2024 Generalized Fermat
 1728  208003690^131072+1               1090267 L5639 2024 Generalized Fermat
 1729  207985150^131072+1               1090262 L5791 2024 Generalized Fermat
 1730  207753480^131072+1               1090198 L5974 2024 Generalized Fermat
 1731  207514736^131072+1               1090133 L4477 2024 Generalized Fermat
 1732  207445740^131072+1               1090114 L5273 2024 Generalized Fermat
 1733  29*920^367810-1                  1090113 L4064 2015 
 1734  207296788^131072+1               1090073 L5234 2024 Generalized Fermat
 1735  207264358^131072+1               1090064 L5758 2024 Generalized Fermat
 1736  207213640^131072+1               1090050 L5077 2024 Generalized Fermat
 1737  206709064^131072+1               1089911 L5639 2024 Generalized Fermat
 1738  206640054^131072+1               1089892 L5288 2024 Generalized Fermat
 1739  206594738^131072+1               1089880 L5707 2024 Generalized Fermat
 1740  206585726^131072+1               1089877 L5667 2024 Generalized Fermat
 1741  206473754^131072+1               1089846 L5855 2024 Generalized Fermat
 1742  206230080^131072+1               1089779 L5143 2024 Generalized Fermat
 1743  206021166^131072+1               1089722 L5639 2024 Generalized Fermat
 1744  205990406^131072+1               1089713 L4755 2024 Generalized Fermat
 1745  205963322^131072+1               1089706 L5844 2024 Generalized Fermat
 1746  205339678^131072+1               1089533 L4905 2024 Generalized Fermat
 1747  205160722^131072+1               1089483 L5639 2024 Generalized Fermat
 1748  205150506^131072+1               1089480 L5543 2024 Generalized Fermat
 1749  205010004^131072+1               1089441 L5025 2024 Generalized Fermat
 1750  14641*2^3618876+1                1089395 L181  2018 Generalized Fermat
 1751  204695540^131072+1               1089354 L4905 2024 Generalized Fermat
 1752  485*2^3618563+1                  1089299 L3924 2019 
 1753  204382086^131072+1               1089267 L4477 2024 Generalized Fermat
 1754  204079052^131072+1               1089182 L4763 2024 Generalized Fermat
 1755  204016062^131072+1               1089165 L5712 2024 Generalized Fermat
 1756  203275588^131072+1               1088958 L5041 2024 Generalized Fermat
 1757  203250558^131072+1               1088951 L4210 2024 Generalized Fermat
 1758  203238918^131072+1               1088948 L5586 2024 Generalized Fermat
 1759  202515696^131072+1               1088745 L4549 2024 Generalized Fermat
 1760  202391964^131072+1               1088710 L4835 2024 Generalized Fermat
 1761  202251688^131072+1               1088670 L5288 2024 Generalized Fermat
 1762  202114688^131072+1               1088632 L5711 2024 Generalized Fermat
 1763  202045732^131072+1               1088612 L4537 2024 Generalized Fermat
 1764  201593074^131072+1               1088485 L5027 2024 Generalized Fermat
 1765  201536524^131072+1               1088469 L5769 2024 Generalized Fermat
 1766  201389466^131072+1               1088427 L4537 2024 Generalized Fermat
 1767  201249512^131072+1               1088388 L5234 2024 Generalized Fermat
 1768  201239624^131072+1               1088385 L5732 2024 Generalized Fermat
 1769  200519642^131072+1               1088181 L5712 2024 Generalized Fermat
 1770  200459670^131072+1               1088164 L5948 2024 Generalized Fermat
 1771  200433382^131072+1               1088156 L5948 2024 Generalized Fermat
 1772  200280100^131072+1               1088113 L4892 2024 Generalized Fermat
 1773  200053318^131072+1               1088048 L5586 2024 Generalized Fermat
 1774  199971120^131072+1               1088025 L5030 2024 Generalized Fermat
 1775  95*2^3614033+1                   1087935 L1474 2019 
 1776  199502780^131072+1               1087891 L5878 2024 Generalized Fermat
 1777  198402358^131072+1               1087577 L5606 2024 Generalized Fermat
 1778  198320982^131072+1               1087553 L5938 2024 Generalized Fermat
 1779  198319118^131072+1               1087553 L4737 2024 Generalized Fermat
 1780  1005*2^3612300+1                 1087414 L1823 2019 
 1781  197752702^131072+1               1087390 L5355 2024 Generalized Fermat
 1782  197607368^131072+1               1087348 L5041 2024 Generalized Fermat
 1783  197352408^131072+1               1087275 L4861 2024 Generalized Fermat
 1784  861*2^3611815+1                  1087268 L1745 2019 
 1785  197230100^131072+1               1087239 L4753 2024 Generalized Fermat
 1786  197212998^131072+1               1087234 L6123 2024 Generalized Fermat
 1787  197197506^131072+1               1087230 L4753 2024 Generalized Fermat
 1788  197018872^131072+1               1087178 L4884 2024 Generalized Fermat
 1789  1087*2^3611476+1                 1087166 L4834 2019 
 1790  196722548^131072+1               1087093 L5782 2024 Generalized Fermat
 1791  196703802^131072+1               1087087 L4742 2024 Generalized Fermat
 1792  196687752^131072+1               1087082 L5051 2024 Generalized Fermat
 1793  195950620^131072+1               1086869 L5929 2024 Generalized Fermat
 1794  195834796^131072+1               1086835 L5070 2024 Generalized Fermat
 1795  195048992^131072+1               1086606 L5143 2024 Generalized Fermat
 1796  194911702^131072+1               1086566 L5948 2024 Generalized Fermat
 1797  194819864^131072+1               1086539 L5690 2024 Generalized Fermat
 1798  485767*2^3609357-1               1086531 L622  2008 
 1799  194730404^131072+1               1086513 L5782 2024 Generalized Fermat
 1800  194644872^131072+1               1086488 L4720 2024 Generalized Fermat
 1801  194584114^131072+1               1086470 L4201 2024 Generalized Fermat
 1802  194263106^131072+1               1086376 L4892 2024 Generalized Fermat
 1803  194202254^131072+1               1086359 L4835 2024 Generalized Fermat
 1804  194159546^131072+1               1086346 L4387 2024 Generalized Fermat
 1805  193935716^131072+1               1086280 L4835 2024 Generalized Fermat
 1806  193247784^131072+1               1086078 L5234 2024 Generalized Fermat
 1807  192866222^131072+1               1085966 L5913 2024 Generalized Fermat
 1808  192651588^131072+1               1085902 L5880 2024 Generalized Fermat
 1809  192606308^131072+1               1085889 L4476 2024 Generalized Fermat
 1810  675*2^3606447+1                  1085652 L3278 2019 
 1811  191678526^131072+1               1085614 L5234 2024 Generalized Fermat
 1812  669*2^3606266+1                  1085598 L1675 2019 
 1813  191567332^131072+1               1085581 L4309 2024 Generalized Fermat
 1814  65077*2^3605944+1                1085503 L4685 2020 
 1815  191194450^131072+1               1085470 L4245 2024 Generalized Fermat
 1816  1365*2^3605491+1                 1085365 L1134 2022 
 1817  190810274^131072+1               1085356 L5460 2024 Generalized Fermat
 1818  190309640^131072+1               1085206 L5880 2024 Generalized Fermat
 1819  190187176^131072+1               1085169 L5470 2024 Generalized Fermat
 1820  190144032^131072+1               1085156 L4341 2024 Generalized Fermat
 1821  851*2^3604395+1                  1085034 L2125 2019 
 1822  189411830^131072+1               1084937 L5578 2024 Generalized Fermat
 1823  189240324^131072+1               1084885 L4892 2024 Generalized Fermat
 1824  188766416^131072+1               1084743 L5639 2024 Generalized Fermat
 1825  188655374^131072+1               1084709 L5842 2024 Generalized Fermat
 1826  188646712^131072+1               1084706 L4905 2024 Generalized Fermat
 1827  187961358^131072+1               1084499 L5881 2024 Generalized Fermat
 1828  1143*2^3602429+1                 1084443 L4754 2019 
 1829  187731580^131072+1               1084430 L5847 2024 Generalized Fermat
 1830  187643362^131072+1               1084403 L5707 2024 Generalized Fermat
 1831  187584550^131072+1               1084385 L5526 2024 Generalized Fermat
 1832  187330820^131072+1               1084308 L5879 2024 Generalized Fermat
 1833  1183*2^3601898+1                 1084283 L1823 2019 
 1834  187231212^131072+1               1084278 L4550 2024 Generalized Fermat
 1835  187184006^131072+1               1084263 L5051 2024 Generalized Fermat
 1836  187007398^131072+1               1084210 L5604 2024 Generalized Fermat
 1837  185411044^131072+1               1083722 L5044 2023 Generalized Fermat
 1838  185248324^131072+1               1083672 L4371 2023 Generalized Fermat
 1839  185110536^131072+1               1083629 L4559 2023 Generalized Fermat
 1840  185015722^131072+1               1083600 L5723 2023 Generalized Fermat
 1841  184855564^131072+1               1083551 L5748 2023 Generalized Fermat
 1842  184835362^131072+1               1083545 L5416 2024 Generalized Fermat
 1843  184814078^131072+1               1083538 L4559 2023 Generalized Fermat
 1844  184653266^131072+1               1083488 L5606 2023 Generalized Fermat
 1845  184523024^131072+1               1083448 L4550 2023 Generalized Fermat
 1846  184317182^131072+1               1083385 L5863 2023 Generalized Fermat
 1847  184310672^131072+1               1083383 L5863 2023 Generalized Fermat
 1848  184119204^131072+1               1083324 L5863 2023 Generalized Fermat
 1849  183839694^131072+1               1083237 L5865 2023 Generalized Fermat
 1850  183591732^131072+1               1083160 L5586 2023 Generalized Fermat
 1851  183392536^131072+1               1083098 L5044 2023 Generalized Fermat
 1852  183383118^131072+1               1083096 L4371 2023 Generalized Fermat
 1853  183157240^131072+1               1083025 L5853 2023 Generalized Fermat
 1854  182252536^131072+1               1082744 L5854 2023 Generalized Fermat
 1855  182166824^131072+1               1082717 L5854 2023 Generalized Fermat
 1856  181969816^131072+1               1082655 L4591 2023 Generalized Fermat
 1857  181913260^131072+1               1082637 L5853 2023 Generalized Fermat
 1858  189*2^3596375+1                  1082620 L3760 2016 
 1859  181302244^131072+1               1082446 L4550 2023 Generalized Fermat
 1860  180680920^131072+1               1082251 L5639 2023 Generalized Fermat
 1861  180455838^131072+1               1082180 L5847 2023 Generalized Fermat
 1862  180111908^131072+1               1082071 L5844 2023 Generalized Fermat
 1863  180084608^131072+1               1082062 L5056 2023 Generalized Fermat
 1864  180045220^131072+1               1082050 L4550 2023 Generalized Fermat
 1865  180002474^131072+1               1082036 L5361 2023 Generalized Fermat
 1866  179913814^131072+1               1082008 L4875 2023 Generalized Fermat
 1867  1089*2^3593267+1                 1081685 L3035 2019 
 1868  178743858^131072+1               1081637 L5051 2023 Generalized Fermat
 1869  178437884^131072+1               1081539 L4591 2023 Generalized Fermat
 1870  178435022^131072+1               1081538 L5639 2023 Generalized Fermat
 1871  178311240^131072+1               1081499 L5369 2023 Generalized Fermat
 1872  178086108^131072+1               1081427 L4939 2023 Generalized Fermat
 1873  178045832^131072+1               1081414 L5836 2023 Generalized Fermat
 1874  177796222^131072+1               1081334 L5834 2023 Generalized Fermat
 1875  177775606^131072+1               1081328 L5794 2023 Generalized Fermat
 1876  177648552^131072+1               1081287 L5782 2023 Generalized Fermat
 1877  177398652^131072+1               1081207 L4559 2023 Generalized Fermat
 1878  177319028^131072+1               1081181 L5526 2023 Generalized Fermat
 1879  177296064^131072+1               1081174 L5831 2023 Generalized Fermat
 1880  177129922^131072+1               1081121 L4559 2023 Generalized Fermat
 1881  176799404^131072+1               1081014 L4775 2023 Generalized Fermat
 1882  176207346^131072+1               1080823 L5805 2023 Generalized Fermat
 1883  176085282^131072+1               1080784 L5805 2023 Generalized Fermat
 1884  175482140^131072+1               1080589 L5639 2023 Generalized Fermat
 1885  175271418^131072+1               1080520 L5051 2023 Generalized Fermat
 1886  19581121*2^3589357-1             1080512 p49   2022 
 1887  175200596^131072+1               1080497 L5817 2023 Generalized Fermat
 1888  1101*2^3589103+1                 1080431 L1823 2019 
 1889  174728608^131072+1               1080344 L5416 2023 Generalized Fermat
 1890  174697724^131072+1               1080334 L4747 2023 Generalized Fermat
 1891  174534362^131072+1               1080280 L5814 2023 Generalized Fermat
 1892  174142738^131072+1               1080152 L4249 2023 Generalized Fermat
 1893  174103532^131072+1               1080140 L4249 2023 Generalized Fermat
 1894  173962482^131072+1               1080093 L4249 2023 Generalized Fermat
 1895  35*2^3587843+1                   1080050 L1979 2014 
          Divides GF(3587841,5)
 1896  173717408^131072+1               1080013 L5634 2023 Generalized Fermat
 1897  173561300^131072+1               1079962 L4249 2023 Generalized Fermat
 1898  173343810^131072+1               1079891 L4249 2023 Generalized Fermat
 1899  172026454^131072+1               1079456 L4737 2023 Generalized Fermat
 1900  172004036^131072+1               1079449 L5512 2023 Generalized Fermat
 1901  275*2^3585539+1                  1079358 L3803 2016 
 1902  171677924^131072+1               1079341 L5512 2023 Generalized Fermat
 1903  171610156^131072+1               1079319 L4249 2023 Generalized Fermat
 1904  171518672^131072+1               1079288 L5586 2023 Generalized Fermat
 1905  171128300^131072+1               1079158 L4249 2023 Generalized Fermat
 1906  170982934^131072+1               1079110 L4201 2023 Generalized Fermat
 1907  170626040^131072+1               1078991 L5748 2023 Generalized Fermat
 1908  169929578^131072+1               1078758 L5748 2023 Generalized Fermat
 1909  169369502^131072+1               1078570 L4410 2023 Generalized Fermat
 1910  169299904^131072+1               1078547 L4559 2023 Generalized Fermat
 1911  169059224^131072+1               1078466 L5746 2023 Generalized Fermat
 1912  168885632^131072+1               1078408 L5793 2023 Generalized Fermat
 1913  168602250^131072+1               1078312 L5782 2023 Generalized Fermat
 1914  168576546^131072+1               1078303 L5639 2023 Generalized Fermat
 1915  167845698^131072+1               1078056 L5735 2023 Generalized Fermat
 1916  167604930^131072+1               1077974 L4859 2023 Generalized Fermat
 1917  2*59^608685+1                    1077892 g427  2014 
          Divides Phi(59^608685,2)
 1918  167206862^131072+1               1077839 L5641 2023 Generalized Fermat
 1919  166964502^131072+1               1077756 L5627 2023 Generalized Fermat
 1920  651*2^3579843+1                  1077643 L3035 2018 
 1921  166609122^131072+1               1077635 L5782 2023 Generalized Fermat
 1922  166397330^131072+1               1077563 L5578 2023 Generalized Fermat
 1923  166393356^131072+1               1077561 L5782 2023 Generalized Fermat
 1924  166288612^131072+1               1077525 L4672 2023 Generalized Fermat
 1925  166277052^131072+1               1077521 L5755 2023 Generalized Fermat
 1926  166052226^131072+1               1077444 L4670 2023 Generalized Fermat
 1927  165430644^131072+1               1077231 L4672 2023 Generalized Fermat
 1928  165427494^131072+1               1077230 L4249 2023 Generalized Fermat
 1929  583*2^3578402+1                  1077210 L3035 2018 
 1930  165361824^131072+1               1077207 L5586 2023 Generalized Fermat
 1931  165258594^131072+1               1077172 L4884 2023 Generalized Fermat
 1932  165036358^131072+1               1077095 L5156 2023 Generalized Fermat
 1933  164922680^131072+1               1077056 L4249 2023 Generalized Fermat
 1934  164800594^131072+1               1077014 L5775 2023 Generalized Fermat
 1935  164660428^131072+1               1076965 L4249 2023 Generalized Fermat
 1936  309*2^3577339+1                  1076889 L4406 2016 
 1937  164440734^131072+1               1076889 L5485 2023 Generalized Fermat
 1938  163871194^131072+1               1076692 L5772 2023 Generalized Fermat
 1939  163838506^131072+1               1076680 L5758 2023 Generalized Fermat
 1940  163821336^131072+1               1076674 L5544 2023 Generalized Fermat
 1941  163820256^131072+1               1076674 L5452 2023 Generalized Fermat
 1942  163666380^131072+1               1076621 L5030 2023 Generalized Fermat
 1943  163585288^131072+1               1076592 L4928 2023 Generalized Fermat
 1944  163359994^131072+1               1076514 L5769 2023 Generalized Fermat
 1945  163214942^131072+1               1076463 L4933 2023 Generalized Fermat
 1946  163193584^131072+1               1076456 L5595 2023 Generalized Fermat
 1947  163152818^131072+1               1076442 L5639 2023 Generalized Fermat
 1948  163044252^131072+1               1076404 L5775 2023 Generalized Fermat
 1949  162950466^131072+1               1076371 L5694 2023 Generalized Fermat
 1950  162874590^131072+1               1076345 L5586 2023 Generalized Fermat
 1951  162850104^131072+1               1076336 L5769 2023 Generalized Fermat
 1952  162817576^131072+1               1076325 L5772 2023 Generalized Fermat
 1953  1185*2^3574583+1                 1076060 L4851 2018 
 1954  251*2^3574535+1                  1076045 L3035 2016 
 1955  1485*2^3574333+1                 1075985 L1134 2022 
 1956  161706626^131072+1               1075935 L4870 2023 Generalized Fermat
 1957  161619620^131072+1               1075904 L5586 2023 Generalized Fermat
 1958  161588716^131072+1               1075893 L4928 2023 Generalized Fermat
 1959  161571504^131072+1               1075887 L5030 2023 Generalized Fermat
 1960  161569668^131072+1               1075887 L5639 2023 Generalized Fermat
 1961  160998114^131072+1               1075685 L5586 2023 Generalized Fermat
 1962  160607310^131072+1               1075547 L5763 2023 Generalized Fermat
 1963  160325616^131072+1               1075447 L5586 2023 Generalized Fermat
 1964  160228242^131072+1               1075412 L5632 2023 Generalized Fermat
 1965  160146172^131072+1               1075383 L4773 2023 Generalized Fermat
 1966  159800918^131072+1               1075260 L5586 2023 Generalized Fermat
 1967  159794566^131072+1               1075258 L4249 2023 Generalized Fermat
 1968  159784836^131072+1               1075254 L5639 2023 Generalized Fermat
 1969  159784822^131072+1               1075254 L5637 2023 Generalized Fermat
 1970  1019*2^3571635+1                 1075173 L1823 2018 
 1971  159509138^131072+1               1075156 L5637 2023 Generalized Fermat
 1972  119*2^3571416-1                  1075106 L2484 2018 
 1973  159214418^131072+1               1075051 L5755 2023 Generalized Fermat
 1974  158831096^131072+1               1074914 L5022 2023 Generalized Fermat
 1975  35*2^3570777+1                   1074913 L2891 2014 
 1976  158696888^131072+1               1074865 L5030 2023 Generalized Fermat
 1977  158472238^131072+1               1074785 L5586 2023 Generalized Fermat
 1978  33*2^3570132+1                   1074719 L2552 2014 
 1979  157923226^131072+1               1074587 L4249 2023 Generalized Fermat
 1980  157541220^131072+1               1074449 L5416 2023 Generalized Fermat
 1981  5*2^3569154-1                    1074424 L503  2009 
 1982  157374268^131072+1               1074389 L5578 2023 Generalized Fermat
 1983  81*492^399095-1                  1074352 L4001 2015 
 1984  156978838^131072+1               1074246 L5332 2023 Generalized Fermat
 1985  156789840^131072+1               1074177 L4747 2023 Generalized Fermat
 1986  156756400^131072+1               1074165 L4249 2023 Generalized Fermat
 1987  22934*5^1536762-1                1074155 L3789 2014 
 1988  156625064^131072+1               1074117 L5694 2023 Generalized Fermat
 1989  156519708^131072+1               1074079 L5746 2023 Generalized Fermat
 1990  156468140^131072+1               1074060 L4249 2023 Generalized Fermat
 1991  156203340^131072+1               1073964 L5578 2023 Generalized Fermat
 1992  156171526^131072+1               1073952 L5698 2023 Generalized Fermat
 1993  155778562^131072+1               1073809 L4309 2023 Generalized Fermat
 1994  155650426^131072+1               1073762 L5668 2023 Generalized Fermat
 1995  155536474^131072+1               1073720 L4249 2023 Generalized Fermat
 1996  155339878^131072+1               1073648 L5206 2023 Generalized Fermat
 1997  155305266^131072+1               1073636 L5549 2023 Generalized Fermat
 1998  155006218^131072+1               1073526 L4742 2023 Generalized Fermat
 1999  154553092^131072+1               1073359 L4920 2023 Generalized Fermat
 2000  154492166^131072+1               1073337 L4326 2023 Generalized Fermat
 2001  154478286^131072+1               1073332 L4544 2023 Generalized Fermat
 2002  154368914^131072+1               1073291 L5738 2023 Generalized Fermat
 2003  153966766^131072+1               1073143 L5732 2023 Generalized Fermat
 2004  3437687*2^3564664-1              1073078 L5327 2024 
 2005  265*2^3564373-1                  1072986 L2484 2018 
 2006  153485148^131072+1               1072965 L5736 2023 Generalized Fermat
 2007  153432848^131072+1               1072945 L5030 2023 Generalized Fermat
 2008  153413432^131072+1               1072938 L4835 2023 Generalized Fermat
 2009  771*2^3564109+1                  1072907 L2125 2018 
 2010  17665*820^368211+1               1072903 A11   2024 
 2011  381*2^3563676+1                  1072776 L4190 2016 
 2012  152966530^131072+1               1072772 L5070 2023 Generalized Fermat
 2013  555*2^3563328+1                  1072672 L4850 2018 
 2014  152542626^131072+1               1072614 L5460 2023 Generalized Fermat
 2015  151999396^131072+1               1072411 L5586 2023 Generalized Fermat
 2016  151609814^131072+1               1072265 L5663 2023 Generalized Fermat
 2017  151218242^131072+1               1072118 L5588 2023 Generalized Fermat
 2018  151108236^131072+1               1072076 L4672 2023 Generalized Fermat
 2019  151044622^131072+1               1072052 L5544 2023 Generalized Fermat
 2020  151030068^131072+1               1072047 L4774 2023 Generalized Fermat
 2021  150908454^131072+1               1072001 L4758 2023 Generalized Fermat
 2022  150863054^131072+1               1071984 L5720 2023 Generalized Fermat
 2023  1183*2^3560584+1                 1071846 L1823 2018 
 2024  150014492^131072+1               1071663 L4476 2023 Generalized Fermat
 2025  149972788^131072+1               1071647 L4559 2023 Generalized Fermat
 2026  415*2^3559614+1                  1071554 L3035 2016 
 2027  149665588^131072+1               1071530 L4892 2023 Generalized Fermat
 2028  149142686^131072+1               1071331 L4684 2023 Generalized Fermat
 2029  149057554^131072+1               1071298 L4933 2023 Generalized Fermat
 2030  148598024^131072+1               1071123 L4476 2023 Generalized Fermat
 2031  1103*2^3558177-503*2^1092022-1   1071122 p423  2022 
          Arithmetic progression (3,d=1103*2^3558176-503*2^1092022)
 2032  1103*2^3558176-1                 1071121 L1828 2018 
 2033  148592576^131072+1               1071121 L4476 2023 Generalized Fermat
 2034  148425726^131072+1               1071057 L4289 2023 Generalized Fermat
 2035  148154288^131072+1               1070952 L5714 2023 Generalized Fermat
 2036  148093952^131072+1               1070929 L4720 2023 Generalized Fermat
 2037  148070542^131072+1               1070920 L5155 2023 Generalized Fermat
 2038  147988292^131072+1               1070889 L5155 2023 Generalized Fermat
 2039  147816036^131072+1               1070822 L5634 2023 Generalized Fermat
 2040  1379*2^3557072-1                 1070789 L1828 2018 
 2041  147539992^131072+1               1070716 L4917 2023 Generalized Fermat
 2042  147433824^131072+1               1070675 L4753 2023 Generalized Fermat
 2043  147310498^131072+1               1070627 L5403 2023 Generalized Fermat
 2044  147265916^131072+1               1070610 L5543 2023 Generalized Fermat
 2045  146994540^131072+1               1070505 L5634 2023 Generalized Fermat
 2046  146520528^131072+1               1070321 L6123 2023 Generalized Fermat
 2047  146465338^131072+1               1070300 L5704 2023 Generalized Fermat
 2048  146031082^131072+1               1070131 L4697 2023 Generalized Fermat
 2049  145949782^131072+1               1070099 L5029 2023 Generalized Fermat
 2050  145728478^131072+1               1070013 L5543 2023 Generalized Fermat
 2051  145245346^131072+1               1069824 L5586 2023 Generalized Fermat
 2052  145137270^131072+1               1069781 L4742 2023 Generalized Fermat
 2053  145132288^131072+1               1069779 L4774 2023 Generalized Fermat
 2054  144926960^131072+1               1069699 L5036 2023 Generalized Fermat
 2055  144810806^131072+1               1069653 L5543 2023 Generalized Fermat
 2056  681*2^3553141+1                  1069605 L3035 2018 
 2057  144602744^131072+1               1069571 L5543 2023 Generalized Fermat
 2058  143844356^131072+1               1069272 L5693 2023 Generalized Fermat
 2059  599*2^3551793+1                  1069200 L3824 2018 
 2060  143421820^131072+1               1069104 L4904 2023 Generalized Fermat
 2061  621*2^3551472+1                  1069103 L4687 2018 
 2062  143416574^131072+1               1069102 L4591 2023 Generalized Fermat
 2063  143126384^131072+1               1068987 L5288 2023 Generalized Fermat
 2064  142589776^131072+1               1068773 L4201 2023 Generalized Fermat
 2065  773*2^3550373+1                  1068772 L1808 2018 
 2066  142527792^131072+1               1068748 L4387 2023 Generalized Fermat
 2067  142207386^131072+1               1068620 L5694 2023 Generalized Fermat
 2068  142195844^131072+1               1068616 L5548 2023 Generalized Fermat
 2069  141636602^131072+1               1068391 L5639 2023 Generalized Fermat
 2070  141554190^131072+1               1068358 L4956 2023 Generalized Fermat
 2071  1199*2^3548380-1                 1068172 L1828 2018 
 2072  140928044^131072+1               1068106 L4870 2023 Generalized Fermat
 2073  191*2^3548117+1                  1068092 L4203 2015 
 2074  140859866^131072+1               1068078 L5011 2023 Generalized Fermat
 2075  140824516^131072+1               1068064 L4760 2023 Generalized Fermat
 2076  140649396^131072+1               1067993 L5578 2023 Generalized Fermat
 2077  867*2^3547711+1                  1067971 L4155 2018 
 2078  140473436^131072+1               1067922 L4210 2023 Generalized Fermat
 2079  140237690^131072+1               1067826 L5051 2023 Generalized Fermat
 2080  139941370^131072+1               1067706 L5671 2023 Generalized Fermat
 2081  3^2237561+3^1118781+1            1067588 L3839 2014 Generalized unique
 2082  139352402^131072+1               1067466 L5663 2023 Generalized Fermat
 2083  351*2^3545752+1                  1067381 L4082 2016 
 2084  138896860^131072+1               1067279 L4745 2023 Generalized Fermat
 2085  138894074^131072+1               1067278 L5041 2023 Generalized Fermat
 2086  138830036^131072+1               1067252 L5662 2023 Generalized Fermat
 2087  138626864^131072+1               1067169 L5663 2023 Generalized Fermat
 2088  138527284^131072+1               1067128 L5663 2023 Generalized Fermat
 2089  93*2^3544744+1                   1067077 L1728 2014 
 2090b 26279*24^773017+1                1066932 A11   2025 
 2091  138000006^131072+1               1066911 L5051 2023 Generalized Fermat
 2092  137900696^131072+1               1066870 L4249 2023 Generalized Fermat
 2093  137878102^131072+1               1066860 L5051 2023 Generalized Fermat
 2094  1159*2^3543702+1                 1066764 L1823 2018 
 2095  137521726^131072+1               1066713 L4672 2023 Generalized Fermat
 2096  137486564^131072+1               1066699 L5586 2023 Generalized Fermat
 2097  136227118^131072+1               1066175 L5416 2023 Generalized Fermat
 2098  136192168^131072+1               1066160 L5556 2023 Generalized Fermat
 2099  136124076^131072+1               1066132 L5041 2023 Generalized Fermat
 2100  136122686^131072+1               1066131 L5375 2023 Generalized Fermat
 2101  2*3^2234430-1                    1066095 A2    2023 
 2102  178658*5^1525224-1               1066092 L3789 2014 
 2103  135744154^131072+1               1065973 L5068 2023 Generalized Fermat
 2104  135695350^131072+1               1065952 L4249 2023 Generalized Fermat
 2105  135623220^131072+1               1065922 L5657 2023 Generalized Fermat
 2106  135513092^131072+1               1065876 L5656 2023 Generalized Fermat
 2107  135497678^131072+1               1065869 L4387 2023 Generalized Fermat
 2108  135458028^131072+1               1065852 L5051 2023 Generalized Fermat
 2109  135332960^131072+1               1065800 L5655 2023 Generalized Fermat
 2110  135135930^131072+1               1065717 L4387 2023 Generalized Fermat
 2111  1085*2^3539671+1                 1065551 L3035 2018 
 2112  134706086^131072+1               1065536 L5378 2023 Generalized Fermat
 2113  134459616^131072+1               1065431 L5658 2023 Generalized Fermat
 2114  134447516^131072+1               1065426 L4387 2023 Generalized Fermat
 2115  134322272^131072+1               1065373 L4387 2023 Generalized Fermat
 2116  134206304^131072+1               1065324 L4684 2023 Generalized Fermat
 2117  134176868^131072+1               1065311 L5375 2023 Generalized Fermat
 2118  133954018^131072+1               1065217 L5088 2023 Generalized Fermat
 2119  133676500^131072+1               1065099 L4387 2023 Generalized Fermat
 2120  133569020^131072+1               1065053 L5277 2023 Generalized Fermat
 2121  133345154^131072+1               1064958 L4210 2023 Generalized Fermat
 2122  133180238^131072+1               1064887 L5586 2023 Generalized Fermat
 2123  133096042^131072+1               1064851 L4755 2023 Generalized Fermat
 2124  465*2^3536871+1                  1064707 L4459 2016 
 2125  1019*2^3536312-1                 1064539 L1828 2012 
 2126  131820886^131072+1               1064303 L5069 2023 Generalized Fermat
 2127  131412078^131072+1               1064126 L5653 2023 Generalized Fermat
 2128  131370186^131072+1               1064108 L5036 2023 Generalized Fermat
 2129  131309874^131072+1               1064082 L5069 2023 Generalized Fermat
 2130  131112524^131072+1               1063996 L4245 2023 Generalized Fermat
 2131  1179*2^3534450+1                 1063979 L3035 2018 
 2132  130907540^131072+1               1063907 L4526 2023 Generalized Fermat
 2133  130593462^131072+1               1063771 L4559 2023 Generalized Fermat
 2134  447*2^3533656+1                  1063740 L4457 2016 
 2135  130518578^131072+1               1063738 L5029 2023 Generalized Fermat
 2136  1059*2^3533550+1                 1063708 L1823 2018 
 2137  130198372^131072+1               1063598 L5416 2023 Generalized Fermat
 2138  130148002^131072+1               1063576 L4387 2023 Generalized Fermat
 2139  130128232^131072+1               1063567 L5029 2023 Generalized Fermat
 2140  130051980^131072+1               1063534 L5416 2023 Generalized Fermat
 2141  130048816^131072+1               1063533 L4245 2023 Generalized Fermat
 2142  345*2^3532957+1                  1063529 L4314 2016 
 2143  553*2^3532758+1                  1063469 L1823 2018 
 2144  129292212^131072+1               1063201 L4285 2023 Generalized Fermat
 2145  129159632^131072+1               1063142 L5051 2023 Generalized Fermat
 2146  128558886^131072+1               1062877 L5518 2023 Generalized Fermat
 2147  128520182^131072+1               1062860 L4745 2023 Generalized Fermat
 2148  543131*2^3529754-1               1062568 L4925 2022 
 2149  127720948^131072+1               1062504 L5378 2023 Generalized Fermat
 2150  141*2^3529287+1                  1062424 L4185 2015 
 2151  127093036^131072+1               1062224 L4591 2023 Generalized Fermat
 2152  24950*745^369781-1               1062074 L4189 2024 
 2153  126611934^131072+1               1062008 L4776 2023 Generalized Fermat
 2154  126423276^131072+1               1061923 L4201 2023 Generalized Fermat
 2155  126334514^131072+1               1061883 L4249 2023 Generalized Fermat
 2156  13*2^3527315-1                   1061829 L1862 2016 
 2157  126199098^131072+1               1061822 L4591 2023 Generalized Fermat
 2158  126189358^131072+1               1061818 L4704 2023 Generalized Fermat
 2159  125966884^131072+1               1061717 L4747 2023 Generalized Fermat
 2160  125714084^131072+1               1061603 L4745 2023 Generalized Fermat
 2161  125141096^131072+1               1061343 L4559 2023 Generalized Fermat
 2162  1393*2^3525571-1                 1061306 L1828 2017 
 2163  125006494^131072+1               1061282 L5639 2023 Generalized Fermat
 2164  124877454^131072+1               1061223 L4245 2023 Generalized Fermat
 2165  124875502^131072+1               1061222 L4591 2023 Generalized Fermat
 2166  124749274^131072+1               1061164 L4591 2023 Generalized Fermat
 2167  124586054^131072+1               1061090 L4249 2023 Generalized Fermat
 2168  124582356^131072+1               1061088 L5606 2023 Generalized Fermat
 2169  124543852^131072+1               1061071 L4249 2023 Generalized Fermat
 2170  124393514^131072+1               1061002 L4774 2023 Generalized Fermat
 2171  124219534^131072+1               1060922 L4249 2023 Generalized Fermat
 2172  124133348^131072+1               1060883 L5088 2023 Generalized Fermat
 2173  124080788^131072+1               1060859 L5639 2023 Generalized Fermat
 2174  1071*2^3523944+1                 1060816 L1675 2018 
 2175  123910270^131072+1               1060780 L4249 2023 Generalized Fermat
 2176  123856592^131072+1               1060756 L4201 2023 Generalized Fermat
 2177  123338660^131072+1               1060517 L4905 2022 Generalized Fermat
 2178  123306230^131072+1               1060502 L5638 2023 Generalized Fermat
 2179  123195196^131072+1               1060451 L5029 2022 Generalized Fermat
 2180  122941512^131072+1               1060333 L4559 2022 Generalized Fermat
 2181  122869094^131072+1               1060300 L4939 2022 Generalized Fermat
 2182  122481106^131072+1               1060120 L4704 2022 Generalized Fermat
 2183  122414564^131072+1               1060089 L5627 2022 Generalized Fermat
 2184  122372192^131072+1               1060069 L5099 2022 Generalized Fermat
 2185  121854624^131072+1               1059828 L5051 2022 Generalized Fermat
 2186  121462664^131072+1               1059645 L5632 2022 Generalized Fermat
 2187  121158848^131072+1               1059502 L4774 2022 Generalized Fermat
 2188  2220172*3^2220172+1              1059298 p137  2023 Generalized Cullen
 2189  329*2^3518451+1                  1059162 L1823 2016 
 2190  135*2^3518338+1                  1059128 L4045 2015 
 2191  120106930^131072+1               1059006 L4249 2022 Generalized Fermat
 2192  2*10^1059002-1                   1059003 L3432 2013 Near-repdigit
 2193  119744014^131072+1               1058833 L4249 2022 Generalized Fermat
 2194  64*10^1058794+1                  1058796 L4036 2017 Generalized Fermat
 2195  119604848^131072+1               1058767 L4201 2022 Generalized Fermat
 2196  119541900^131072+1               1058737 L4747 2022 Generalized Fermat
 2197  119510296^131072+1               1058722 L4201 2022 Generalized Fermat
 2198  119246256^131072+1               1058596 L4249 2022 Generalized Fermat
 2199  119137704^131072+1               1058544 L4201 2022 Generalized Fermat
 2200  118888350^131072+1               1058425 L4999 2022 Generalized Fermat
 2201  599*2^3515959+1                  1058412 L1823 2018 
 2202  118583824^131072+1               1058279 L4210 2022 Generalized Fermat
 2203  118109876^131072+1               1058051 L4550 2022 Generalized Fermat
 2204  117906758^131072+1               1057953 L4249 2022 Generalized Fermat
 2205  117687318^131072+1               1057847 L4245 2022 Generalized Fermat
 2206  117375862^131072+1               1057696 L4774 2022 Generalized Fermat
 2207  117345018^131072+1               1057681 L4848 2022 Generalized Fermat
 2208  117196584^131072+1               1057609 L4559 2022 Generalized Fermat
 2209  117153716^131072+1               1057588 L4774 2022 Generalized Fermat
 2210  117088740^131072+1               1057557 L4559 2022 Generalized Fermat
 2211  116936156^131072+1               1057483 L5332 2022 Generalized Fermat
 2212  116402336^131072+1               1057222 L4760 2022 Generalized Fermat
 2213  7*2^3511774+1                    1057151 p236  2008 
          Divides GF(3511773,6)
 2214  116036228^131072+1               1057043 L4773 2022 Generalized Fermat
 2215  116017862^131072+1               1057034 L4559 2022 Generalized Fermat
 2216  115992582^131072+1               1057021 L4835 2022 Generalized Fermat
 2217  115873312^131072+1               1056963 L4677 2022 Generalized Fermat
 2218  1135*2^3510890+1                 1056887 L1823 2018 
 2219  115704568^131072+1               1056880 L4559 2022 Generalized Fermat
 2220  115479166^131072+1               1056769 L4774 2022 Generalized Fermat
 2221  115409608^131072+1               1056735 L4774 2022 Generalized Fermat
 2222  115256562^131072+1               1056659 L4559 2022 Generalized Fermat
 2223  114687250^131072+1               1056377 L5007 2022 Generalized Fermat
 2224  114643510^131072+1               1056356 L4659 2022 Generalized Fermat
 2225  114340846^131072+1               1056205 L4559 2022 Generalized Fermat
 2226  114159720^131072+1               1056115 L4787 2022 Generalized Fermat
 2227  114055498^131072+1               1056063 L4387 2022 Generalized Fermat
 2228  114009952^131072+1               1056040 L4387 2022 Generalized Fermat
 2229  113904214^131072+1               1055987 L4559 2022 Generalized Fermat
 2230  113807058^131072+1               1055939 L5157 2022 Generalized Fermat
 2231  113550956^131072+1               1055810 L5578 2022 Generalized Fermat
 2232  113521888^131072+1               1055796 L4387 2022 Generalized Fermat
 2233  113431922^131072+1               1055751 L4559 2022 Generalized Fermat
 2234  113328940^131072+1               1055699 L4787 2022 Generalized Fermat
 2235  113327472^131072+1               1055698 L5467 2022 Generalized Fermat
 2236  113325850^131072+1               1055698 L4559 2022 Generalized Fermat
 2237  113313172^131072+1               1055691 L5005 2022 Generalized Fermat
 2238  113191714^131072+1               1055630 L5056 2022 Generalized Fermat
 2239  113170004^131072+1               1055619 L4584 2022 Generalized Fermat
 2240  428639*2^3506452-1               1055553 L2046 2011 
 2241  112996304^131072+1               1055532 L5544 2022 Generalized Fermat
 2242  112958834^131072+1               1055513 L5512 2022 Generalized Fermat
 2243  112852910^131072+1               1055459 L5157 2022 Generalized Fermat
 2244  112719374^131072+1               1055392 L4793 2022 Generalized Fermat
 2245  112580428^131072+1               1055322 L5512 2022 Generalized Fermat
 2246  112248096^131072+1               1055154 L5359 2022 Generalized Fermat
 2247  112053266^131072+1               1055055 L5359 2022 Generalized Fermat
 2248  112023072^131072+1               1055039 L5156 2022 Generalized Fermat
 2249  111673524^131072+1               1054861 L5548 2022 Generalized Fermat
 2250  111181588^131072+1               1054610 L4550 2022 Generalized Fermat
 2251  104*383^408249+1                 1054591 L2012 2021 
 2252  110866802^131072+1               1054449 L5547 2022 Generalized Fermat
 2253  555*2^3502765+1                  1054441 L1823 2018 
 2254  110824714^131072+1               1054427 L4201 2022 Generalized Fermat
 2255  8300*171^472170+1                1054358 L5780 2023 
 2256  110428380^131072+1               1054223 L5543 2022 Generalized Fermat
 2257  110406480^131072+1               1054212 L5051 2022 Generalized Fermat
 2258  643*2^3501974+1                  1054203 L1823 2018 
 2259  2*23^774109+1                    1054127 g427  2014 
          Divides Phi(23^774109,2)
 2260  1159*2^3501490+1                 1054057 L2125 2018 
 2261  1001*2^3501038-1                 1053921 A46   2024 
 2262  109678642^131072+1               1053835 L4559 2022 Generalized Fermat
 2263  109654098^131072+1               1053823 L5143 2022 Generalized Fermat
 2264  109142690^131072+1               1053557 L4201 2022 Generalized Fermat
 2265  109082020^131072+1               1053525 L4773 2022 Generalized Fermat
 2266  1189*2^3499042+1                 1053320 L4724 2018 
 2267  108584736^131072+1               1053265 L5057 2022 Generalized Fermat
 2268  108581414^131072+1               1053263 L5088 2022 Generalized Fermat
 2269  108195632^131072+1               1053060 L5025 2022 Generalized Fermat
 2270  108161744^131072+1               1053043 L4945 2022 Generalized Fermat
 2271  108080390^131072+1               1053000 L4945 2022 Generalized Fermat
 2272  107979316^131072+1               1052947 L4559 2022 Generalized Fermat
 2273  107922308^131072+1               1052916 L5025 2022 Generalized Fermat
 2274  609*2^3497474+1                  1052848 L1823 2018 
 2275  9*2^3497442+1                    1052836 L1780 2012 
          Generalized Fermat, divides GF(3497441,10)
 2276  107732730^131072+1               1052816 L5518 2022 Generalized Fermat
 2277  107627678^131072+1               1052761 L5025 2022 Generalized Fermat
 2278  107492880^131072+1               1052689 L4550 2022 Generalized Fermat
 2279  107420312^131072+1               1052651 L4550 2022 Generalized Fermat
 2280  107404768^131072+1               1052643 L4267 2022 Generalized Fermat
 2281  107222132^131072+1               1052546 L5019 2022 Generalized Fermat
 2282  107126228^131072+1               1052495 L5025 2022 Generalized Fermat
 2283  87*2^3496188+1                   1052460 L1576 2014 
 2284  106901434^131072+1               1052375 L4760 2022 Generalized Fermat
 2285  106508704^131072+1               1052166 L5505 2022 Generalized Fermat
 2286  106440698^131072+1               1052130 L4245 2022 Generalized Fermat
 2287  106019242^131072+1               1051904 L5025 2022 Generalized Fermat
 2288  105937832^131072+1               1051860 L4745 2022 Generalized Fermat
 2289  783*2^3494129+1                  1051841 L3824 2018 
 2290  105861526^131072+1               1051819 L5500 2022 Generalized Fermat
 2291  105850338^131072+1               1051813 L5504 2022 Generalized Fermat
 2292  105534478^131072+1               1051643 L5025 2022 Generalized Fermat
 2293  105058710^131072+1               1051386 L5499 2022 Generalized Fermat
 2294  104907548^131072+1               1051304 L4245 2022 Generalized Fermat
 2295  104808996^131072+1               1051250 L4591 2022 Generalized Fermat
 2296  104641854^131072+1               1051159 L4245 2022 Generalized Fermat
 2297  51*2^3490971+1                   1050889 L1823 2014 
 2298  1485*2^3490746+1                 1050823 L1134 2021 
 2299  103828182^131072+1               1050715 L5072 2022 Generalized Fermat
 2300  103605376^131072+1               1050593 L5056 2022 Generalized Fermat
 2301b 3609*24^761179+1                 1050592 A11   2025 
 2302  103289324^131072+1               1050419 L5044 2022 Generalized Fermat
 2303  103280694^131072+1               1050414 L4745 2022 Generalized Fermat
 2304  103209792^131072+1               1050375 L5025 2022 Generalized Fermat
 2305  103094212^131072+1               1050311 L4245 2022 Generalized Fermat
 2306  103013294^131072+1               1050266 L4745 2022 Generalized Fermat
 2307  753*2^3488818+1                  1050242 L1823 2018 
 2308  102507732^131072+1               1049986 L4245 2022 Generalized Fermat
 2309  102469684^131072+1               1049965 L4245 2022 Generalized Fermat
 2310  102397132^131072+1               1049925 L4720 2022 Generalized Fermat
 2311  102257714^131072+1               1049847 L4245 2022 Generalized Fermat
 2312  699*2^3487253+1                  1049771 L1204 2018 
 2313  102050324^131072+1               1049732 L5036 2022 Generalized Fermat
 2314  102021074^131072+1               1049716 L4245 2022 Generalized Fermat
 2315  101915106^131072+1               1049656 L6123 2022 Generalized Fermat
 2316  101856256^131072+1               1049623 L4774 2022 Generalized Fermat
 2317  1001*2^3486566-1                 1049564 L4518 2024 
 2318  249*2^3486411+1                  1049517 L4045 2015 
 2319  195*2^3486379+1                  1049507 L4108 2015 
 2320  101607438^131072+1               1049484 L4591 2022 Generalized Fermat
 2321  4687*2^3485926+1                 1049372 L5302 2023 
 2322  2691*2^3485924+1                 1049372 L5302 2023 
 2323  6083*2^3485877+1                 1049358 L5837 2023 
 2324  101328382^131072+1               1049328 L4591 2022 Generalized Fermat
 2325  101270816^131072+1               1049295 L4245 2022 Generalized Fermat
 2326  9757*2^3485666+1                 1049295 L5284 2023 
 2327  8859*2^3484982+1                 1049089 L5833 2023 
 2328  100865034^131072+1               1049067 L4387 2022 Generalized Fermat
 2329  59912*5^1500861+1                1049062 L3772 2014 
 2330  495*2^3484656+1                  1048989 L3035 2016 
 2331  100719472^131072+1               1048985 L5270 2022 Generalized Fermat
 2332  100534258^131072+1               1048880 L4245 2022 Generalized Fermat
 2333  100520930^131072+1               1048872 L4201 2022 Generalized Fermat
 2334  4467*2^3484204+1                 1048854 L5189 2023 
 2335  4873*2^3484142+1                 1048835 L5710 2023 
 2336  100441116^131072+1               1048827 L4309 2022 Generalized Fermat
 2337  (3*2^1742059)^2-3*2^1742059+1    1048825 A3    2023 Generalized unique
 2338  3891*2^3484099+1                 1048822 L5260 2023 
 2339  7833*2^3484060+1                 1048811 L5830 2023 
 2340  100382228^131072+1               1048794 L4308 2022 Generalized Fermat
 2341  100369508^131072+1               1048786 L5157 2022 Generalized Fermat
 2342  100324226^131072+1               1048761 L4201 2022 Generalized Fermat
 2343  3097*2^3483800+1                 1048732 L5829 2023 
 2344  5873*2^3483573+1                 1048664 L5710 2023 
 2345  2895*2^3483455+1                 1048628 L5480 2023 
 2346  9029*2^3483337+1                 1048593 L5393 2023 
 2347  100010426^131072+1               1048582 L5375 2022 Generalized Fermat
 2348  5531*2^3483263+1                 1048571 L5825 2023 
 2349  323*2^3482789+1                  1048427 L1204 2016 
 2350  3801*2^3482723+1                 1048408 L5517 2023 
 2351  99665972^131072+1                1048386 L4201 2022 Generalized Fermat
 2352  99650934^131072+1                1048377 L5375 2022 Generalized Fermat
 2353  99557826^131072+1                1048324 L5466 2022 Generalized Fermat
 2354  8235*2^3482277+1                 1048274 L5820 2023 
 2355  9155*2^3482129+1                 1048230 L5226 2023 
 2356  99351950^131072+1                1048206 L5143 2022 Generalized Fermat
 2357  4325*2^3481969+1                 1048181 L5434 2023 
 2358  99189780^131072+1                1048113 L4201 2022 Generalized Fermat
 2359  1149*2^3481694+1                 1048098 L1823 2018 
 2360  98978354^131072+1                1047992 L5465 2022 Generalized Fermat
 2361  6127*2^3481244+1                 1047963 L5226 2023 
 2362  98922946^131072+1                1047960 L5453 2022 Generalized Fermat
 2363  8903*2^3481217+1                 1047955 L5226 2023 
 2364  3595*2^3481178+1                 1047943 L5214 2023 
 2365  3799*2^3480810+1                 1047832 L5226 2023 
 2366  6101*2^3480801+1                 1047830 L5226 2023 
 2367  98652282^131072+1                1047804 L4201 2022 Generalized Fermat
 2368  1740349*2^3480698+1              1047801 L5765 2023 Generalized Cullen
 2369  98557818^131072+1                1047750 L5464 2022 Generalized Fermat
 2370  98518362^131072+1                1047727 L5460 2022 Generalized Fermat
 2371  5397*2^3480379+1                 1047703 L5226 2023 
 2372  5845*2^3479972+1                 1047580 L5517 2023 
 2373  98240694^131072+1                1047566 L4720 2022 Generalized Fermat
 2374  98200338^131072+1                1047543 L4559 2022 Generalized Fermat
 2375  701*2^3479779+1                  1047521 L2125 2018 
 2376  98137862^131072+1                1047507 L4525 2022 Generalized Fermat
 2377  813*2^3479728+1                  1047506 L4724 2018 
 2378  7125*2^3479509+1                 1047441 L5812 2023 
 2379  1971*2^3479061+1                 1047306 L5226 2023 
 2380  1215*2^3478543+1                 1047149 L5226 2023 
 2381  97512766^131072+1                1047143 L5460 2022 Generalized Fermat
 2382  5985*2^3478217+1                 1047052 L5387 2023 
 2383  3093*2^3478148+1                 1047031 L5261 2023 
 2384  2145*2^3478095+1                 1047015 L5387 2023 
 2385  6685*2^3478086+1                 1047013 L5237 2023 
 2386  9603*2^3478084+1                 1047012 L5178 2023 
 2387  1315*2^3477718+1                 1046901 L5316 2023 
 2388  97046574^131072+1                1046870 L4956 2022 Generalized Fermat
 2389  197*2^3477399+1                  1046804 L2125 2015 
 2390  8303*2^3477201+1                 1046746 L5387 2023 
 2391  96821302^131072+1                1046738 L5453 2022 Generalized Fermat
 2392  5925*2^3477009+1                 1046688 L5810 2023 
 2393  96734274^131072+1                1046686 L5297 2022 Generalized Fermat
 2394  7825*2^3476524+1                 1046542 L5174 2023 
 2395  96475576^131072+1                1046534 L4424 2022 Generalized Fermat
 2396  8197*2^3476332+1                 1046485 L5174 2023 
 2397  8529*2^3476111+1                 1046418 L5387 2023 
 2398  8411*2^3476055+1                 1046401 L5783 2023 
 2399  4319*2^3475955+1                 1046371 L5803 2023 
 2400  96111850^131072+1                1046319 L4245 2022 Generalized Fermat
 2401  95940796^131072+1                1046218 L4591 2022 Generalized Fermat
 2402  6423*2^3475393+1                 1046202 L5174 2023 
 2403  2281*2^3475340+1                 1046185 L5302 2023 
 2404  7379*2^3474983+1                 1046078 L5798 2023 
 2405  4*5^1496566+1                    1046056 L4965 2023 Generalized Fermat
 2406  95635202^131072+1                1046036 L5452 2021 Generalized Fermat
 2407  95596816^131072+1                1046013 L4591 2021 Generalized Fermat
 2408  4737*2^3474562+1                 1045952 L5302 2023 
 2409  2407*2^3474406+1                 1045904 L5557 2023 
 2410  95308284^131072+1                1045841 L4584 2021 Generalized Fermat
 2411  491*2^3473837+1                  1045732 L4343 2016 
 2412  2693*2^3473721+1                 1045698 L5174 2023 
 2413  94978760^131072+1                1045644 L4201 2021 Generalized Fermat
 2414  3375*2^3473210+1                 1045544 L5294 2023 
 2415  8835*2^3472666+1                 1045381 L5178 2023 
 2416  5615*2^3472377+1                 1045294 L5174 2023 
 2417  1785*2^3472229+1                 1045249 L875  2023 
 2418  8997*2^3472036+1                 1045191 L5302 2023 
 2419  9473*2^3471885+1                 1045146 L5294 2023 
 2420  7897*2^3471568+1                 1045050 L5294 2023 
 2421  93950924^131072+1                1045025 L5425 2021 Generalized Fermat
 2422  93886318^131072+1                1044985 L5433 2021 Generalized Fermat
 2423  1061*2^3471354-1                 1044985 L1828 2017 
 2424  1913*2^3471177+1                 1044932 L5189 2023 
 2425  93773904^131072+1                1044917 L4939 2021 Generalized Fermat
 2426  7723*2^3471074+1                 1044902 L5189 2023 
 2427  4195*2^3470952+1                 1044865 L5294 2023 
 2428  93514592^131072+1                1044760 L4591 2021 Generalized Fermat
 2429  5593*2^3470520+1                 1044735 L5387 2023 
 2430  3665*2^3469955+1                 1044565 L5189 2023 
 2431  3301*2^3469708+1                 1044490 L5261 2023 
 2432  6387*2^3469634+1                 1044468 L5192 2023 
 2433  93035888^131072+1                1044467 L4245 2021 Generalized Fermat
 2434  8605*2^3469570+1                 1044449 L5387 2023 
 2435  1359*2^3468725+1                 1044194 L5197 2023 
 2436  92460588^131072+1                1044114 L5254 2021 Generalized Fermat
 2437  7585*2^3468338+1                 1044078 L5197 2023 
 2438  1781*2^3468335+1                 1044077 L5387 2023 
 2439  6885*2^3468181+1                 1044031 L5197 2023 
 2440  4372*30^706773-1                 1043994 L4955 2023 
 2441  7287*2^3467938+1                 1043958 L5776 2023 
 2442  92198216^131072+1                1043953 L4738 2021 Generalized Fermat
 2443  3163*2^3467710+1                 1043889 L5517 2023 
 2444  6099*2^3467689+1                 1043883 L5197 2023 
 2445  6665*2^3467627+1                 1043864 L5174 2023 
 2446  4099*2^3467462+1                 1043814 L5774 2023 
 2447  5285*2^3467445+1                 1043809 L5189 2023 
 2448  1001*2^3467258-1                 1043752 L4518 2024 
 2449  91767880^131072+1                1043686 L5051 2021 Generalized Fermat
 2450  91707732^131072+1                1043649 L4591 2021 Generalized Fermat
 2451  5935*2^3466880+1                 1043639 L5197 2023 
 2452  91689894^131072+1                1043638 L4591 2021 Generalized Fermat
 2453  91685784^131072+1                1043635 L4591 2021 Generalized Fermat
 2454  8937*2^3466822+1                 1043622 L5174 2023 
 2455  91655310^131072+1                1043616 L4659 2021 Generalized Fermat
 2456  8347*2^3466736+1                 1043596 L5770 2023 
 2457  8863*2^3465780+1                 1043308 L5766 2023 
 2458  3895*2^3465744+1                 1043297 L5640 2023 
 2459  91069366^131072+1                1043251 L5277 2021 Generalized Fermat
 2460  91049202^131072+1                1043239 L4591 2021 Generalized Fermat
 2461  91033554^131072+1                1043229 L4591 2021 Generalized Fermat
 2462  8561*2^3465371+1                 1043185 L5197 2023 
 2463  90942952^131072+1                1043172 L4387 2021 Generalized Fermat
 2464  90938686^131072+1                1043170 L4387 2021 Generalized Fermat
 2465  9971*2^3465233+1                 1043144 L5488 2023 
 2466  90857490^131072+1                1043119 L4591 2021 Generalized Fermat
 2467  3801*2^3464980+1                 1043067 L5197 2023 
 2468  3099*2^3464739+1                 1042994 L5284 2023 
 2469  90382348^131072+1                1042820 L4267 2021 Generalized Fermat
 2470  641*2^3464061+1                  1042790 L1444 2018 
 2471  6717*2^3463735+1                 1042692 L5754 2023 
 2472  6015*2^3463561+1                 1042640 L5387 2023 
 2473  90006846^131072+1                1042583 L4773 2021 Generalized Fermat
 2474  1667*2^3463355+1                 1042577 L5226 2023 
 2475  2871*2^3463313+1                 1042565 L5189 2023 
 2476  89977312^131072+1                1042565 L5070 2021 Generalized Fermat
 2477  6007*2^3463048+1                 1042486 L5226 2023 
 2478  89790434^131072+1                1042446 L5007 2021 Generalized Fermat
 2479  9777*2^3462742+1                 1042394 L5197 2023 
 2480  5215*2^3462740+1                 1042393 L5174 2023 
 2481  8365*2^3462722+1                 1042388 L5320 2023 
 2482  3597*2^3462056+1                 1042187 L5174 2023 
 2483  2413*2^3461890+1                 1042137 L5197 2023 
 2484  89285798^131072+1                1042125 L5157 2021 Generalized Fermat
 2485  453*2^3461688+1                  1042075 L3035 2016 
 2486  89113896^131072+1                1042016 L5338 2021 Generalized Fermat
 2487  4401*2^3461476+1                 1042012 L5197 2023 
 2488  9471*2^3461305+1                 1041961 L5594 2023 
 2489  7245*2^3461070+1                 1041890 L5449 2023 
 2490  3969*2^3460942+1                 1041851 L5471 2023 Generalized Fermat
 2491  4365*2^3460914+1                 1041843 L5197 2023 
 2492  4613*2^3460861+1                 1041827 L5614 2023 
 2493  88760062^131072+1                1041789 L4903 2021 Generalized Fermat
 2494  5169*2^3460553+1                 1041734 L5742 2023 
 2495  8395*2^3460530+1                 1041728 L5284 2023 
 2496  5835*2^3460515+1                 1041723 L5740 2023 
 2497  8059*2^3460246+1                 1041642 L5350 2023 
 2498  571*2^3460216+1                  1041632 L3035 2018 
 2499  6065*2^3460205+1                 1041630 L5683 2023 
 2500  88243020^131072+1                1041457 L4774 2021 Generalized Fermat
 2501  88166868^131072+1                1041408 L5277 2021 Generalized Fermat
 2502  6237*2^3459386+1                 1041383 L5509 2023 
 2503  88068088^131072+1                1041344 L4933 2021 Generalized Fermat
 2504  4029*2^3459062+1                 1041286 L5727 2023 
 2505  87920992^131072+1                1041249 L4249 2021 Generalized Fermat
 2506  7055*2^3458909+1                 1041240 L5509 2023 
 2507  7297*2^3458768+1                 1041197 L5726 2023 
 2508  2421*2^3458432+1                 1041096 L5725 2023 
 2509  7907*2^3458207+1                 1041028 L5509 2023 
 2510  87547832^131072+1                1041006 L4591 2021 Generalized Fermat
 2511  87454694^131072+1                1040946 L4672 2021 Generalized Fermat
 2512  7839*2^3457846+1                 1040920 L5231 2023 
 2513  87370574^131072+1                1040891 L5297 2021 Generalized Fermat
 2514  87352356^131072+1                1040879 L4387 2021 Generalized Fermat
 2515  87268788^131072+1                1040825 L4917 2021 Generalized Fermat
 2516  87192538^131072+1                1040775 L4861 2021 Generalized Fermat
 2517  5327*2^3457363+1                 1040774 L5715 2023 
 2518  87116452^131072+1                1040725 L5297 2021 Generalized Fermat
 2519  87039658^131072+1                1040675 L5297 2021 Generalized Fermat
 2520  6059*2^3457001+1                 1040665 L5197 2023 
 2521  8953*2^3456938+1                 1040646 L5724 2023 
 2522  8669*2^3456759+1                 1040593 L5710 2023 
 2523  86829162^131072+1                1040537 L5265 2021 Generalized Fermat
 2524  4745*2^3456167+1                 1040414 L5705 2023 
 2525  8213*2^3456141+1                 1040407 L5703 2023 
 2526  86413544^131072+1                1040264 L4914 2021 Generalized Fermat
 2527  86347638^131072+1                1040221 L4848 2021 Generalized Fermat
 2528  86295564^131072+1                1040186 L5030 2021 Generalized Fermat
 2529  1155*2^3455254+1                 1040139 L4711 2017 
 2530  37292*5^1487989+1                1040065 L3553 2013 
 2531  86060696^131072+1                1040031 L5057 2021 Generalized Fermat
 2532  5525*2^3454069+1                 1039783 L5651 2023 
 2533  4235*2^3453573+1                 1039633 L5650 2023 
 2534  6441*2^3453227+1                 1039529 L5683 2023 
 2535  4407*2^3453195+1                 1039519 L5650 2023 
 2536  9867*2^3453039+1                 1039473 L5686 2023 
 2537  85115888^131072+1                1039403 L4909 2021 Generalized Fermat
 2538  4857*2^3452675+1                 1039363 L5600 2023 
 2539  8339*2^3452667+1                 1039361 L5651 2023 
 2540  84924212^131072+1                1039275 L4309 2021 Generalized Fermat
 2541  7079*2^3452367+1                 1039270 L5650 2023 
 2542  5527*2^3452342+1                 1039263 L5679 2023 
 2543  84817722^131072+1                1039203 L4726 2021 Generalized Fermat
 2544  84765338^131072+1                1039168 L4245 2021 Generalized Fermat
 2545  84757790^131072+1                1039163 L5051 2021 Generalized Fermat
 2546  84723284^131072+1                1039140 L5051 2021 Generalized Fermat
 2547  84715930^131072+1                1039135 L4963 2021 Generalized Fermat
 2548  84679936^131072+1                1039111 L4864 2021 Generalized Fermat
 2549  3719*2^3451667+1                 1039059 L5294 2023 
 2550  6725*2^3451455+1                 1038996 L5685 2023 
 2551  8407*2^3451334+1                 1038959 L5524 2023 
 2552  84445014^131072+1                1038952 L4909 2021 Generalized Fermat
 2553  84384358^131072+1                1038912 L4622 2021 Generalized Fermat
 2554  4*10^1038890+1                   1038891 L4789 2024 Generalized Fermat
 2555  1623*2^3451109+1                 1038891 L5308 2023 
 2556  8895*2^3450982+1                 1038854 L5666 2023 
 2557  84149050^131072+1                1038753 L5033 2021 Generalized Fermat
 2558  2899*2^3450542+1                 1038721 L5600 2023 
 2559  6337*2^3449506+1                 1038409 L5197 2023 
 2560  4381*2^3449456+1                 1038394 L5392 2023 
 2561  2727*2^3449326+1                 1038355 L5421 2023 
 2562  2877*2^3449311+1                 1038350 L5517 2023 
 2563  7507*2^3448920+1                 1038233 L5284 2023 
 2564  3629*2^3448919+1                 1038232 L5192 2023 
 2565  83364886^131072+1                1038220 L4591 2021 Generalized Fermat
 2566  83328182^131072+1                1038195 L5051 2021 Generalized Fermat
 2567  1273*2^3448551-1                 1038121 L1828 2012 
 2568  1461*2^3448423+1                 1038082 L4944 2023 
 2569  3235*2^3448352+1                 1038061 L5571 2023 
 2570  4755*2^3448344+1                 1038059 L5524 2023 
 2571  5655*2^3448288+1                 1038042 L5651 2023 
 2572  4873*2^3448176+1                 1038009 L5524 2023 
 2573  83003850^131072+1                1037973 L4963 2021 Generalized Fermat
 2574  8139*2^3447967+1                 1037946 L5652 2023 
 2575  1065*2^3447906+1                 1037927 L4664 2017 
 2576  1717*2^3446756+1                 1037581 L5517 2023 
 2577  6357*2^3446434+1                 1037484 L5284 2023 
 2578  1155*2^3446253+1                 1037429 L3035 2017 
 2579  9075*2^3446090+1                 1037381 L5648 2023 
 2580  82008736^131072+1                1037286 L4963 2021 Generalized Fermat
 2581  82003030^131072+1                1037282 L4410 2021 Generalized Fermat
 2582  1483*2^3445724+1                 1037270 L5650 2023 
 2583  81976506^131072+1                1037264 L4249 2021 Generalized Fermat
 2584  2223*2^3445682+1                 1037257 L5647 2023 
 2585  8517*2^3445488+1                 1037200 L5302 2023 
 2586  2391*2^3445281+1                 1037137 L5596 2023 
 2587  6883*2^3444784+1                 1036988 L5264 2023 
 2588  81477176^131072+1                1036916 L4245 2020 Generalized Fermat
 2589  81444036^131072+1                1036893 L4245 2020 Generalized Fermat
 2590  8037*2^3443920+1                 1036728 L5626 2023 
 2591  1375*2^3443850+1                 1036706 L5192 2023 
 2592  81096098^131072+1                1036649 L4249 2020 Generalized Fermat
 2593  27288429267119080686...(1036580 other digits)...83679577406643267931
                                        1036620 p384  2015 
 2594  943*2^3442990+1                  1036447 L4687 2017 
 2595  7743*2^3442814+1                 1036395 L5514 2023 
 2596  5511*2^3442468+1                 1036290 L5514 2022 
 2597  80284312^131072+1                1036076 L5051 2020 Generalized Fermat
 2598  6329*2^3441717+1                 1036064 L5631 2022 
 2599  3957*2^3441568+1                 1036019 L5476 2022 
 2600  80146408^131072+1                1035978 L5051 2020 Generalized Fermat
 2601  4191*2^3441427+1                 1035977 L5189 2022 
 2602  2459*2^3441331+1                 1035948 L5514 2022 
 2603  4335*2^3441306+1                 1035940 L5178 2022 
 2604  2331*2^3441249+1                 1035923 L5626 2022 
 2605  79912550^131072+1                1035812 L5186 2020 Generalized Fermat
 2606  79801426^131072+1                1035733 L4245 2020 Generalized Fermat
 2607  79789806^131072+1                1035725 L4658 2020 Generalized Fermat
 2608  2363*2^3440385+1                 1035663 L5625 2022 
 2609  5265*2^3440332+1                 1035647 L5421 2022 
 2610  6023*2^3440241+1                 1035620 L5517 2022 
 2611  943*2^3440196+1                  1035606 L1448 2017 
 2612  6663*2^3439901+1                 1035518 L5624 2022 
 2613  79485098^131072+1                1035507 L5130 2020 Generalized Fermat
 2614  79428414^131072+1                1035466 L4793 2020 Generalized Fermat
 2615  79383608^131072+1                1035434 L4387 2020 Generalized Fermat
 2616  5745*2^3439450+1                 1035382 L5178 2022 
 2617b 5889*24^750125+1                 1035335 A32   2025 
 2618  79201682^131072+1                1035303 L5051 2020 Generalized Fermat
 2619  5109*2^3439090+1                 1035273 L5594 2022 
 2620  543*2^3438810+1                  1035188 L3035 2017 
 2621  625*2^3438572+1                  1035117 L1355 2017 Generalized Fermat
 2622  3325*2^3438506+1                 1035097 L5619 2022 
 2623  78910032^131072+1                1035093 L5051 2020 Generalized Fermat
 2624  78880690^131072+1                1035072 L5159 2020 Generalized Fermat
 2625  78851276^131072+1                1035051 L4928 2020 Generalized Fermat
 2626  4775*2^3438217+1                 1035011 L5618 2022 
 2627  78714954^131072+1                1034953 L5130 2020 Generalized Fermat
 2628  6963*2^3437988+1                 1034942 L5616 2022 
 2629  74*941^348034-1                  1034913 L5410 2020 
 2630  7423*2^3437856+1                 1034902 L5192 2022 
 2631  6701*2^3437801+1                 1034886 L5615 2022 
 2632  5741*2^3437773+1                 1034877 L5517 2022 
 2633  488639*2^3437688-1               1034853 L5327 2024 
 2634  78439440^131072+1                1034753 L5051 2020 Generalized Fermat
 2635  5601*2^3437259+1                 1034722 L5612 2022 
 2636  7737*2^3437192+1                 1034702 L5611 2022 
 2637  113*2^3437145+1                  1034686 L4045 2015 
 2638  78240016^131072+1                1034608 L4245 2020 Generalized Fermat
 2639  6387*2^3436719+1                 1034560 L5613 2022 
 2640  78089172^131072+1                1034498 L4245 2020 Generalized Fermat
 2641  2921*2^3436299+1                 1034433 L5231 2022 
 2642  9739*2^3436242+1                 1034416 L5178 2022 
 2643  77924964^131072+1                1034378 L5051 2020 Generalized Fermat
 2644  77918854^131072+1                1034374 L4760 2020 Generalized Fermat
 2645  1147*2^3435970+1                 1034334 L3035 2017 
 2646  4589*2^3435707+1                 1034255 L5174 2022 
 2647  7479*2^3435683+1                 1034248 L5421 2022 
 2648  2863*2^3435616+1                 1034227 L5197 2022 
 2649  77469882^131072+1                1034045 L4591 2020 Generalized Fermat
 2650  9863*2^3434697+1                 1033951 L5189 2022 
 2651  4065*2^3434623+1                 1033929 L5197 2022 
 2652  77281404^131072+1                1033906 L4963 2020 Generalized Fermat
 2653  9187*2^3434126+1                 1033779 L5600 2022 
 2654  9531*2^3434103+1                 1033772 L5601 2022 
 2655  1757*2^3433547+1                 1033604 L5594 2022 
 2656  1421*2^3433099+1                 1033469 L5237 2022 
 2657  3969*2^3433007+1                 1033442 L5189 2022 
 2658  6557*2^3433003+1                 1033441 L5261 2022 
 2659  7335*2^3432982+1                 1033435 L5231 2022 
 2660  7125*2^3432836+1                 1033391 L5594 2022 
 2661  2517*2^3432734+1                 1033360 L5231 2022 
 2662  911*2^3432643+1                  1033332 L1355 2017 
 2663  5413*2^3432626+1                 1033328 L5231 2022 
 2664  76416048^131072+1                1033265 L4672 2020 Generalized Fermat
 2665  3753*2^3432413+1                 1033263 L5261 2022 
 2666b 2164*24^748621+1                 1033259 A62   2025 
 2667  2691*2^3432191+1                 1033196 L5585 2022 
 2668  3933*2^3432125+1                 1033177 L5387 2022 
 2669  76026988^131072+1                1032975 L5094 2020 Generalized Fermat
 2670  76018874^131072+1                1032969 L4774 2020 Generalized Fermat
 2671b 5889*24^748409+1                 1032967 A15   2025 
 2672  1435*2^3431284+1                 1032923 L5587 2022 
 2673  75861530^131072+1                1032851 L5053 2020 Generalized Fermat
 2674  6783*2^3430781+1                 1032772 L5261 2022 
 2675  8079*2^3430683+1                 1032743 L5585 2022 
 2676  75647276^131072+1                1032690 L4677 2020 Generalized Fermat
 2677  75521414^131072+1                1032595 L4584 2020 Generalized Fermat
 2678  6605*2^3430187+1                 1032593 L5463 2022 
 2679  3761*2^3430057+1                 1032554 L5582 2022 
 2680  6873*2^3429937+1                 1032518 L5294 2022 
 2681  8067*2^3429891+1                 1032504 L5581 2022 
 2682  3965*2^3429719+1                 1032452 L5579 2022 
 2683  3577*2^3428812+1                 1032179 L5401 2022 
 2684  8747*2^3428755+1                 1032163 L5493 2022 
 2685  9147*2^3428638+1                 1032127 L5493 2022 
 2686  3899*2^3428535+1                 1032096 L5174 2022 
 2687  74833516^131072+1                1032074 L5102 2020 Generalized Fermat
 2688  74817490^131072+1                1032062 L4591 2020 Generalized Fermat
 2689  8891*2^3428303+1                 1032026 L5532 2022 
 2690  793181*20^793181+1               1031959 L5765 2023 Generalized Cullen
 2691  2147*2^3427371+1                 1031745 L5189 2022 
 2692  74396818^131072+1                1031741 L4791 2020 Generalized Fermat
 2693  74381296^131072+1                1031729 L4550 2020 Generalized Fermat
 2694  74363146^131072+1                1031715 L4898 2020 Generalized Fermat
 2695  1127*2^3427219+1                 1031699 L3035 2017 
 2696  74325990^131072+1                1031687 L5024 2020 Generalized Fermat
 2697  3021*2^3427059+1                 1031652 L5554 2022 
 2698  3255*2^3426983+1                 1031629 L5231 2022 
 2699  1733*2^3426753+1                 1031559 L5565 2022 
 2700  2339*2^3426599+1                 1031513 L5237 2022 
 2701  4729*2^3426558+1                 1031501 L5493 2022 
 2702  73839292^131072+1                1031313 L4550 2020 Generalized Fermat
 2703  5445*2^3425839+1                 1031285 L5237 2022 
 2704  159*2^3425766+1                  1031261 L4045 2015 
 2705  73690464^131072+1                1031198 L4884 2020 Generalized Fermat
 2706  3405*2^3425045+1                 1031045 L5261 2022 
 2707  73404316^131072+1                1030976 L5011 2020 Generalized Fermat
 2708  1695*2^3424517+1                 1030886 L5387 2022 
 2709  4715*2^3424433+1                 1030861 L5557 2022 
 2710  5525*2^3424423+1                 1030858 L5387 2022 
 2711  8615*2^3424231+1                 1030801 L5261 2022 
 2712  5805*2^3424200+1                 1030791 L5237 2022 
 2713  73160610^131072+1                1030787 L4550 2020 Generalized Fermat
 2714  73132228^131072+1                1030765 L4905 2020 Generalized Fermat
 2715  73099962^131072+1                1030740 L5068 2020 Generalized Fermat
 2716  2109*2^3423798-3027*2^988658+1   1030670 CH13  2023 
          Arithmetic progression (3,d=2109*2^3423797-3027*2^988658)
 2717  2109*2^3423797+1                 1030669 L5197 2022 
 2718  4929*2^3423494+1                 1030579 L5554 2022 
 2719  2987*2^3422911+1                 1030403 L5226 2022 
 2720  72602370^131072+1                1030351 L4201 2020 Generalized Fermat
 2721  4843*2^3422644+1                 1030323 L5553 2022 
 2722  5559*2^3422566+1                 1030299 L5555 2022 
 2723  7583*2^3422501+1                 1030280 L5421 2022 
 2724  1119*2^3422189+1                 1030185 L1355 2017 
 2725  2895*2^3422031-143157*2^2144728+1
                                        1030138 p423  2023 
          Arithmetic progression (3,d=2895*2^3422030-143157*2^2144728)
 2726  2895*2^3422030+1                 1030138 L5237 2022 
 2727  2835*2^3421697+1                 1030037 L5387 2022 
 2728  3363*2^3421353+1                 1029934 L5226 2022 
 2729  72070092^131072+1                1029932 L4201 2020 Generalized Fermat
 2730  9147*2^3421264+1                 1029908 L5237 2022 
 2731  9705*2^3420915+1                 1029803 L5540 2022 
 2732  1005*2^3420846+1                 1029781 L2714 2017 
          Divides GF(3420844,10)
 2733  8919*2^3420758+1                 1029755 L5226 2022 
 2734  71732900^131072+1                1029665 L5053 2020 Generalized Fermat
 2735  71679108^131072+1                1029623 L5072 2020 Generalized Fermat
 2736  5489*2^3420137+1                 1029568 L5174 2022 
 2737  9957*2^3420098+1                 1029557 L5237 2022 
 2738  93*10^1029523-1                  1029525 L4789 2019 Near-repdigit
 2739  71450224^131072+1                1029440 L5029 2020 Generalized Fermat
 2740a 1962*5^1472736-1                 1029402 A11   2025 
 2741  7213*2^3419370+1                 1029337 L5421 2022 
 2742  7293*2^3419264+1                 1029305 L5192 2022 
 2743  975*2^3419230+1                  1029294 L3545 2017 
 2744  4191*2^3419227+1                 1029294 L5421 2022 
 2745  28080*745^358350-1               1029242 L4189 2024 
 2746  2393*2^3418921+1                 1029202 L5197 2022 
 2747  999*2^3418885+1                  1029190 L3035 2017 
 2748  2925*2^3418543+1                 1029088 L5174 2022 
 2749  70960658^131072+1                1029049 L5039 2020 Generalized Fermat
 2750  70948704^131072+1                1029039 L4660 2020 Generalized Fermat
 2751  70934282^131072+1                1029028 L5067 2020 Generalized Fermat
 2752  7383*2^3418297+1                 1029014 L5189 2022 
 2753  70893680^131072+1                1028995 L5063 2020 Generalized Fermat
 2754  907*2^3417890+1                  1028891 L3035 2017 
 2755  5071*2^3417884+1                 1028890 L5237 2022 
 2756  3473*2^3417741+1                 1028847 L5541 2022 
 2757  191249*2^3417696-1               1028835 L1949 2010 
 2758  70658696^131072+1                1028806 L5051 2020 Generalized Fermat
 2759  3299*2^3417329+1                 1028723 L5421 2022 
 2760  6947*2^3416979+1                 1028618 L5540 2022 
 2761  70421038^131072+1                1028615 L4984 2020 Generalized Fermat
 2762  8727*2^3416652+1                 1028519 L5226 2022 
 2763  8789*2^3416543+1                 1028486 L5197 2022 
 2764  70050828^131072+1                1028315 L5021 2020 Generalized Fermat
 2765  7917*2^3415947+1                 1028307 L5537 2022 
 2766  70022042^131072+1                1028291 L4201 2020 Generalized Fermat
 2767  2055*2^3415873+1                 1028284 L5535 2022 
 2768  4731*2^3415712+1                 1028236 L5192 2022 
 2769  2219*2^3415687+1                 1028228 L5178 2022 
 2770  69915032^131072+1                1028204 L4591 2020 Generalized Fermat
 2771  5877*2^3415419+1                 1028148 L5532 2022 
 2772  3551*2^3415275+1                 1028104 L5231 2022 
 2773  69742382^131072+1                1028063 L5053 2020 Generalized Fermat
 2774  2313*2^3415046+1                 1028035 L5226 2022 
 2775  69689592^131072+1                1028020 L4387 2020 Generalized Fermat
 2776  7637*2^3414875+1                 1027984 L5507 2022 
 2777  2141*2^3414821+1                 1027967 L5226 2022 
 2778  69622572^131072+1                1027965 L4909 2020 Generalized Fermat
 2779  3667*2^3414686+1                 1027927 L5226 2022 
 2780  69565722^131072+1                1027919 L4387 2020 Generalized Fermat
 2781  6159*2^3414623+1                 1027908 L5226 2022 
 2782  69534788^131072+1                1027894 L5029 2020 Generalized Fermat
 2783b 4606*24^744714+1                 1027867 A11   2025 
 2784b 2586*24^744604+1                 1027715 A11   2025 
 2785  4577*2^3413539+1                 1027582 L5387 2022 
 2786  5137*2^3413524+1                 1027577 L5261 2022 
 2787  8937*2^3413364+1                 1027529 L5527 2022 
 2788  8829*2^3413339+1                 1027522 L5531 2022 
 2789  7617*2^3413315+1                 1027515 L5197 2022 
 2790  68999820^131072+1                1027454 L5044 2020 Generalized Fermat
 2791  3141*2^3413112+1                 1027453 L5463 2022 
 2792  8831*2^3412931+1                 1027399 L5310 2022 
 2793  68924112^131072+1                1027391 L4745 2020 Generalized Fermat
 2794  68918852^131072+1                1027387 L5021 2020 Generalized Fermat
 2795  5421*2^3412877+1                 1027383 L5310 2022 
 2796  9187*2^3412700+1                 1027330 L5337 2022 
 2797  68811158^131072+1                1027298 L4245 2020 Generalized Fermat
 2798  8243*2^3412577+1                 1027292 L5524 2022 
 2799  1751*2^3412565+1                 1027288 L5523 2022 
 2800  9585*2^3412318+1                 1027215 L5197 2022 
 2801  9647*2^3412247+1                 1027193 L5178 2022 
 2802  3207*2^3412108+1                 1027151 L5189 2022 
 2803  479*2^3411975+1                  1027110 L2873 2016 
 2804  245*2^3411973+1                  1027109 L1935 2015 
 2805  177*2^3411847+1                  1027071 L4031 2015 
 2806  68536972^131072+1                1027071 L5027 2020 Generalized Fermat
 2807  9963*2^3411566+1                 1026988 L5237 2022 
 2808  68372810^131072+1                1026934 L4956 2020 Generalized Fermat
 2809  9785*2^3411223+1                 1026885 L5189 2022 
 2810  5401*2^3411136+1                 1026858 L5261 2022 
 2811  68275006^131072+1                1026853 L4963 2020 Generalized Fermat
 2812  9431*2^3411105+1                 1026849 L5237 2022 
 2813  8227*2^3410878+1                 1026781 L5316 2022 
 2814  4735*2^3410724+1                 1026734 L5226 2022 
 2815  9515*2^3410707+1                 1026730 L5237 2022 
 2816  6783*2^3410690+1                 1026724 L5434 2022 
 2817  8773*2^3410558+1                 1026685 L5261 2022 
 2818  4629*2^3410321+1                 1026613 L5517 2022 
 2819  67894288^131072+1                1026535 L5025 2020 Generalized Fermat
 2820  113*2^3409934-1                  1026495 L2484 2014 
 2821  5721*2^3409839+1                 1026468 L5226 2022 
 2822  67725850^131072+1                1026393 L5029 2020 Generalized Fermat
 2823  6069*2^3409493+1                 1026364 L5237 2022 
 2824  1981*910^346850+1                1026347 L1141 2021 
 2825  5317*2^3409236+1                 1026287 L5471 2022 
 2826  7511*2^3408985+1                 1026211 L5514 2022 
 2827  7851*2^3408909+1                 1026188 L5176 2022 
 2828  67371416^131072+1                1026094 L4550 2020 Generalized Fermat
 2829  6027*2^3408444+1                 1026048 L5239 2022 
 2830  59*2^3408416-1                   1026038 L426  2010 
 2831  2153*2^3408333+1                 1026014 L5237 2022 
 2832  9831*2^3408056+1                 1025932 L5233 2022 
 2833  3615*2^3408035+1                 1025925 L5217 2022 
 2834  6343*2^3407950+1                 1025899 L5226 2022 
 2835  8611*2^3407516+1                 1025769 L5509 2022 
 2836  66982940^131072+1                1025765 L4249 2020 Generalized Fermat
 2837  7111*2^3407452+1                 1025750 L5508 2022 
 2838  66901180^131072+1                1025696 L5018 2020 Generalized Fermat
 2839  6945*2^3407256+1                 1025691 L5507 2022 
 2840  6465*2^3407229+1                 1025682 L5301 2022 
 2841  1873*2^3407156+1                 1025660 L5440 2022 
 2842  7133*2^3406377+1                 1025426 L5279 2022 
 2843  7063*2^3406122+1                 1025349 L5178 2022 
 2844  3105*2^3405800+1                 1025252 L5502 2022 
 2845  953*2^3405729+1                  1025230 L3035 2017 
 2846  66272848^131072+1                1025159 L5013 2020 Generalized Fermat
 2847  66131722^131072+1                1025037 L4530 2020 Generalized Fermat
 2848  373*2^3404702+1                  1024921 L3924 2016 
 2849  7221*2^3404507+1                 1024863 L5231 2022 
 2850  6641*2^3404259+1                 1024788 L5501 2022 
 2851  9225*2^3404209+1                 1024773 L5250 2022 
 2852  65791182^131072+1                1024743 L4623 2019 Generalized Fermat
 2853  833*2^3403765+1                  1024639 L3035 2017 
 2854  65569854^131072+1                1024552 L4210 2019 Generalized Fermat
 2855  2601*2^3403459+1                 1024547 L5350 2022 
 2856  8835*2^3403266+1                 1024490 L5161 2022 
 2857  7755*2^3403010+1                 1024412 L5161 2022 
 2858  3123*2^3402834+1                 1024359 L5260 2022 
 2859  65305572^131072+1                1024322 L5001 2019 Generalized Fermat
 2860  65200798^131072+1                1024230 L4999 2019 Generalized Fermat
 2861  1417*2^3402246+1                 1024182 L5497 2022 
 2862  5279*2^3402241+1                 1024181 L5250 2022 
 2863  6651*2^3402137+1                 1024150 L5476 2022 
 2864  1779*2^3401715+1                 1024022 L5493 2022 
 2865  64911056^131072+1                1023977 L4870 2019 Generalized Fermat
 2866  8397*2^3401502+1                 1023959 L5476 2022 
 2867  4057*2^3401472+1                 1023949 L5492 2022 
 2868  64791668^131072+1                1023872 L4905 2019 Generalized Fermat
 2869  4095*2^3401174+1                 1023860 L5418 2022 
 2870  5149*2^3400970+1                 1023798 L5176 2022 
 2871  4665*2^3400922+1                 1023784 L5308 2022 
 2872  24*414^391179+1                  1023717 L4273 2016 
 2873  64568930^131072+1                1023676 L4977 2019 Generalized Fermat
 2874  64506894^131072+1                1023621 L4977 2019 Generalized Fermat
 2875  1725*2^3400371+1                 1023617 L5197 2022 
 2876  64476916^131072+1                1023595 L4997 2019 Generalized Fermat
 2877  9399*2^3400243+1                 1023580 L5488 2022 
 2878  1241*2^3400127+1                 1023544 L5279 2022 
 2879  1263*2^3399876+1                 1023468 L5174 2022 
 2880  1167*2^3399748+1                 1023430 L3545 2017 
 2881  64024604^131072+1                1023194 L4591 2019 Generalized Fermat
 2882b 3526*24^741308+1                 1023166 A66   2025 
 2883  7679*2^3398569+1                 1023076 L5295 2022 
 2884  6447*2^3398499+1                 1023054 L5302 2022 
 2885  63823568^131072+1                1023015 L4585 2019 Generalized Fermat
 2886  2785*2^3398332+1                 1023004 L5250 2022 
 2887  611*2^3398273+1                  1022985 L3035 2017 
 2888  2145*2^3398034+1                 1022914 L5302 2022 
 2889  3385*2^3397254+1                 1022679 L5161 2022 
 2890  4*3^2143374+1                    1022650 L4965 2020 Generalized Fermat
 2891  4463*2^3396657+1                 1022500 L5476 2022 
 2892  2889*2^3396450+1                 1022437 L5178 2022 
 2893  8523*2^3396448+1                 1022437 L5231 2022 
 2894  63168480^131072+1                1022428 L4861 2019 Generalized Fermat
 2895  63165756^131072+1                1022425 L4987 2019 Generalized Fermat
 2896  3349*2^3396326+1                 1022400 L5480 2022 
 2897  63112418^131072+1                1022377 L4201 2019 Generalized Fermat
 2898  4477*2^3395786+1                 1022238 L5161 2022 
 2899  3853*2^3395762+1                 1022230 L5302 2022 
 2900  2693*2^3395725+1                 1022219 L5284 2022 
 2901  8201*2^3395673+1                 1022204 L5178 2022 
 2902  255*2^3395661+1                  1022199 L3898 2014 
 2903  1049*2^3395647+1                 1022195 L3035 2017 
 2904  9027*2^3395623+1                 1022189 L5263 2022 
 2905  2523*2^3395549+1                 1022166 L5472 2022 
 2906  3199*2^3395402+1                 1022122 L5264 2022 
 2907  342924651*2^3394939-1            1021988 L4166 2017 
 2908  3825*2^3394947+1                 1021985 L5471 2022 
 2909  1895*2^3394731+1                 1021920 L5174 2022 
 2910  62276102^131072+1                1021618 L4715 2019 Generalized Fermat
 2911  555*2^3393389+1                  1021515 L2549 2017 
 2912  1865*2^3393387+1                 1021515 L5237 2022 
 2913  4911*2^3393373+1                 1021511 L5231 2022 
 2914  62146946^131072+1                1021500 L4720 2019 Generalized Fermat
 2915  5229*2^3392587+1                 1021275 L5463 2022 
 2916  61837354^131072+1                1021215 L4656 2019 Generalized Fermat
 2917  609*2^3392301+1                  1021188 L3035 2017 
 2918  9787*2^3392236+1                 1021169 L5350 2022 
 2919  303*2^3391977+1                  1021090 L2602 2016 
 2920  805*2^3391818+1                  1021042 L4609 2017 
 2921  6475*2^3391496+1                 1020946 L5174 2022 
 2922  67*2^3391385-1                   1020911 L1959 2014 
 2923  61267078^131072+1                1020688 L4923 2019 Generalized Fermat
 2924  4639*2^3390634+1                 1020687 L5189 2022 
 2925  5265*2^3390581+1                 1020671 L5456 2022 
 2926  663*2^3390469+1                  1020636 L4316 2017 
 2927  6945*2^3390340+1                 1020598 L5174 2022 
 2928  5871*2^3390268+1                 1020577 L5231 2022 
 2929  7443*2^3390141+1                 1020539 L5226 2022 
 2930  5383*2^3389924+1                 1020473 L5350 2021 
 2931  61030988^131072+1                1020468 L4898 2019 Generalized Fermat
 2932  9627*2^3389331+1                 1020295 L5231 2021 
 2933  60642326^131072+1                1020104 L4591 2019 Generalized Fermat
 2934  8253*2^3388624+1                 1020082 L5226 2021 
 2935  3329*2^3388472-1                 1020036 L4841 2020 
 2936  4695*2^3388393+1                 1020012 L5237 2021 
 2937  60540024^131072+1                1020008 L4591 2019 Generalized Fermat
 2938  7177*2^3388144+1                 1019937 L5174 2021 
 2939  60455792^131072+1                1019929 L4760 2019 Generalized Fermat
 2940  9611*2^3388059+1                 1019912 L5435 2021 
 2941  1833*2^3387760+1                 1019821 L5226 2021 
 2942  9003*2^3387528+1                 1019752 L5189 2021 
 2943  3161*2^3387141+1                 1019635 L5226 2021 
 2944  7585*2^3387110+1                 1019626 L5189 2021 
 2945  60133106^131072+1                1019624 L4942 2019 Generalized Fermat
 2946  453*2^3387048+1                  1019606 L2602 2016 
 2947  5177*2^3386919+1                 1019568 L5226 2021 
 2948  8739*2^3386813+1                 1019537 L5226 2021 
 2949  2875*2^3386638+1                 1019484 L5226 2021 
 2950  7197*2^3386526+1                 1019450 L5178 2021 
 2951  1605*2^3386229+1                 1019360 L5226 2021 
 2952  8615*2^3386181+1                 1019346 L5442 2021 
 2953  3765*2^3386141+1                 1019334 L5174 2021 
 2954  5379*2^3385806+1                 1019233 L5237 2021 
 2955  59720358^131072+1                1019232 L4656 2019 Generalized Fermat
 2956  59692546^131072+1                1019206 L4747 2019 Generalized Fermat
 2957  59515830^131072+1                1019037 L4737 2019 Generalized Fermat
 2958  173198*5^1457792-1               1018959 L3720 2013 
 2959  59405420^131072+1                1018931 L4645 2019 Generalized Fermat
 2960  2109*2^3384733+1                 1018910 L5261 2021 
 2961  7067*2^3384667+1                 1018891 L5439 2021 
 2962  59362002^131072+1                1018890 L4249 2019 Generalized Fermat
 2963  59305348^131072+1                1018835 L4932 2019 Generalized Fermat
 2964  2077*2^3384472+1                 1018831 L5237 2021 
 2965  59210784^131072+1                1018745 L4926 2019 Generalized Fermat
 2966  59161754^131072+1                1018697 L4928 2019 Generalized Fermat
 2967  9165*2^3383917+1                 1018665 L5435 2021 
 2968  5579*2^3383209+1                 1018452 L5434 2021 
 2969  8241*2^3383131+1                 1018428 L5387 2021 
 2970  7409*2^3382869+1                 1018349 L5161 2021 
 2971  4883*2^3382813+1                 1018332 L5161 2021 
 2972  9783*2^3382792+1                 1018326 L5189 2021 
 2973  58589880^131072+1                1018145 L4923 2019 Generalized Fermat
 2974  58523466^131072+1                1018080 L4802 2019 Generalized Fermat
 2975  8877*2^3381936+1                 1018069 L5429 2021 
 2976  58447816^131072+1                1018006 L4591 2019 Generalized Fermat
 2977  58447642^131072+1                1018006 L4591 2019 Generalized Fermat
 2978  6675*2^3381688+1                 1017994 L5197 2021 
 2979  2445*2^3381129+1                 1017825 L5231 2021 
 2980  58247118^131072+1                1017811 L4309 2019 Generalized Fermat
 2981  3381*2^3380585+1                 1017662 L5237 2021 
 2982  7899*2^3380459+1                 1017624 L5421 2021 
 2983  5945*2^3379933+1                 1017465 L5418 2021 
 2984  1425*2^3379921+1                 1017461 L1134 2020 
 2985  4975*2^3379420+1                 1017311 L5161 2021 
 2986  57704312^131072+1                1017278 L4591 2019 Generalized Fermat
 2987  57694224^131072+1                1017268 L4656 2019 Generalized Fermat
 2988  57594734^131072+1                1017169 L4656 2019 Generalized Fermat
 2989  9065*2^3378851+1                 1017140 L5414 2021 
 2990  2369*2^3378761+1                 1017112 L5197 2021 
 2991  57438404^131072+1                1017015 L4745 2019 Generalized Fermat
 2992  621*2^3378148+1                  1016927 L3035 2017 
 2993  7035*2^3378141+1                 1016926 L5408 2021 
 2994  2067*2^3378115+1                 1016918 L5405 2021 
 2995  1093*2^3378000+1                 1016883 L4583 2017 
 2996  9577*2^3377612+1                 1016767 L5406 2021 
 2997  861*2^3377601+1                  1016763 L4582 2017 
 2998  5811*2^3377016+1                 1016587 L5261 2021 
 2999  2285*2^3376911+1                 1016555 L5261 2021 
 3000  4199*2^3376903+1                 1016553 L5174 2021 
 3001  6405*2^3376890+1                 1016549 L5269 2021 
 3002  1783*2^3376810+1                 1016525 L5261 2021 
 3003  5401*2^3376768+1                 1016513 L5174 2021 
 3004  56917336^131072+1                1016496 L4729 2019 Generalized Fermat
 3005  2941*2^3376536+1                 1016443 L5174 2021 
 3006  1841*2^3376379+1                 1016395 L5401 2021 
 3007  6731*2^3376133+1                 1016322 L5261 2021 
 3008  56735576^131072+1                1016314 L4760 2019 Generalized Fermat
 3009  8121*2^3375933+1                 1016262 L5356 2021 
 3010  5505*2^3375777+1                 1016214 L5174 2021 
 3011  56584816^131072+1                1016162 L4289 2019 Generalized Fermat
 3012  3207*2^3375314+1                 1016075 L5237 2021 
 3013  56459558^131072+1                1016036 L4892 2019 Generalized Fermat
 3014  5307*2^3374939+1                 1015962 L5392 2021 
 3015  56383242^131072+1                1015959 L4889 2019 Generalized Fermat
 3016  56307420^131072+1                1015883 L4843 2019 Generalized Fermat
 3017  208003!-1                        1015843 p394  2016 Factorial
 3018  6219*2^3374198+1                 1015739 L5393 2021 
 3019  3777*2^3374072+1                 1015701 L5261 2021 
 3020  9347*2^3374055+1                 1015696 L5387 2021 
 3021  1461*2^3373383+1                 1015493 L5384 2021 
 3022  6395*2^3373135+1                 1015419 L5382 2021 
 3023  7869*2^3373021+1                 1015385 L5381 2021 
 3024  55645700^131072+1                1015210 L4745 2019 Generalized Fermat
 3025  4905*2^3372216+1                 1015142 L5261 2021 
 3026  55579418^131072+1                1015142 L4745 2019 Generalized Fermat
 3027  2839*2^3372034+1                 1015087 L5174 2021 
 3028  7347*2^3371803+1                 1015018 L5217 2021 
 3029  9799*2^3371378+1                 1014890 L5261 2021 
 3030  4329*2^3371201+1                 1014837 L5197 2021 
 3031  3657*2^3371183+1                 1014831 L5360 2021 
 3032  55268442^131072+1                1014822 L4525 2019 Generalized Fermat
 3033  179*2^3371145+1                  1014819 L3763 2014 
 3034  5155*2^3371016+1                 1014781 L5237 2021 
 3035  7575*2^3371010+1                 1014780 L5237 2021 
 3036  55184170^131072+1                1014736 L4871 2018 Generalized Fermat
 3037  9195*2^3370798+1                 1014716 L5178 2021 
 3038  1749*2^3370786+1                 1014711 L5362 2021 
 3039  8421*2^3370599+1                 1014656 L5174 2021 
 3040  55015050^131072+1                1014561 L4205 2018 Generalized Fermat
 3041  4357*2^3369572+1                 1014346 L5231 2021 
 3042  6073*2^3369544+1                 1014338 L5358 2021 
 3043  839*2^3369383+1                  1014289 L2891 2017 
 3044  65*2^3369359+1                   1014280 L5236 2021 
 3045  8023*2^3369228+1                 1014243 L5356 2021 
 3046  677*2^3369115+1                  1014208 L2103 2017 
 3047  1437*2^3369083+1                 1014199 L5282 2021 
 3048  9509*2^3368705+1                 1014086 L5237 2021 
 3049  54548788^131072+1                1014076 L4726 2018 Generalized Fermat
 3050  4851*2^3368668+1                 1014074 L5307 2021 
 3051  7221*2^3368448+1                 1014008 L5353 2021 
 3052  5549*2^3368437+1                 1014005 L5217 2021 
 3053  715*2^3368210+1                  1013936 L4527 2017 
 3054  617*2^3368119+1                  1013908 L4552 2017 
 3055  54361742^131072+1                1013881 L4210 2018 Generalized Fermat
 3056  1847*2^3367999+1                 1013872 L5352 2021 
 3057  54334044^131072+1                1013852 L4745 2018 Generalized Fermat
 3058c 17819*24^734523+1                1013802 A11   2025 
 3059  6497*2^3367743+1                 1013796 L5285 2021 
 3060  2533*2^3367666+1                 1013772 L5326 2021 
 3061  6001*2^3367552+1                 1013738 L5350 2021 
 3062  54212352^131072+1                1013724 L4307 2018 Generalized Fermat
 3063  54206254^131072+1                1013718 L4249 2018 Generalized Fermat
 3064  777*2^3367372+1                  1013683 L4408 2017 
 3065  9609*2^3367351+1                 1013678 L5285 2021 
 3066  54161106^131072+1                1013670 L4307 2018 Generalized Fermat
 3067  2529*2^3367317+1                 1013667 L5237 2021 
 3068  5941*2^3366960+1                 1013560 L5189 2021 
 3069  5845*2^3366956+1                 1013559 L5197 2021 
 3070  54032538^131072+1                1013535 L4591 2018 Generalized Fermat
 3071  9853*2^3366608+1                 1013454 L5178 2021 
 3072  61*2^3366033-1                   1013279 L4405 2017 
 3073  7665*2^3365896+1                 1013240 L5345 2021 
 3074  8557*2^3365648+1                 1013165 L5346 2021 
 3075  369*2^3365614+1                  1013154 L4364 2016 
 3076  53659976^131072+1                1013141 L4823 2018 Generalized Fermat
 3077  8201*2^3365283+1                 1013056 L5345 2021 
 3078  9885*2^3365151+1                 1013016 L5344 2021 
 3079  5173*2^3365096+1                 1012999 L5285 2021 
 3080  8523*2^3364918+1                 1012946 L5237 2021 
 3081  3985*2^3364776+1                 1012903 L5178 2021 
 3082  9711*2^3364452+1                 1012805 L5192 2021 
 3083  7003*2^3364172+1                 1012721 L5217 2021 
 3084  6703*2^3364088+1                 1012696 L5337 2021 
 3085  7187*2^3364011+1                 1012673 L5217 2021 
 3086  53161266^131072+1                1012610 L4307 2018 Generalized Fermat
 3087  53078434^131072+1                1012521 L4835 2018 Generalized Fermat
 3088  2345*2^3363157+1                 1012415 L5336 2021 
 3089  6527*2^3363135+1                 1012409 L5167 2021 
 3090  9387*2^3363088+1                 1012395 L5161 2021 
 3091  8989*2^3362986+1                 1012364 L5161 2021 
 3092  533*2^3362857+1                  1012324 L3171 2017 
 3093  619*2^3362814+1                  1012311 L4527 2017 
 3094  2289*2^3362723+1                 1012284 L5161 2021 
 3095  7529*2^3362565+1                 1012237 L5161 2021 
 3096  7377*2^3362366+1                 1012177 L5161 2021 
 3097  4509*2^3362311+1                 1012161 L5324 2021 
 3098  7021*2^3362208+1                 1012130 L5178 2021 
 3099  52712138^131072+1                1012127 L4819 2018 Generalized Fermat
 3100  104*873^344135-1                 1012108 L4700 2018 
 3101  4953*2^3362054+1                 1012083 L5323 2021 
 3102  8575*2^3361798+1                 1012006 L5237 2021 
 3103  2139*2^3361706+1                 1011978 L5174 2021 
 3104  6939*2^3361203+1                 1011827 L5217 2021 
 3105  52412612^131072+1                1011802 L4289 2018 Generalized Fermat
 3106  3^2120580-3^623816-1             1011774 CH9   2019 
 3107  8185*2^3360896+1                 1011735 L5189 2021 
 3108  2389*2^3360882+1                 1011730 L5317 2021 
 3109  2787*2^3360631+1                 1011655 L5197 2021 
 3110  6619*2^3360606+1                 1011648 L5316 2021 
 3111  2755*2^3360526+1                 1011623 L5174 2021 
 3112  1445*2^3360099+1                 1011494 L5261 2021 
 3113  2846*67^553905-1                 1011476 L4955 2023 
 3114  8757*2^3359788+1                 1011401 L5197 2021 
 3115  52043532^131072+1                1011400 L4810 2018 Generalized Fermat
 3116  5085*2^3359696+1                 1011373 L5261 2021 
 3117  51954384^131072+1                1011303 L4720 2018 Generalized Fermat
 3118  6459*2^3359457+1                 1011302 L5310 2021 
 3119  51872628^131072+1                1011213 L4591 2018 Generalized Fermat
 3120  6115*2^3358998+1                 1011163 L5309 2021 
 3121  7605*2^3358929+1                 1011143 L5308 2021 
 3122  2315*2^3358899+1                 1011133 L5197 2021 
 3123  6603*2^3358525+1                 1011021 L5307 2021 
 3124  51580416^131072+1                1010891 L4765 2018 Generalized Fermat
 3125  51570250^131072+1                1010880 L4591 2018 Generalized Fermat
 3126  51567684^131072+1                1010877 L4800 2018 Generalized Fermat
 3127  5893*2^3357490+1                 1010709 L5285 2021 
 3128  6947*2^3357075+1                 1010585 L5302 2021 
 3129  4621*2^3357068+1                 1010582 L5301 2021 
 3130  51269192^131072+1                1010547 L4795 2018 Generalized Fermat
 3131  1479*2^3356275+1                 1010343 L5178 2021 
 3132  3645*2^3356232+1                 1010331 L5296 2021 
 3133  1259*2^3356215+1                 1010325 L5298 2021 
 3134  2075*2^3356057+1                 1010278 L5174 2021 
 3135  4281*2^3356051+1                 1010276 L5295 2021 
 3136  1275*2^3356045+1                 1010274 L5294 2021 
 3137  50963598^131072+1                1010206 L4726 2018 Generalized Fermat
 3138  4365*2^3355770+1                 1010192 L5261 2021 
 3139  50844724^131072+1                1010074 L4656 2018 Generalized Fermat
 3140  2183*2^3355297+1                 1010049 L5266 2021 
 3141  3087*2^3355000+1                 1009960 L5226 2021 
 3142  8673*2^3354760+1                 1009888 L5233 2021 
 3143  50495632^131072+1                1009681 L4591 2018 Generalized Fermat
 3144  3015*2^3353943+1                 1009641 L5290 2021 
 3145  6819*2^3353877+1                 1009622 L5174 2021 
 3146  9*10^1009567-1                   1009568 L3735 2016 Near-repdigit
 3147  6393*2^3353366+1                 1009468 L5287 2021 
 3148  3573*2^3353273+1                 1009440 L5161 2021 
 3149  4047*2^3353222+1                 1009425 L5286 2021 
 3150  1473*2^3353114+1                 1009392 L5161 2021 
 3151  1183*2^3353058+1                 1009375 L3824 2017 
 3152  50217306^131072+1                1009367 L4720 2018 Generalized Fermat
 3153  81*2^3352924+1                   1009333 L1728 2012 Generalized Fermat
 3154  50110436^131072+1                1009245 L4591 2018 Generalized Fermat
 3155  50055102^131072+1                1009183 L4309 2018 Generalized Fermat
 3156  7123*2^3352180+1                 1009111 L5161 2021 
 3157  2757*2^3352180+1                 1009111 L5285 2021 
 3158  9307*2^3352014+1                 1009061 L5284 2021 
 3159  2217*2^3351732+1                 1008976 L5283 2021 
 3160  543*2^3351686+1                  1008961 L4198 2017 
 3161  4419*2^3351666+1                 1008956 L5279 2021 
 3162  49817700^131072+1                1008912 L4760 2018 Generalized Fermat
 3163  3059*2^3351379+1                 1008870 L5278 2021 
 3164  7789*2^3351046+1                 1008770 L5276 2021 
 3165  9501*2^3350668+1                 1008656 L5272 2021 
 3166  49530004^131072+1                1008582 L4591 2018 Generalized Fermat
 3167  9691*2^3349952+1                 1008441 L5242 2021 
 3168  49397682^131072+1                1008430 L4764 2018 Generalized Fermat
 3169  3209*2^3349719+1                 1008370 L5269 2021 
 3170  49331672^131072+1                1008354 L4763 2018 Generalized Fermat
 3171  393*2^3349525+1                  1008311 L3101 2016 
 3172  49243622^131072+1                1008252 L4741 2018 Generalized Fermat
 3173  5487*2^3349303+1                 1008245 L5266 2021 
 3174  49225986^131072+1                1008232 L4757 2018 Generalized Fermat
 3175  2511*2^3349104+1                 1008185 L5264 2021 
 3176  1005*2^3349046-1                 1008167 L4518 2021 
 3177  7659*2^3348894+1                 1008122 L5263 2021 
 3178  9703*2^3348872+1                 1008115 L5262 2021 
 3179  49090656^131072+1                1008075 L4752 2018 Generalized Fermat
 3180  7935*2^3348578+1                 1008027 L5161 2021 
 3181  49038514^131072+1                1008015 L4743 2018 Generalized Fermat
 3182  7821*2^3348400+1                 1007973 L5260 2021 
 3183  7911*2^3347532+1                 1007712 L5250 2021 
 3184  8295*2^3347031+1                 1007561 L5249 2021 
 3185  48643706^131072+1                1007554 L4691 2018 Generalized Fermat
 3186  4029*2^3346729+1                 1007470 L5239 2021 
 3187  9007*2^3346716+1                 1007466 L5161 2021 
 3188  8865*2^3346499+1                 1007401 L5238 2021 
 3189  6171*2^3346480+1                 1007395 L5174 2021 
 3190  6815*2^3346045+1                 1007264 L5235 2021 
 3191  5*326^400785+1                   1007261 L4786 2019 
 3192  5951*2^3345977+1                 1007244 L5233 2021 
 3193  48370248^131072+1                1007234 L4701 2018 Generalized Fermat
 3194  1257*2^3345843+1                 1007203 L5192 2021 
 3195  4701*2^3345815+1                 1007195 L5192 2021 
 3196  48273828^131072+1                1007120 L4456 2018 Generalized Fermat
 3197  7545*2^3345355+1                 1007057 L5231 2021 
 3198  5559*2^3344826+1                 1006897 L5223 2021 
 3199  6823*2^3344692+1                 1006857 L5223 2021 
 3200  4839*2^3344453+1                 1006785 L5188 2021 
 3201  7527*2^3344332+1                 1006749 L5220 2021 
 3202  7555*2^3344240+1                 1006721 L5188 2021 
 3203  6265*2^3344080+1                 1006673 L5197 2021 
 3204  1299*2^3343943+1                 1006631 L5217 2021 
 3205  2815*2^3343754+1                 1006574 L5216 2021 
 3206  5349*2^3343734+1                 1006568 L5174 2021 
 3207  2863*2^3342920+1                 1006323 L5179 2020 
 3208  7387*2^3342848+1                 1006302 L5208 2020 
 3209  9731*2^3342447+1                 1006181 L5203 2020 
 3210  7725*2^3341708+1                 1005959 L5195 2020 
 3211  7703*2^3341625+1                 1005934 L5178 2020 
 3212  7047*2^3341482+1                 1005891 L5194 2020 
 3213  4839*2^3341309+1                 1005838 L5192 2020 
 3214  47179704^131072+1                1005815 L4673 2017 Generalized Fermat
 3215  47090246^131072+1                1005707 L4654 2017 Generalized Fermat
 3216  8989*2^3340866+1                 1005705 L5189 2020 
 3217  6631*2^3340808+1                 1005688 L5188 2020 
 3218  1341*2^3340681+1                 1005649 L5188 2020 
 3219  733*2^3340464+1                  1005583 L3035 2016 
 3220  2636*138^469911+1                1005557 L5410 2021 
 3221  3679815*2^3340001+1              1005448 L4922 2019 
 3222  57*2^3339932-1                   1005422 L3519 2015 
 3223  46776558^131072+1                1005326 L4659 2017 Generalized Fermat
 3224  46736070^131072+1                1005277 L4245 2017 Generalized Fermat
 3225  46730280^131072+1                1005270 L4656 2017 Generalized Fermat
 3226  3651*2^3339341+1                 1005246 L5177 2020 
 3227  3853*2^3339296+1                 1005232 L5178 2020 
 3228  8015*2^3339267+1                 1005224 L5176 2020 
 3229  3027*2^3339182+1                 1005198 L5174 2020 
 3230  9517*2^3339002+1                 1005144 L5172 2020 
 3231  4003*2^3338588+1                 1005019 L3035 2020 
 3232  6841*2^3338336+1                 1004944 L1474 2020 
 3233  2189*2^3338209+1                 1004905 L5031 2020 
 3234  46413358^131072+1                1004883 L4626 2017 Generalized Fermat
 3235  46385310^131072+1                1004848 L4622 2017 Generalized Fermat
 3236  46371508^131072+1                1004831 L4620 2017 Generalized Fermat
 3237  2957*2^3337667+1                 1004742 L5144 2020 
 3238  1515*2^3337389+1                 1004658 L1474 2020 
 3239  7933*2^3337270+1                 1004623 L4666 2020 
 3240  1251*2^3337116+1                 1004576 L4893 2020 
 3241  651*2^3337101+1                  1004571 L3260 2016 
 3242  46077492^131072+1                1004469 L4595 2017 Generalized Fermat
 3243  8397*2^3336654+1                 1004437 L5125 2020 
 3244  8145*2^3336474+1                 1004383 L5110 2020 
 3245  1087*2^3336385-1                 1004355 L1828 2012 
 3246  5325*2^3336120+1                 1004276 L2125 2020 
 3247  849*2^3335669+1                  1004140 L3035 2016 
 3248  8913*2^3335216+1                 1004005 L5079 2020 
 3249  7725*2^3335213+1                 1004004 L3035 2020 
 3250  611*2^3334875+1                  1003901 L3813 2016 
 3251  45570624^131072+1                1003840 L4295 2017 Generalized Fermat
 3252  403*2^3334410+1                  1003761 L4293 2016 
 3253  5491*2^3334392+1                 1003756 L4815 2020 
 3254  6035*2^3334341+1                 1003741 L2125 2020 
 3255  1725*2^3334341+1                 1003740 L2125 2020 
 3256  4001*2^3334031+1                 1003647 L1203 2020 
 3257  2315*2^3333969+1                 1003629 L2125 2020 
 3258  6219*2^3333810+1                 1003581 L4582 2020 
 3259  8063*2^3333721+1                 1003554 L1823 2020 
 3260  9051*2^3333677+1                 1003541 L3924 2020 
 3261  45315256^131072+1                1003520 L4562 2017 Generalized Fermat
 3262  4091*2^3333153+1                 1003383 L1474 2020 
 3263  9949*2^3332750+1                 1003262 L5090 2020 
 3264  3509*2^3332649+1                 1003231 L5085 2020 
 3265  3781*2^3332436+1                 1003167 L1823 2020 
 3266  4425*2^3332394+1                 1003155 L3431 2020 
 3267  6459*2^3332086+1                 1003062 L2629 2020 
 3268  44919410^131072+1                1003020 L4295 2017 Generalized Fermat
 3269  5257*2^3331758+1                 1002963 L1188 2020 
 3270  2939*2^3331393+1                 1002853 L1823 2020 
 3271  6959*2^3331365+1                 1002845 L1675 2020 
 3272  8815*2^3330748+1                 1002660 L3329 2020 
 3273  4303*2^3330652+1                 1002630 L4730 2020 
 3274  8595*2^3330649+1                 1002630 L4723 2020 
 3275  673*2^3330436+1                  1002564 L3035 2016 
 3276  8163*2^3330042+1                 1002447 L3278 2020 
 3277  44438760^131072+1                1002408 L4505 2016 Generalized Fermat
 3278  193*2^3329782+1                  1002367 L3460 2014 
          Divides Fermat F(3329780)
 3279  44330870^131072+1                1002270 L4501 2016 Generalized Fermat
 3280  2829*2^3329061+1                 1002151 L4343 2020 
 3281  5775*2^3329034+1                 1002143 L1188 2020 
 3282  7101*2^3328905+1                 1002105 L4568 2020 
 3283  7667*2^3328807+1                 1002075 L4087 2020 
 3284  129*2^3328805+1                  1002073 L3859 2014 
 3285  7261*2^3328740+1                 1002055 L2914 2020 
 3286  4395*2^3328588+1                 1002009 L3924 2020 
 3287  44085096^131072+1                1001953 L4482 2016 Generalized Fermat
 3288  143183*2^3328297+1               1001923 L4504 2017 
 3289  44049878^131072+1                1001908 L4466 2016 Generalized Fermat
 3290  9681*2^3327987+1                 1001828 L1204 2020 
 3291  2945*2^3327987+1                 1001828 L2158 2020 
 3292  5085*2^3327789+1                 1001769 L1823 2020 
 3293  8319*2^3327650+1                 1001727 L1204 2020 
 3294  4581*2^3327644+1                 1001725 L2142 2020 
 3295  655*2^3327518+1                  1001686 L4490 2016 
 3296  8863*2^3327406+1                 1001653 L1675 2020 
 3297  659*2^3327371+1                  1001642 L3502 2016 
 3298  3411*2^3327343+1                 1001634 L1675 2020 
 3299  4987*2^3327294+1                 1001619 L3924 2020 
 3300  821*2^3327003+1                  1001531 L3035 2016 
 3301  2435*2^3326969+1                 1001521 L3035 2020 
 3302  1931*2^3326850-1                 1001485 L4113 2022 
 3303  2277*2^3326794+1                 1001469 L5014 2020 
 3304  6779*2^3326639+1                 1001422 L3924 2020 
 3305  31*2^3326149-1                   1001273 L1862 2024 
 3306  6195*2^3325993+1                 1001228 L1474 2019 
 3307  555*2^3325925+1                  1001206 L4414 2016 
 3308  9041*2^3325643+1                 1001123 L3924 2019 
 3309  1965*2^3325639-1                 1001121 L4113 2022 
 3310  1993*2^3325302+1                 1001019 L3662 2019 
 3311  6179*2^3325027+1                 1000937 L3048 2019 
 3312  4485*2^3324900+1                 1000899 L1355 2019 
 3313  3559*2^3324650+1                 1000823 L3035 2019 
 3314  12512*13^898392-1                1000762 L2425 2024 
 3315  43165206^131072+1                1000753 L4309 2016 Generalized Fermat
 3316  43163894^131072+1                1000751 L4334 2016 Generalized Fermat
 3317  6927*2^3324387+1                 1000745 L3091 2019 
 3318  9575*2^3324287+1                 1000715 L3824 2019 
 3319  1797*2^3324259+1                 1000705 L3895 2019 
 3320  4483*2^3324048+1                 1000642 L3035 2019 
 3321  791*2^3323995+1                  1000626 L3035 2016 
 3322  6987*2^3323926+1                 1000606 L4973 2019 
 3323  3937*2^3323886+1                 1000593 L3035 2019 
 3324  2121*2^3323852+1                 1000583 L1823 2019 
 3325  1571*2^3323493+1                 1000475 L3035 2019 
 3326  2319*2^3323402+1                 1000448 L4699 2019 
 3327  2829*2^3323341+1                 1000429 L4754 2019 
 3328  4335*2^3323323+1                 1000424 L1823 2019 
 3329  8485*2^3322938+1                 1000308 L4858 2019 
 3330  6505*2^3322916+1                 1000302 L4858 2019 
 3331  597*2^3322871+1                  1000287 L3035 2016 
 3332  9485*2^3322811+1                 1000270 L2603 2019 
 3333  8619*2^3322774+1                 1000259 L3035 2019 
 3334  387*2^3322763+1                  1000254 L1455 2016 
 3335  1965*2^3322579-1                 1000200 L4113 2022 
 3336  42654182^131072+1                1000075 L4208 2015 Generalized Fermat
 3337  6366*745^348190-1                1000060 L4189 2022 
 3338  13841792445*2^3322000-1          1000032 L5827 2023 
 3339  5553507*2^3322000+1              1000029 p391  2016 
 3340  5029159647*2^3321910-1           1000005 L4960 2021 
 3341  5009522505*2^3321910-1           1000005 L4960 2021 
 3342  4766298357*2^3321910-1           1000005 L4960 2021 
 3343  4759383915*2^3321910-1           1000005 L4960 2021 
 3344  4635733263*2^3321910-1           1000005 L4960 2021 
 3345  4603393047*2^3321910-1           1000005 L4960 2021 
 3346  4550053935*2^3321910-1           1000005 L4960 2021 
 3347  4288198767*2^3321910-1           1000005 L4960 2021 
 3348  4229494557*2^3321910-1           1000005 L4960 2021 
 3349  4110178197*2^3321910-1           1000005 L4960 2021 
 3350  4022490843*2^3321910-1           1000005 L4960 2021 
 3351  3936623697*2^3321910-1           1000005 L4960 2021 
 3352  3751145343*2^3321910-1           1000005 L4960 2021 
 3353  3715773735*2^3321910-1           1000005 L4960 2021 
 3354  3698976057*2^3321910-1           1000005 L4960 2021 
 3355  3659465685*2^3321910-1           1000005 L4960 2020 
 3356  3652932033*2^3321910-1           1000005 L4960 2020 
 3357  3603204333*2^3321910-1           1000005 L4960 2020 
 3358  3543733545*2^3321910-1           1000005 L4960 2020 
 3359  3191900133*2^3321910-1           1000005 L4960 2020 
 3360  3174957723*2^3321910-1           1000005 L4960 2020 
 3361  2973510903*2^3321910-1           1000005 L4960 2019 
 3362  2848144257*2^3321910-1           1000005 L4960 2019 
 3363  2820058827*2^3321910-1           1000005 L4960 2019 
 3364  2611553775*2^3321910-1           1000004 L4960 2020 
 3365  2601087525*2^3321910-1           1000004 L4960 2019 
 3366  2386538565*2^3321910-1           1000004 L4960 2019 
 3367  2272291887*2^3321910-1           1000004 L4960 2019 
 3368  2167709265*2^3321910-1           1000004 L4960 2019 
 3369  2087077797*2^3321910-1           1000004 L4960 2019 
 3370  1848133623*2^3321910-1           1000004 L4960 2019 
 3371  1825072257*2^3321910-1           1000004 L4960 2019 
 3372  1633473837*2^3321910-1           1000004 L4960 2019 
 3373  1228267623*2^3321910-1           1000004 L4808 2019 
 3374  1148781333*2^3321910-1           1000004 L4808 2019 
 3375  1065440787*2^3321910-1           1000004 L4808 2019 
 3376  1055109357*2^3321910-1           1000004 L4960 2019 
 3377  992309607*2^3321910-1            1000004 L4808 2019 
 3378  926102325*2^3321910-1            1000004 L4808 2019 
 3379  892610007*2^3321910-1            1000004 L4960 2019 
 3380  763076757*2^3321910-1            1000004 L4960 2019 
 3381  607766997*2^3321910-1            1000004 L4808 2019 
 3382  539679177*2^3321910-1            1000004 L4808 2019 
 3383  425521077*2^3321910-1            1000004 L4808 2019 
 3384  132940575*2^3321910-1            1000003 L4808 2019 
 3385  239378138685*2^3321891+1         1000001 L5104 2020 
 3386  464253*2^3321908-1               1000000 L466  2013 
 3387  3^2095902+3^647322-1             1000000 x44   2018 
 3388  191273*2^3321908-1               1000000 L466  2013 
 3389  1814570322984178^65536+1         1000000 L5080 2020 Generalized Fermat
 3390  1814570322977518^65536+1         1000000 L5080 2020 Generalized Fermat
 3391  3292665455999520712131952624640^32768+1
                                        1000000 L5749 2023 Generalized Fermat
 3392  3292665455999520712131951642528^32768+1
                                        1000000 L5120 2020 Generalized Fermat
 3393  3292665455999520712131951625894^32768+1
                                        1000000 L5122 2020 Generalized Fermat
 3394  10841645805132531666786792405311319418846637043199917731999190^16384+1
                                        1000000 L5749 2023 Generalized Fermat
 3395  10841645805132531666786792405311319418846637043199917731311876^16384+1
                                        1000000 L5207 2020 Generalized Fermat
 3396  10841645805132531666786792405311319418846637043199917731150000^16384+1
                                        1000000 L5122 2020 Generalized Fermat
 3397  1175412837639478208035149360635999371658705159870633484377238553812244\
       52611844232886228245901292532817349347812678729599864^8192+1
                                        1000000 L5749 2023 Generalized Fermat
 3398  1175412837639478208035149360635999371658705159870633484377238553812244\
       52611844232886228245901292532817349347812678729375350^8192+1
                                        1000000 p417  2021 Generalized Fermat
 3399  1175412837639478208035149360635999371658705159870633484377238553812244\
       52611844232886228245901292532817349347812678729240092^8192+1
                                        1000000 p419  2021 Generalized Fermat
 3400  1175412837639478208035149360635999371658705159870633484377238553812244\
       52611844232886228245901292532817349347812678729154678^8192+1
                                        1000000 p418  2021 Generalized Fermat
 3401  1175412837639478208035149360635999371658705159870633484377238553812244\
       52611844232886228245901292532817349347812678729122666^8192+1
                                        1000000 p417  2021 Generalized Fermat
 3402  1175412837639478208035149360635999371658705159870633484377238553812244\
       52611844232886228245901292532817349347812678729023786^8192+1
                                        1000000 p416  2021 Generalized Fermat
 3403  1381595338887690358821474589959638055848096769928148782339849168699728\
       6960050362175966390289809116354643446309069559318476498264187530254667\
       3096047093511481998019892105889132464543550102310865144502037206654116\
       79519151409973433052122012097875144^4096+1
                                        1000000 p421  2021 Generalized Fermat
 3404  1381595338887690358821474589959638055848096769928148782339849168699728\
       6960050362175966390289809116354643446309069559318476498264187530254667\
       3096047093511481998019892105889132464543550102310865144502037206654116\
       79519151409973433052122012097840702^4096+1
                                        1000000 p417  2021 Generalized Fermat
 3405e ((sqrtnint(10^999999,2048)+2)+7748134)^2048+1
                                        1000000 A55   2025 Generalized Fermat
 3406  ((sqrtnint(10^999999,2048)+2)+364176)^2048+1
                                        1000000 p417  2022 Generalized Fermat
 3407  10^999999+10^840885+10^333333+1  1000000 p436  2023 
 3408  10^999999+308267*10^292000+1     1000000 CH10  2021 
 3409  10^999999-1022306*10^287000-1     999999 CH13  2021 
 3410  10^999999-1087604*10^287000-1     999999 CH13  2021 
 3411  531631540026641*6^1285077+1       999999 L3494 2021 
 3412  3139*2^3321905-1                  999997 L185  2008 
 3413  702*507^369680+1                  999991 A28   2024 
 3414  42550702^131072+1                 999937 L4309 2022 Generalized Fermat
 3415  42414020^131072+1                 999753 L5030 2022 Generalized Fermat
 3416  4847*2^3321063+1                  999744 SB9   2005 
 3417  42254832^131072+1                 999539 L5375 2022 Generalized Fermat
 3418  42243204^131072+1                 999524 L4898 2022 Generalized Fermat
 3419  42230406^131072+1                 999506 L5453 2022 Generalized Fermat
 3420  42168978^131072+1                 999424 L5462 2022 Generalized Fermat
 3421  439*2^3318318+1                   998916 L5573 2022 
 3422  201382*5^1428998+1                998833 A11   2024 
 3423  41688706^131072+1                 998772 L5270 2022 Generalized Fermat
 3424  41364744^131072+1                 998327 L5453 2022 Generalized Fermat
 3425  41237116^131072+1                 998152 L5459 2022 Generalized Fermat
 3426  47714*17^811139+1                 998070 L5765 2023 Generalized Cullen
 3427  41102236^131072+1                 997965 L4245 2022 Generalized Fermat
 3428  41007562^131072+1                 997834 L4210 2022 Generalized Fermat
 3429  41001148^131072+1                 997825 L4210 2022 Generalized Fermat
 3430  975*2^3312951+1                   997301 L5231 2022 
 3431  40550398^131072+1                 997196 L4245 2022 Generalized Fermat
 3432  11796*46^599707+1                 997172 L5670 2023 
 3433  40463598^131072+1                 997074 L4591 2022 Generalized Fermat
 3434  689*2^3311423+1                   996841 L5226 2022 
 3435  40151896^131072+1                 996633 L4245 2022 Generalized Fermat
 3436  593*2^3309333+1                   996212 L5572 2022 
 3437  383*2^3309321+1                   996208 L5570 2022 
 3438  49*2^3309087-1                    996137 L1959 2013 
 3439  39746366^131072+1                 996056 L4201 2022 Generalized Fermat
 3440  139413*6^1279992+1                996033 L4001 2015 
 3441  1274*67^545368-1                  995886 L5410 2023 
 3442  51*2^3308171+1                    995861 L2840 2015 
 3443  719*2^3308127+1                   995849 L5192 2022 
 3444  39597790^131072+1                 995842 L4737 2022 Generalized Fermat
 3445  39502358^131072+1                 995705 L5453 2022 Generalized Fermat
 3446  39324372^131072+1                 995448 L5202 2022 Generalized Fermat
 3447  245114*5^1424104-1                995412 L3686 2013 
 3448  39100746^131072+1                 995123 L5441 2022 Generalized Fermat
 3449  38824296^131072+1                 994719 L4245 2022 Generalized Fermat
 3450  38734748^131072+1                 994588 L4249 2021 Generalized Fermat
 3451  175124*5^1422646-1                994393 L3686 2013 
 3452  453*2^3303073+1                   994327 L5568 2022 
 3453  856*75^530221-1                   994200 A11   2024 
 3454  38310998^131072+1                 993962 L4737 2021 Generalized Fermat
 3455  531*2^3301693+1                   993912 L5226 2022 
 3456  38196496^131072+1                 993791 L4861 2021 Generalized Fermat
 3457  38152876^131072+1                 993726 L4245 2021 Generalized Fermat
 3458  195*2^3301018+1                   993708 L5569 2022 
 3459  341*2^3300789+1                   993640 L5192 2022 
 3460  37909914^131072+1                 993363 L4249 2021 Generalized Fermat
 3461  849*2^3296427+1                   992327 L5571 2022 
 3462  1611*22^738988+1                  992038 L4139 2015 
 3463  36531196^131072+1                 991254 L4249 2021 Generalized Fermat
 3464  2017*2^3292325-1                  991092 L3345 2017 
 3465  36422846^131072+1                 991085 L4245 2021 Generalized Fermat
 3466  36416848^131072+1                 991076 L5202 2021 Generalized Fermat
 3467  885*2^3290927+1                   990671 L5161 2022 
 3468  36038176^131072+1                 990481 L4245 2021 Generalized Fermat
 3469  35997532^131072+1                 990416 L4245 2021 Generalized Fermat
 3470  35957420^131072+1                 990353 L4245 2021 Generalized Fermat
 3471  107970^196608-107970^98304+1      989588 L4506 2016 Generalized unique
 3472  35391288^131072+1                 989449 L5070 2021 Generalized Fermat
 3473  35372304^131072+1                 989419 L5443 2021 Generalized Fermat
 3474  219*2^3286614+1                   989372 L5567 2022 
 3475  61*2^3286535-1                    989348 L4405 2016 
 3476  35327718^131072+1                 989347 L4591 2021 Generalized Fermat
 3477  35282096^131072+1                 989274 L4245 2021 Generalized Fermat
 3478  35141602^131072+1                 989046 L4729 2021 Generalized Fermat
 3479  35139782^131072+1                 989043 L4245 2021 Generalized Fermat
 3480  35047222^131072+1                 988893 L4249 2021 Generalized Fermat
 3481  531*2^3284944+1                   988870 L5536 2022 
 3482  34957136^131072+1                 988747 L5321 2021 Generalized Fermat
 3483  301*2^3284232+1                   988655 L5564 2022 
 3484  34871942^131072+1                 988608 L4245 2021 Generalized Fermat
 3485  34763644^131072+1                 988431 L4737 2021 Generalized Fermat
 3486  34585314^131072+1                 988138 L4201 2021 Generalized Fermat
 3487  311*2^3282455+1                   988120 L5568 2022 
 3488  34530386^131072+1                 988048 L5070 2021 Generalized Fermat
 3489  833*2^3282181+1                   988038 L5564 2022 
 3490  561*2^3281889+1                   987950 L5477 2022 
 3491  34087952^131072+1                 987314 L4764 2021 Generalized Fermat
 3492  87*2^3279368+1                    987191 L3458 2015 
 3493  965*2^3279151+1                   987126 L5564 2022 
 3494  33732746^131072+1                 986717 L4359 2021 Generalized Fermat
 3495  33474284^131072+1                 986279 L5051 2021 Generalized Fermat
 3496  33395198^131072+1                 986145 L4658 2021 Generalized Fermat
 3497  427*2^3275606+1                   986059 L5566 2022 
 3498  33191418^131072+1                 985796 L4201 2021 Generalized Fermat
 3499  337*2^3274106+1                   985607 L5564 2022 
 3500  357*2^3273543+1                   985438 L5237 2022 
          Divides GF(3273542,10)
 3501  1045*2^3273488+1                  985422 L5192 2022 
 3502  32869172^131072+1                 985241 L4285 2021 Generalized Fermat
 3503  32792696^131072+1                 985108 L5198 2021 Generalized Fermat
 3504  1047*2^3272351+1                  985079 L5563 2022 
 3505  32704348^131072+1                 984955 L5312 2021 Generalized Fermat
 3506  6781*24^713573-1                  984886 A11   2024 
 3507  32608738^131072+1                 984788 L5395 2021 Generalized Fermat
 3508  75*2^3271125-1                    984709 A38   2024 
 3509  933*2^3270993+1                   984670 L5562 2022 
 3510  311*2^3270759+1                   984600 L5560 2022 
 3511  32430486^131072+1                 984476 L4245 2021 Generalized Fermat
 3512  32417420^131072+1                 984453 L4245 2021 Generalized Fermat
 3513  65*2^3270127+1                    984409 L3924 2015 
 3514  32348894^131072+1                 984333 L4245 2021 Generalized Fermat
 3515  579*2^3269850+1                   984326 L5226 2022 
 3516  32286660^131072+1                 984223 L5400 2021 Generalized Fermat
 3517  32200644^131072+1                 984071 L4387 2021 Generalized Fermat
 3518  32137342^131072+1                 983959 L4559 2021 Generalized Fermat
 3519  32096608^131072+1                 983887 L4559 2021 Generalized Fermat
 3520  32055422^131072+1                 983814 L4559 2021 Generalized Fermat
 3521  31821360^131072+1                 983397 L4861 2021 Generalized Fermat
 3522  31768014^131072+1                 983301 L4252 2021 Generalized Fermat
 3523  335*2^3266237+1                   983238 L5559 2022 
 3524  1031*2^3265915+1                  983142 L5364 2022 
 3525  31469984^131072+1                 982765 L5078 2021 Generalized Fermat
 3526  5*2^3264650-1                     982759 L384  2013 
 3527  223*2^3264459-1                   982703 L1884 2012 
 3528  1101*2^3264400+1                  982686 L5231 2022 
 3529  483*2^3264181+1                   982620 L5174 2022 
 3530  525*2^3263227+1                   982332 L5231 2022 
 3531  31145080^131072+1                 982174 L4201 2021 Generalized Fermat
 3532  622*48^584089+1                   981998 L5629 2023 
 3533  31044982^131072+1                 981991 L5041 2021 Generalized Fermat
 3534  683*2^3262037+1                   981974 L5192 2022 
 3535  923*2^3261401+1                   981783 L5477 2022 
 3536  30844300^131072+1                 981622 L5102 2021 Generalized Fermat
 3537  30819256^131072+1                 981575 L4201 2021 Generalized Fermat
 3538  9*2^3259381-1                     981173 L1828 2011 
 3539  31*2^3259185-1                    981114 L1862 2024 
 3540  1059*2^3258751+1                  980985 L5231 2022 
 3541  6*5^1403337+1                     980892 L4965 2020 
 3542  30318724^131072+1                 980643 L4309 2021 Generalized Fermat
 3543  30315072^131072+1                 980636 L5375 2021 Generalized Fermat
 3544  30300414^131072+1                 980609 L4755 2021 Generalized Fermat
 3545  30225714^131072+1                 980468 L4201 2021 Generalized Fermat
 3546  875*2^3256589+1                   980334 L5550 2022 
 3547  30059800^131072+1                 980155 L4928 2021 Generalized Fermat
 3548a 176268*5^1402258-1                980142 A11   2025 
 3549  30022816^131072+1                 980085 L5273 2021 Generalized Fermat
 3550  29959190^131072+1                 979964 L4905 2021 Generalized Fermat
 3551  968*75^522276-1                   979303 A11   2024 
 3552  29607314^131072+1                 979292 L5378 2021 Generalized Fermat
 3553  779*2^3253063+1                   979273 L5192 2022 
 3554  29505368^131072+1                 979095 L5378 2021 Generalized Fermat
 3555  163*2^3250978+1                   978645 L5161 2022 
          Divides GF(3250977,6)
 3556  29169314^131072+1                 978443 L5380 2021 Generalized Fermat
 3557  417*2^3248255+1                   977825 L5178 2022 
 3558  28497098^131072+1                 977116 L4308 2021 Generalized Fermat
 3559  28398204^131072+1                 976918 L5379 2021 Generalized Fermat
 3560  28294666^131072+1                 976710 L5375 2021 Generalized Fermat
 3561  28175634^131072+1                 976470 L5378 2021 Generalized Fermat
 3562  33*2^3242126-1                    975979 L3345 2014 
 3563  27822108^131072+1                 975752 L4760 2021 Generalized Fermat
 3564  39*2^3240990+1                    975637 L3432 2014 
 3565  27758510^131072+1                 975621 L4289 2021 Generalized Fermat
 3566  3706*103^484644+1                 975514 A11   2024 
 3567  27557876^131072+1                 975208 L4245 2021 Generalized Fermat
 3568  27544748^131072+1                 975181 L4387 2021 Generalized Fermat
 3569  27408050^131072+1                 974898 L4210 2021 Generalized Fermat
 3570  14275*60^548133-1                 974668 x51   2024 
 3571  225*2^3236967+1                   974427 L5529 2022 
 3572  27022768^131072+1                 974092 L4309 2021 Generalized Fermat
 3573  26896670^131072+1                 973826 L5376 2021 Generalized Fermat
 3574  1075*2^3234606+1                  973717 L5192 2022 
 3575  26757382^131072+1                 973530 L5375 2021 Generalized Fermat
 3576b 8091*24^705188+1                  973313 A64   2025 
 3577  26599558^131072+1                 973194 L4245 2021 Generalized Fermat
 3578  6*5^1392287+1                     973168 L4965 2020 
 3579  26500832^131072+1                 972982 L4956 2021 Generalized Fermat
 3580  325*2^3231474+1                   972774 L5536 2022 
 3581  933*2^3231438+1                   972763 L5197 2022 
 3582  123*2^3230548+1                   972494 L5178 2022 
          Divides GF(3230546,12)
 3583  26172278^131072+1                 972272 L4245 2021 Generalized Fermat
 3584  697*2^3229518+1                   972185 L5534 2022 
 3585  22598*745^338354-1                971810 L4189 2022 
 3586  385*2^3226814+1                   971371 L5178 2022 
 3587  211195*2^3224974+1                970820 L2121 2013 
 3588  1173*2^3223546+1                  970388 L5178 2022 
 3589  7*6^1246814+1                     970211 L4965 2019 
 3590  25128150^131072+1                 969954 L4738 2021 Generalized Fermat
 3591  25124378^131072+1                 969946 L5102 2021 Generalized Fermat
 3592  1089*2^3221691+1                  969829 L5178 2022 
 3593  35*832^332073-1                   969696 L4001 2019 
 3594  600921*2^3219922-1                969299 g337  2018 
 3595  939*2^3219319+1                   969115 L5178 2022 
 3596  24734116^131072+1                 969055 L5070 2021 Generalized Fermat
 3597  76896*5^1386360+1                 969029 A42   2024 
 3598  24644826^131072+1                 968849 L5070 2021 Generalized Fermat
 3599  24642712^131072+1                 968844 L5070 2021 Generalized Fermat
 3600  24641166^131072+1                 968840 L5070 2021 Generalized Fermat
 3601  129*2^3218214+1                   968782 L5529 2022 
 3602  24522386^131072+1                 968565 L5070 2021 Generalized Fermat
 3603  24486806^131072+1                 968483 L4737 2021 Generalized Fermat
 3604  811*2^3216944+1                   968400 L5233 2022 
 3605  24297936^131072+1                 968042 L4201 2021 Generalized Fermat
 3606  1023*2^3214745+1                  967738 L5178 2022 
 3607  187*2^3212152+1                   966957 L5178 2022 
 3608  301*2^3211281-1                   966695 L5545 2022 
 3609  6*409^369832+1                    965900 L4001 2015 
 3610  23363426^131072+1                 965809 L5033 2021 Generalized Fermat
 3611  1165*2^3207702+1                  965618 L5178 2022 
 3612  94373*2^3206717+1                 965323 L2785 2013 
 3613  2751*2^3206569-1                  965277 L4036 2015 
 3614  761*2^3206341+1                   965208 L5178 2022 
 3615  23045178^131072+1                 965029 L5023 2021 Generalized Fermat
 3616  23011666^131072+1                 964946 L5273 2021 Generalized Fermat
 3617  911*2^3205225+1                   964872 L5364 2022 
 3618  22980158^131072+1                 964868 L4201 2021 Generalized Fermat
 3619  22901508^131072+1                 964673 L4743 2021 Generalized Fermat
 3620  22808110^131072+1                 964440 L5248 2021 Generalized Fermat
 3621  22718284^131072+1                 964215 L5254 2021 Generalized Fermat
 3622  22705306^131072+1                 964183 L5248 2021 Generalized Fermat
 3623  113983*2^3201175-1                963655 L613  2008 
 3624  34*888^326732-1                   963343 L4001 2017 
 3625  899*2^3198219+1                   962763 L5503 2022 
 3626  22007146^131072+1                 962405 L4245 2020 Generalized Fermat
 3627  4*3^2016951+1                     962331 L4965 2020 
 3628  21917442^131072+1                 962173 L4622 2020 Generalized Fermat
 3629  987*2^3195883+1                   962060 L5282 2022 
 3630  21869554^131072+1                 962048 L5061 2020 Generalized Fermat
 3631  21757066^131072+1                 961754 L4773 2020 Generalized Fermat
 3632  21582550^131072+1                 961296 L5068 2020 Generalized Fermat
 3633  21517658^131072+1                 961125 L5126 2020 Generalized Fermat
 3634  20968936^131072+1                 959654 L4245 2020 Generalized Fermat
 3635  671*2^3185411+1                   958908 L5315 2022 
 3636  20674450^131072+1                 958849 L4245 2020 Generalized Fermat
 3637  1027*2^3184540+1                  958646 L5174 2022 
 3638  789*2^3183463+1                   958321 L5482 2022 
 3639  855*2^3183158+1                   958229 L5161 2022 
 3640  20234282^131072+1                 957624 L4942 2020 Generalized Fermat
 3641  20227142^131072+1                 957604 L4677 2020 Generalized Fermat
 3642  625*2^3180780+1                   957513 L5178 2022 Generalized Fermat
 3643  20185276^131072+1                 957486 L4201 2020 Generalized Fermat
 3644  935*2^3180599+1                   957459 L5477 2022 
 3645  573*2^3179293+1                   957066 L5226 2022 
 3646  33*2^3176269+1                    956154 L3432 2013 
 3647  81*2^3174353-1                    955578 L3887 2022 
 3648  19464034^131072+1                 955415 L4956 2020 Generalized Fermat
 3649  600921*2^3173683-1                955380 g337  2018 
 3650  587*2^3173567+1                   955342 L5301 2022 
 3651  19216648^131072+1                 954687 L5024 2020 Generalized Fermat
 3652  1414*95^482691-1                  954633 L4877 2019 
 3653  305*2^3171039+1                   954581 L5301 2022 
 3654  755*2^3170701+1                   954479 L5302 2022 
 3655  775*2^3170580+1                   954443 L5449 2022 
 3656  78*236^402022-1                   953965 L5410 2020 
 3657  18968126^131072+1                 953946 L5011 2020 Generalized Fermat
 3658  18813106^131072+1                 953479 L4201 2020 Generalized Fermat
 3659  18608780^131072+1                 952857 L4488 2020 Generalized Fermat
 3660  1087*2^3164677-1                  952666 L1828 2012 
 3661  18509226^131072+1                 952552 L4884 2020 Generalized Fermat
 3662  18501600^131072+1                 952528 L4875 2020 Generalized Fermat
 3663  459*2^3163175+1                   952214 L5178 2022 
 3664  15*2^3162659+1                    952057 p286  2012 
 3665  18309468^131072+1                 951934 L4928 2020 Generalized Fermat
 3666  18298534^131072+1                 951900 L4201 2020 Generalized Fermat
 3667  849*2^3161727+1                   951778 L5178 2022 
 3668  67*2^3161450+1                    951694 L3223 2015 
 3669  119*2^3161195+1                   951617 L5320 2022 
 3670  1759*2^3160863-1                  951518 L4965 2021 
 3671  58*117^460033+1                   951436 L5410 2020 
 3672  417*2^3160443+1                   951391 L5302 2022 
 3673  9231*70^515544+1                  951234 L5410 2021 
 3674  671*2^3159523+1                   951115 L5188 2022 
 3675  17958952^131072+1                 950834 L4201 2020 Generalized Fermat
 3676  1001*2^3158422-1                  950783 L4518 2023 
 3677  17814792^131072+1                 950375 L4752 2020 Generalized Fermat
 3678  17643330^131072+1                 949824 L4201 2020 Generalized Fermat
 3679  19*2^3155009-1                    949754 L1828 2012 
 3680  281*2^3151457+1                   948686 L5316 2022 
 3681  179*2^3150265+1                   948327 L5302 2022 
 3682  17141888^131072+1                 948183 L4963 2019 Generalized Fermat
 3683  17138628^131072+1                 948172 L4963 2019 Generalized Fermat
 3684  17119936^131072+1                 948110 L4963 2019 Generalized Fermat
 3685  17052490^131072+1                 947885 L4715 2019 Generalized Fermat
 3686  17025822^131072+1                 947796 L4870 2019 Generalized Fermat
 3687  16985784^131072+1                 947662 L4295 2019 Generalized Fermat
 3688  865*2^3147482+1                   947490 L5178 2021 
 3689  963*2^3145753+1                   946969 L5451 2021 
 3690  16741226^131072+1                 946837 L4201 2019 Generalized Fermat
 3691  387*2^3144483+1                   946587 L5450 2021 
 3692  1035*2^3144236+1                  946513 L5449 2021 
 3693  1065*2^3143667+1                  946342 L4944 2021 
 3694d 1598*187^416536-1                 946308 A11   2025 
 3695  193*2^3142150+1                   945884 L5178 2021 
 3696  915*2^3141942+1                   945822 L5448 2021 
 3697  939*2^3141397+1                   945658 L5320 2021 
 3698  1063*2^3141350+1                  945644 L5178 2021 
 3699  16329572^131072+1                 945420 L4201 2019 Generalized Fermat
 3700  69*2^3140225-1                    945304 L3764 2014 
 3701  3*2^3136255-1                     944108 L256  2007 
 3702  417*2^3136187+1                   944089 L5178 2021 
 3703  15731520^131072+1                 943296 L4245 2019 Generalized Fermat
 3704  62721^196608-62721^98304+1        943210 L4506 2016 Generalized unique
 3705  15667716^131072+1                 943064 L4387 2019 Generalized Fermat
 3706  15567144^131072+1                 942698 L4918 2019 Generalized Fermat
 3707  299*2^3130621+1                   942414 L5178 2021 
 3708  15342502^131072+1                 941870 L4245 2019 Generalized Fermat
 3709  15237960^131072+1                 941481 L4898 2019 Generalized Fermat
 3710  571*2^3127388+1                   941441 L5440 2021 
 3711  107*2^3126660-1                   941221 A38   2024 
 3712  15147290^131072+1                 941141 L4861 2019 Generalized Fermat
 3713  197*2^3126343+1                   941126 L5178 2021 
 3714  15091270^131072+1                 940930 L4760 2019 Generalized Fermat
 3715  1097*2^3124455+1                  940558 L5178 2021 
 3716  3125*2^3124079+1                  940445 L1160 2019 
 3717  495*2^3123624+1                   940308 L5438 2021 
 3718  14790404^131072+1                 939784 L4871 2019 Generalized Fermat
 3719  1041*2^3120649+1                  939412 L5437 2021 
 3720  14613898^131072+1                 939101 L4926 2019 Generalized Fermat
 3721  3317*2^3117162-1                  938363 L5399 2021 
 3722  763*2^3115684+1                   937918 L4944 2021 
 3723  25*746^326451-1                   937810 A28   2024 
 3724  581*2^3114611+1                   937595 L5178 2021 
 3725  14217182^131072+1                 937534 L4387 2019 Generalized Fermat
 3726  134*864^319246-1                  937473 L5410 2020 
 3727  700057*2^3113753-1                937339 L5410 2022 
 3728  5*6^1204077-1                     936955 A2    2023 
 3729  1197*2^3111838+1                  936760 L5178 2021 
 3730  14020004^131072+1                 936739 L4249 2019 Generalized Fermat
 3731  27777*2^3111027+1                 936517 L2777 2014 Generalized Cullen
 3732  755*2^3110759+1                   936435 L5320 2021 
 3733  13800346^131072+1                 935840 L4880 2019 Generalized Fermat
 3734  866981*12^866981-1                935636 L5765 2023 
          Generalized Woodall
 3735  313*2^3107219-1                   935369 L5819 2024 
 3736  13613070^131072+1                 935062 L4245 2019 Generalized Fermat
 3737  628*80^491322+1                   935033 L5410 2021 
 3738  761*2^3105087+1                   934728 L5197 2021 
 3739  13433028^131072+1                 934305 L4868 2018 Generalized Fermat
 3740  1019*2^3103680-1                  934304 L1828 2012 
 3741  12*978^312346+1                   934022 L4294 2023 
 3742  579*2^3102639+1                   933991 L5315 2021 
 3743  99*2^3102401-1                    933918 L1862 2017 
 3744  256612*5^1335485-1                933470 L1056 2013 
 3745  13083418^131072+1                 932803 L4747 2018 Generalized Fermat
 3746  882*1017^310074+1                 932495 A10   2024 
 3747  69*2^3097340-1                    932395 L3764 2014 
 3748  153*2^3097277+1                   932376 L4944 2021 
 3749  12978952^131072+1                 932347 L4849 2018 Generalized Fermat
 3750  12961862^131072+1                 932272 L4245 2018 Generalized Fermat
 3751  207*2^3095391+1                   931808 L5178 2021 
 3752  12851074^131072+1                 931783 L4670 2018 Generalized Fermat
 3753  45*2^3094632-1                    931579 L1862 2018 
 3754  259*2^3094582+1                   931565 L5214 2021 
 3755  553*2^3094072+1                   931412 L4944 2021 
 3756  57*2^3093440-1                    931220 L2484 2020 
 3757  12687374^131072+1                 931054 L4289 2018 Generalized Fermat
 3758  513*2^3092705+1                   931000 L4329 2016 
 3759  12661786^131072+1                 930939 L4819 2018 Generalized Fermat
 3760  933*2^3091825+1                   930736 L5178 2021 
 3761  38*875^316292-1                   930536 L4001 2019 
 3762  5*2^3090860-1                     930443 L1862 2012 
 3763  12512992^131072+1                 930266 L4814 2018 Generalized Fermat
 3764  4*5^1330541-1                     930009 L4965 2022 
 3765  12357518^131072+1                 929554 L4295 2018 Generalized Fermat
 3766  12343130^131072+1                 929488 L4720 2018 Generalized Fermat
 3767  297*2^3087543+1                   929446 L5326 2021 
 3768  1149*2^3087514+1                  929438 L5407 2021 
 3769  745*2^3087428+1                   929412 L5178 2021 
 3770  373*520^342177+1                  929357 L3610 2014 
 3771  19401*2^3086450-1                 929119 L541  2015 
 3772  75*2^3086355+1                    929088 L3760 2015 
 3773  65*2^3080952-1                    927461 L2484 2020 
 3774  11876066^131072+1                 927292 L4737 2018 Generalized Fermat
 3775  1139*2^3079783+1                  927111 L5174 2021 
 3776  271*2^3079189-1                   926931 L2484 2018 
 3777  766*33^610412+1                   926923 L4001 2016 
 3778  11778792^131072+1                 926824 L4672 2018 Generalized Fermat
 3779  555*2^3078792+1                   926812 L5226 2021 
 3780  31*332^367560+1                   926672 L4294 2018 
 3781  167*2^3077568-1                   926443 L1862 2020 
 3782  10001*2^3075602-1                 925853 L4405 2019 
 3783  116*107^455562-1                  924513 L4064 2021 
 3784  11292782^131072+1                 924425 L4672 2018 Generalized Fermat
 3785  14844*430^350980-1                924299 L4001 2016 
 3786  11267296^131072+1                 924297 L4654 2017 Generalized Fermat
 3787b 19861029*2^3070319+1              924266 A31   2025 
 3788  4*3^1936890+1                     924132 L4965 2020 Generalized Fermat
 3789  1105*2^3069884+1                  924131 L5314 2021 
 3790  319*2^3069362+1                   923973 L5377 2021 
 3791  11195602^131072+1                 923933 L4706 2017 Generalized Fermat
 3792  973*2^3069092+1                   923892 L5214 2021 
 3793  765*2^3068511+1                   923717 L5174 2021 
 3794  60849*2^3067914+1                 923539 L591  2014 
 3795  674*249^385359+1                  923400 L5410 2019 
 3796  499*2^3066970+1                   923253 L5373 2021 
 3797  553*2^3066838+1                   923213 L5368 2021 
 3798  629*2^3066827+1                   923210 L5226 2021 
 3799  11036888^131072+1                 923120 L4660 2017 Generalized Fermat
 3800  261*2^3066009+1                   922964 L5197 2021 
 3801  10994460^131072+1                 922901 L4704 2017 Generalized Fermat
 3802  214916*3^1934246-1                922876 L4965 2023 
          Generalized Woodall
 3803  21*2^3065701+1                    922870 p286  2012 
 3804  10962066^131072+1                 922733 L4702 2017 Generalized Fermat
 3805  10921162^131072+1                 922520 L4559 2017 Generalized Fermat
 3806  875*2^3063847+1                   922313 L5364 2021 
 3807  43*2^3063674+1                    922260 L3432 2013 
 3808  677*2^3063403+1                   922180 L5346 2021 
 3809  8460*241^387047-1                 921957 L5410 2019 
 3810  10765720^131072+1                 921704 L4695 2017 Generalized Fermat
 3811  111*2^3060238-1                   921226 L2484 2020 
 3812  1165*2^3060228+1                  921224 L5360 2021 
 3813  5*2^3059698-1                     921062 L503  2008 
 3814  10453790^131072+1                 920031 L4694 2017 Generalized Fermat
 3815  453*2^3056181+1                   920005 L5320 2021 
 3816  791*2^3055695+1                   919859 L5177 2021 
 3817  10368632^131072+1                 919565 L4692 2017 Generalized Fermat
 3818  582971*2^3053414-1                919175 L5410 2022 
 3819  123*2^3049038+1                   917854 L4119 2015 
 3820  10037266^131072+1                 917716 L4691 2017 Generalized Fermat
 3821  400*95^463883-1                   917435 L4001 2019 
 3822  9907326^131072+1                  916975 L4690 2017 Generalized Fermat
 3823  454*383^354814+1                  916558 L2012 2020 
 3824  9785844^131072+1                  916272 L4326 2017 Generalized Fermat
 3825  435*2^3041954+1                   915723 L5320 2021 
 3826  639*2^3040438+1                   915266 L5320 2021 
 3827  13822*115^443832+1                914608 A11   2024 
 3828  1045*2^3037988+1                  914529 L5178 2021 
 3829  291*2^3037904+1                   914503 L3545 2015 
 3830  311*2^3037565+1                   914401 L5178 2021 
 3831  373*2^3036746+1                   914155 L5178 2021 
 3832  9419976^131072+1                  914103 L4591 2017 Generalized Fermat
 3833  5706*162^413708+1                 914098 A14   2024 
 3834  341*2^3036506-1                   914082 p435  2023 
 3835  801*2^3036045+1                   913944 L5348 2021 
 3836  915*2^3033775+1                   913261 L5178 2021 
 3837  38804*3^1913975+1                 913203 L5410 2021 
 3838  9240606^131072+1                  913009 L4591 2017 Generalized Fermat
 3839  869*2^3030655+1                   912322 L5260 2021 
 3840  643*2^3030650+1                   912320 L5320 2021 
 3841  99*2^3029959-1                    912111 L1862 2020 
 3842  417*2^3029342+1                   911926 L5178 2021 
 3843  345*2^3027769+1                   911452 L5343 2021 
 3844  26*3^1910099+1                    911351 L4799 2020 
 3845  355*2^3027372+1                   911333 L5174 2021 
 3846  99*2^3026660-1                    911118 L1862 2020 
 3847  417*2^3026492+1                   911068 L5197 2021 
 3848  1065*2^3025527+1                  910778 L5208 2021 
 3849  34202*3^1908800+1                 910734 L5410 2021 
 3850  8343*42^560662+1                  910099 L4444 2020 
 3851  699*2^3023263+1                   910096 L5335 2021 
 3852  8770526^131072+1                  910037 L4245 2017 Generalized Fermat
 3853  8704114^131072+1                  909604 L4670 2017 Generalized Fermat
 3854  383731*2^3021377-1                909531 L466  2011 
 3855  46821*2^3021380-374567            909531 p363  2013 
 3856  2^3021377-1                       909526 G3    1998 Mersenne 37
 3857d 255*2^3021196-1                   909474 L3994 2025 
 3858  615*2^3019445+1                   908947 L5260 2021 
 3859  389*2^3019025+1                   908820 L5178 2021 
 3860  875*2^3018175+1                   908565 L5334 2021 
 3861  375*2^3016803-1                   908151 L2235 2023 
 3862  555*2^3016352+1                   908016 L5178 2021 
 3863  7*2^3015762+1                     907836 g279  2008 
 3864  759*2^3015314+1                   907703 L5178 2021 
 3865  32582*3^1901790+1                 907389 L5372 2021 
 3866  75*2^3012342+1                    906808 L3941 2015 
 3867  459*2^3011814+1                   906650 L5178 2021 
 3868d 171*2^3010938-1                   906385 A27   2025 
 3869  991*2^3010036+1                   906115 L5326 2021 
 3870  583*2^3009698+1                   906013 L5325 2021 
 3871  8150484^131072+1                  905863 L4249 2017 Generalized Fermat
 3872  593*2^3006969+1                   905191 L5178 2021 
 3873  327*2^3006540-1                   905062 L2257 2023 
 3874  75*2^3006235-1                    904969 A38   2024 
 3875  367*2^3004536+1                   904459 L5178 2021 
 3876  7926326^131072+1                  904276 L4249 2017 Generalized Fermat
 3877  1003*2^3003756+1                  904224 L5320 2021 
 3878  626*1017^300576+1                 903932 A9    2024 
 3879  573*2^3002662+1                   903895 L5319 2021 
 3880  7858180^131072+1                  903784 L4201 2017 Generalized Fermat
 3881  329*2^3002295+1                   903784 L5318 2021 
 3882  4*5^1292915-1                     903710 L4965 2022 
 3883  7832704^131072+1                  903599 L4249 2017 Generalized Fermat
 3884  268514*5^1292240-1                903243 L3562 2013 
 3885  7*10^902708+1                     902709 p342  2013 
 3886  435*2^2997453+1                   902326 L5167 2021 
 3887  583*2^2996526+1                   902047 L5174 2021 
 3888  1037*2^2995695+1                  901798 L5178 2021 
 3889  717*2^2995326+1                   901686 L5178 2021 
 3890  885*2^2995274+1                   901671 L5178 2021 
 3891  43*2^2994958+1                    901574 L3222 2013 
 3892  1065*2^2994154+1                  901334 L5315 2021 
 3893  561*2^2994132+1                   901327 L5314 2021 
 3894d 147*2^2993165-1                   901035 L1817 2025 
 3895  1095*2^2992587-1                  900862 L1828 2011 
 3896  519*2^2991849+1                   900640 L5311 2021 
 3897  7379442^131072+1                  900206 L4201 2017 Generalized Fermat
 3898b 109932*5^1287894-1                900205 A11   2025 
 3899  459*2^2990134+1                   900123 L5197 2021 
 3900  15*2^2988834+1                    899730 p286  2012 
 3901  29*564^326765+1                   899024 L4001 2017 
 3902  5129*24^650539+1                  897885 A11   2024 
 3903  971*2^2982525+1                   897833 L5197 2021 
 3904  1033*2^2980962+1                  897362 L5305 2021 
 3905  357*2^2980540-1                   897235 L2257 2023 
 3906  367*2^2979033-1                   896781 L2257 2023 
 3907  39*2^2978894+1                    896739 L2719 2013 
 3908  38*977^299737+1                   896184 L5410 2021 
 3909  4348099*2^2976221-1               895939 L466  2008 
 3910  205833*2^2976222-411665           895938 L4667 2017 
 3911  593*2^2976226-18975               895937 p373  2014 
 3912  2^2976221-1                       895932 G2    1997 Mersenne 36
 3913  1024*3^1877301+1                  895704 p378  2014 
 3914  1065*2^2975442+1                  895701 L5300 2021 
          Divides GF(2975440,3)
 3915  24704*3^1877135+1                 895626 L5410 2021 
 3916  591*2^2975069+1                   895588 L5299 2021 
 3917  249*2^2975002+1                   895568 L2322 2015 
 3918  18431*82^467690-1                 895076 A14   2024 
 3919  195*2^2972947+1                   894949 L3234 2015 
 3920  6705932^131072+1                  894758 L4201 2017 Generalized Fermat
 3921  391*2^2971600+1                   894544 L5242 2021 
 3922  46425*2^2971203+1                 894426 L2777 2014 Generalized Cullen
 3923  625*2^2970336+1                   894164 L5233 2021 Generalized Fermat
 3924  369*2^2968175-1                   893513 L2257 2023 
 3925  493*72^480933+1                   893256 L3610 2014 
 3926  561*2^2964753+1                   892483 L5161 2021 
 3927  1185*2^2964350+1                  892362 L5161 2021 
 3928  6403134^131072+1                  892128 L4510 2016 Generalized Fermat
 3929  6391936^131072+1                  892028 L4511 2016 Generalized Fermat
 3930d 1964*991^297652-1                 891791 A11   2025 
 3931  395*2^2961370-1                   891464 L2257 2023 
 3932  21*2^2959789-1                    890987 L5313 2021 
 3933  627*2^2959098+1                   890781 L5197 2021 
 3934  45*2^2958002-1                    890449 L1862 2017 
 3935  729*2^2955389+1                   889664 L5282 2021 
 3936  706*1017^295508+1                 888691 p433  2023 
 3937  198677*2^2950515+1                888199 L2121 2012 
 3938  88*985^296644+1                   887987 L5410 2020 
 3939  303*2^2949403-1                   887862 L1817 2022 
 3940  5877582^131072+1                  887253 L4245 2016 Generalized Fermat
 3941  321*2^2946654-1                   887034 L1817 2022 
 3942  17*2^2946584-1                    887012 L3519 2013 
 3943  489*2^2944673+1                   886438 L5167 2021 
 3944  141*2^2943065+1                   885953 L3719 2015 
 3945  757*2^2942742+1                   885857 L5261 2021 
 3946  5734100^131072+1                  885846 L4477 2016 Generalized Fermat
 3947  33*2^2939064-5606879602425*2^1290000-1
                                         884748 p423  2021 
          Arithmetic progression (3,d=33*2^2939063-5606879602425*2^1290000)
 3948  33*2^2939063-1                    884748 L3345 2013 
 3949  5903*2^2938744-1                  884654 L4036 2015 
 3950  717*2^2937963+1                   884418 L5256 2021 
 3951  5586416^131072+1                  884361 L4454 2016 Generalized Fermat
 3952f 297*2^2937584-1                   884304 L1817 2025 
 3953  243*2^2937316+1                   884223 L4114 2015 
 3954  973*2^2937046+1                   884142 L5253 2021 
 3955  61*2^2936967-1                    884117 L2484 2017 
 3956f 203*2^2935338-1                   883628 L1817 2025 
 3957  903*2^2934602+1                   883407 L5246 2021 
 3958  5471814^131072+1                  883181 L4362 2016 Generalized Fermat
 3959  188*228^374503+1                  883056 L4786 2020 
 3960  53*248^368775+1                   883016 L5196 2020 
 3961  13613*82^461323-1                 882891 A11   2024 
 3962  5400728^131072+1                  882436 L4201 2016 Generalized Fermat
 3963  17*326^350899+1                   881887 L4786 2019 
 3964  855*2^2929550+1                   881886 L5200 2021 
 3965  5326454^131072+1                  881648 L4201 2016 Generalized Fermat
 3966  839*2^2928551+1                   881585 L5242 2021 
 3967  7019*10^881309-1                  881313 L3564 2013 
 3968  25*2^2927222+1                    881184 L1935 2013 Generalized Fermat
 3969  391*2^2925759-1                   880744 L2257 2023 
 3970  577*2^2925602+1                   880697 L5201 2021 
 3971  97366*5^1259955-1                 880676 L3567 2013 
 3972b 246234*5^1259806-1                880572 A65   2025 
 3973  19861029*2^2924096-1              880248 A31   2024 
 3974  973*2^2923062+1                   879933 L5228 2021 
 3975  1126*177^391360+1                 879770 L4955 2020 
 3976  243944*5^1258576-1                879713 L3566 2013 
 3977  693*2^2921528+1                   879471 L5201 2021 
 3978  6*10^879313+1                     879314 L5009 2019 
 3979  269*2^2918105+1                   878440 L2715 2015 
 3980  331*2^2917844+1                   878362 L5210 2021 
 3981  169*2^2917805-1                   878350 L2484 2018 
 3982  1085*2^2916967+1                  878098 L5174 2020 
 3983  389*2^2916499+1                   877957 L5215 2020 
 3984  431*2^2916429+1                   877936 L5214 2020 
 3985  1189*2^2916406+1                  877929 L5174 2020 
 3986  1011*2^2916119-1                  877843 L4518 2023 
 3987  7*2^2915954+1                     877791 g279  2008 
          Divides GF(2915953,12) [g322]
 3988  4974408^131072+1                  877756 L4380 2016 Generalized Fermat
 3989  465*2^2914079+1                   877228 L5210 2020 
 3990  427194*113^427194+1               877069 p310  2012 Generalized Cullen
 3991d 322*952^294414+1                  876955 A11   2025 
 3992  4893072^131072+1                  876817 L4303 2016 Generalized Fermat
 3993  493*2^2912552+1                   876769 L5192 2021 
 3994  379*2^2911423-1                   876429 L2257 2023 
 3995  143157*2^2911403+1                876425 L4504 2017 
 3996  567*2^2910402+1                   876122 L5201 2020 
 3997c 4098*1003^291860+1                875964 A14   2025 
 3998  683*2^2909217+1                   875765 L5199 2020 
 3999  674*249^365445+1                  875682 L5410 2019 
 4000  475*2^2908802+1                   875640 L5192 2021 
 4001  2351*24^634318+1                  875497 A11   2024 
 4002f 117*2^2908312-1                   875492 A27   2025 
 4003  371*2^2907377+1                   875211 L5197 2020 
 4004  8161*24^633274+1                  874056 A11   2024 
 4005  207*2^2903535+1                   874054 L3173 2015 
 4006  851*2^2902731+1                   873813 L5177 2020 
 4007  267*2^2902469-1                   873733 A27   2024 
 4008  777*2^2901907+1                   873564 L5192 2020 
 4009  717*2^2900775+1                   873224 L5185 2020 
 4010  99*2^2899303-1                    872780 L1862 2017 
 4011  63*2^2898957+1                    872675 L3262 2013 
 4012  173*2^2897448-1                   872221 A27   2024 
 4013  11*2^2897409+1                    872209 L2973 2013 
          Divides GF(2897408,3)
 4014  187*2^2896841-1                   872039 L3994 2024 
 4015  29601*24^631722+1                 871915 A11   2024 
 4016  747*2^2895307+1                   871578 L5178 2020 
 4017  403*2^2894566+1                   871354 L5180 2020 
 4018b 62022*5^1246456-1                 871241 A11   2025 
 4019  629*2^2892961+1                   870871 L5173 2020 
 4020  627*2^2891514+1                   870436 L5168 2020 
 4021  325*2^2890955-1                   870267 L5545 2022 
 4022  363*2^2890208+1                   870042 L3261 2020 
 4023  471*2^2890148+1                   870024 L5158 2020 
 4024  4329134^131072+1                  869847 L4395 2016 Generalized Fermat
 4025  583*2^2889248+1                   869754 L5139 2020 
 4026  353*2^2888332-1                   869478 L2257 2023 
 4027  955*2^2887934+1                   869358 L4958 2020 
 4028  8300*171^389286+1                 869279 L5410 2023 
 4029  303*2^2887603-1                   869258 L5184 2022 
 4030  937*2^2887130+1                   869116 L5134 2020 
 4031  885*2^2886389+1                   868893 L3924 2020 
 4032  763*2^2885928+1                   868754 L2125 2020 
 4033  1071*2^2884844+1                  868428 L3593 2020 
 4034  1181*2^2883981+1                  868168 L3593 2020 
 4035  327*2^2881349-1                   867375 L5545 2022 
 4036  51*2^2881227+1                    867338 L3512 2013 
 4037  933*2^2879973+1                   866962 L4951 2020 
 4038  261*2^2879941+1                   866952 L4119 2015 
 4039  4085818^131072+1                  866554 L4201 2016 Generalized Fermat
 4040  65*2^2876718-1                    865981 L2484 2016 
 4041  21*948^290747-1                   865500 L4985 2019 
 4042  4013*2^2873250-1                  864939 L1959 2014 
 4043  41*2^2872058-1                    864578 L2484 2013 
 4044  359*2^2870935+1                   864241 L1300 2020 
 4045  165*2^2870868+1                   864220 L4119 2015 
 4046  961*2^2870596+1                   864139 L1300 2020 Generalized Fermat
 4047  665*2^2869847+1                   863913 L2885 2020 
 4048c 12*753^300293+1                   863883 A59   2025 
 4049  283*2^2868750+1                   863583 L3877 2015 
 4050  663703*20^663703-1                863504 L5765 2023 
          Generalized Woodall
 4051  845*2^2868291+1                   863445 L5100 2020 
 4052  3125*2^2867399+1                  863177 L1754 2019 
 4053  701*2^2867141+1                   863099 L1422 2020 
 4054  9*10^862868+1                     862869 L4789 2024 Generalized Fermat
 4055  3814944^131072+1                  862649 L4201 2016 Generalized Fermat
 4056  81030*91^440109-1                 862197 A11   2024 
 4057  119*954^289255+1                  861852 L5410 2022 
 4058  307*2^2862962+1                   861840 L4740 2020 
 4059  147*2^2862651+1                   861746 L1741 2015 
 4060  1207*2^2861901-1                  861522 L1828 2011 
 4061  231*2^2860725+1                   861167 L2873 2015 
 4062  193*2^2858812+1                   860591 L2997 2015 
 4063b 41079*78^454700-1                 860341 A11   2025 
 4064  629*2^2857891+1                   860314 L3035 2020 
 4065  493*2^2857856+1                   860304 L5087 2020 
 4066  241*2^2857313-1                   860140 L2484 2018 
 4067  707*2^2856331+1                   859845 L5084 2020 
 4068  3615210^131072+1                  859588 L4201 2016 Generalized Fermat
 4069  949*2^2854946+1                   859428 L2366 2020 
 4070  222361*2^2854840+1                859398 g403  2006 
 4071  725*2^2854661+1                   859342 L5031 2020 
 4072  178972*5^1228284+1                858539 A42   2024 
 4073  399*2^2851994+1                   858539 L4099 2020 
 4074  225*2^2851959+1                   858528 L3941 2015 
 4075  247*2^2851602+1                   858421 L3865 2015 
 4076  183*2^2850321+1                   858035 L2117 2015 
 4077  1191*2^2849315+1                  857733 L1188 2020 
 4078  717*2^2848598+1                   857517 L1204 2020 
 4079  795*2^2848360+1                   857445 L4099 2020 
 4080  4242104*15^728840-1               857189 L5410 2023 
 4081e 2*647^304931+1                    857133 L550  2025 
 4082  3450080^131072+1                  856927 L4201 2016 Generalized Fermat
 4083  705*2^2846638+1                   856927 L1808 2020 
 4084  369*2^2846547+1                   856899 L4099 2020 
 4085  233*2^2846392-1                   856852 L2484 2021 
 4086  223952*91^437353-1                856798 A11   2024 
 4087  955*2^2844974+1                   856426 L1188 2020 
 4088  753*2^2844700+1                   856343 L1204 2020 
 4089  11138*745^297992-1                855884 L4189 2019 
 4090  111*2^2841992+1                   855527 L1792 2015 
 4091  44*744^297912-1                   855478 L5410 2021 
 4092  649*2^2841318+1                   855325 L4732 2020 
 4093  228*912^288954-1                  855305 L5410 2022 
 4094  305*2^2840155+1                   854975 L4907 2020 
 4095  914*871^290787-1                  854923 L5787 2023 
 4096  1149*2^2839622+1                  854815 L2042 2020 
 4097  95*2^2837909+1                    854298 L3539 2013 
 4098  199*2^2835667-1                   853624 L2484 2019 
 4099  595*2^2833406+1                   852943 L4343 2020 
 4100  1101*2^2832061+1                  852539 L4930 2020 
 4101  813*2^2831757+1                   852447 L4951 2020 
 4102  435*2^2831709+1                   852432 L4951 2020 
 4103  38*500^315752-1                   852207 A21   2024 
 4104  13613*82^445251-1                 852132 A11   2024 
 4105  393*2^2828738-1                   851538 L2257 2023 
 4106  543*2^2828217+1                   851381 L4746 2019 
 4107  68*1010^283267+1                  851027 L5778 2023 
 4108  704*249^354745+1                  850043 L5410 2019 
 4109  1001*2^2822037+1                  849521 L1209 2019 
 4110  84466*5^1215373-1                 849515 L3562 2013 
 4111  97*2^2820650+1                    849103 L2163 2013 
 4112  381*2^2820157-1                   848955 L2257 2023 
 4113  43814*91^433332-1                 848920 A32   2024 
 4114  107*2^2819922-1                   848884 L2484 2013 
 4115  84256*3^1778899+1                 848756 L4789 2018 
 4116  45472*3^1778899-1                 848756 L4789 2018 
 4117  495*2^2819449-1                   848742 L3994 2024 
 4118  14804*3^1778530+1                 848579 L4064 2021 
 4119  497*2^2818787+1                   848543 L4842 2019 
 4120  97*2^2818306+1                    848397 L3262 2013 
 4121  313*2^2817751-1                   848231 L802  2021 
 4122  177*2^2816050+1                   847718 L129  2012 
 4123  585*2^2816000-1                   847704 L5819 2024 
 4124  553*2^2815596+1                   847582 L4980 2019 
 4125  1071*2^2814469+1                  847243 L3035 2019 
 4126  105*2^2813000+1                   846800 L3200 2015 
 4127  1115*2^2812911+1                  846774 L1125 2019 
 4128  96*10^846519-1                    846521 L2425 2011 Near-repdigit
 4129  763*2^2811726+1                   846417 L3919 2019 
 4130  1125*2^2811598+1                  846379 L4981 2019 
 4131  891*2^2810100+1                   845928 L4981 2019 
 4132  441*2^2809881+1                   845862 L4980 2019 
 4133  499*2^2809261-1                   845675 L5516 2024 
 4134  711*2^2808473+1                   845438 L1502 2019 
 4135  1089*2^2808231+1                  845365 L4687 2019 
 4136  63*2^2807130+1                    845033 L3262 2013 
 4137  1083*2^2806536+1                  844855 L3035 2019 
 4138  675*2^2805669+1                   844594 L1932 2019 
 4139  819*2^2805389+1                   844510 L3372 2019 
 4140  1027*2^2805222+1                  844459 L3035 2019 
 4141  437*2^2803775+1                   844024 L3168 2019 
 4142  29113*820^289614+1                843886 A50   2024 
 4143  381*2^2801281-1                   843273 L2257 2023 
 4144  4431*372^327835-1                 842718 L5410 2019 
 4145  150344*5^1205508-1                842620 L3547 2013 
 4146  311*2^2798459+1                   842423 L4970 2019 
 4147  81*2^2797443-1                    842117 L3887 2021 
 4148  400254*127^400254+1               842062 g407  2013 Generalized Cullen
 4149  2639850^131072+1                  841690 L4249 2016 Generalized Fermat
 4150  43*2^2795582+1                    841556 L2842 2013 
 4151  1001*2^2794357+1                  841189 L1675 2019 
 4152  117*2^2794014+1                   841085 L1741 2015 
 4153b 1962*5^1203024-1                  840881 A63   2025 
 4154  1057*2^2792700+1                  840690 L1675 2019 
 4155  345*2^2792269+1                   840560 L1754 2019 
 4156  267*2^2792074-1                   840501 L1817 2024 
 4157  711*2^2792072+1                   840501 L4256 2019 
 4158  293*2^2791482-1                   840323 A27   2024 
 4159b 42896*78^444110-1                 840303 A11   2025 
 4160  315*2^2791414-1                   840302 L2235 2021 
 4161  973*2^2789516+1                   839731 L3372 2019 
 4162  27602*3^1759590+1                 839543 L4064 2021 
 4163  2187*2^2786802+1                  838915 L1745 2019 
 4164  15*2^2785940+1                    838653 p286  2012 
 4165  333*2^2785626-1                   838560 L802  2021 
 4166  1337*2^2785444-1                  838506 L4518 2017 
 4167  711*2^2784213+1                   838135 L4687 2019 
 4168  58582*91^427818+1                 838118 L5410 2020 
 4169  923*2^2783153+1                   837816 L1675 2019 
 4170  1103*2^2783149+1                  837815 L3784 2019 
 4171  20708*82^437279-1                 836875 A48   2024 
 4172  297*2^2778276-1                   836347 A27   2024 
 4173  485*2^2778151+1                   836310 L1745 2019 
 4174  600921*2^2776014-1                835670 g337  2017 
 4175  1129*2^2774934+1                  835342 L1774 2019 
 4176  750*1017^277556-1                 834703 L4955 2021 
 4177  8700*241^350384-1                 834625 L5410 2019 
 4178  1023*2^2772512+1                  834613 L4724 2019 
 4179  656*249^348030+1                  833953 L5410 2019 
 4180  92*10^833852-1                    833854 L4789 2018 Near-repdigit
 4181  437*2^2769299+1                   833645 L3760 2019 
 4182  967*2^2768408+1                   833377 L3760 2019 
 4183  2280466^131072+1                  833359 L4201 2016 Generalized Fermat
 4184  1171*2^2768112+1                  833288 L2676 2019 
 4185  57*2^2765963+1                    832640 L3262 2013 
 4186  1323*2^2764024+1                  832058 L1115 2019 
 4187  189*2^2762731-1                   831668 A27   2024 
 4188  471*2^2762718-1                   831664 L5516 2023 
 4189  115*2^2762111-1                   831481 A27   2024 
 4190  77*2^2762047+1                    831461 L3430 2013 
 4191  745*2^2761514+1                   831302 L1204 2019 
 4192  2194180^131072+1                  831164 L4276 2016 Generalized Fermat
 4193  543*2^2760224-1                   830913 L5516 2023 
 4194  7*10^830865+1                     830866 p342  2014 
 4195  893*2^2758841+1                   830497 L4826 2019 
 4196  593*2^2757554-1                   830110 L5516 2023 
 4197  557*2^2757276-1                   830026 L5516 2023 
 4198  537*2^2755164+1                   829390 L3035 2019 
 4199  225*370^322863-1                  829180 A14   2024 
 4200  579*2^2754370+1                   829151 L1823 2019 
 4201  441*2^2754188+1                   829096 L2564 2019 Generalized Fermat
 4202  455*2^2754132-1                   829080 L5516 2023 
 4203  139*2^2751839-1                   828389 A27   2024 
 4204  677*792^285769-1                  828369 L541  2023 
 4205  215*2^2751022-1                   828143 L2484 2018 
 4206  337*2^2750860+1                   828094 L4854 2019 
 4207  701*2^2750267+1                   827916 L3784 2019 
 4208  467*2^2749195+1                   827593 L1745 2019 
 4209  245*2^2748663+1                   827433 L3173 2015 
 4210  591*2^2748315+1                   827329 L3029 2019 
 4211  205*2^2747571-1                   827104 L1817 2024 
 4212  57*2^2747499+1                    827082 L3514 2013 
          Divides Fermat F(2747497)
 4213  1007*2^2747268-1                  827014 L4518 2022 
 4214  1089*2^2746155+1                  826679 L2583 2019 
 4215  707*2^2745815+1                   826576 L3760 2019 
 4216  525*2^2743252-1                   825804 L5516 2023 
 4217  459*2^2742310+1                   825521 L4582 2019 
 4218  777*2^2742196+1                   825487 L3919 2019 
 4219  609*2^2741078+1                   825150 L3091 2019 
 4220  684*157^375674+1                  824946 L5112 2022 
 4221  639*2^2740186+1                   824881 L4958 2019 
 4222  905*2^2739805+1                   824767 L4958 2019 
 4223  119*954^276761+1                  824625 L5410 2022 
 4224  1955556^131072+1                  824610 L4250 2015 Generalized Fermat
 4225  777*2^2737282+1                   824007 L1823 2019 
 4226d 224*938^277168-1                  823802 A11   2025 
 4227  765*2^2735232+1                   823390 L1823 2019 
 4228  609*2^2735031+1                   823330 L1823 2019 
 4229  9*10^823037+1                     823038 L4789 2024 
 4230  305*2^2733989+1                   823016 L1823 2019 
 4231  165*2^2732983+1                   822713 L1741 2015 
 4232  1133*2^2731993+1                  822415 L4687 2019 
 4233  251*2^2730917+1                   822091 L3924 2015 
 4234  189*2^2730633-1                   822005 A27   2024 
 4235  1185*2^2730620+1                  822002 L4948 2019 
 4236  (10^410997+1)^2-2                 821995 p405  2022 
 4237  173*2^2729905+1                   821786 L3895 2015 
 4238  285*2^2728979-1                   821507 A27   2024 
 4239  1981*2^2728877-1                  821478 L1134 2018 
 4240  693*2^2728537+1                   821375 L3035 2019 
 4241  501*2^2728224+1                   821280 L3035 2019 
 4242  763*2^2727928+1                   821192 L3924 2019 
 4243  553*2^2727583-1                   821088 L5516 2023 
 4244  5292*820^281664+1                 820721 A11   2024 
 4245  465*2^2726085-1                   820637 L5516 2023 
 4246  291*2^2725533-1                   820470 L1817 2024 
 4247  10*743^285478+1                   819606 L4955 2019 
 4248  17*2^2721830-1                    819354 p279  2010 
 4249  1006*639^291952+1                 819075 L4444 2021 
 4250  1101*2^2720091+1                  818833 L4935 2019 
 4251  1766192^131072+1                  818812 L4231 2015 Generalized Fermat
 4252  555*2^2719105-1                   818535 L5516 2023 
 4253  165*2^2717378-1                   818015 L2055 2012 
 4254  495*2^2717011-1                   817905 L5516 2023 
 4255  68633*2^2715609+1                 817485 L5105 2020 
 4256  1722230^131072+1                  817377 L4210 2015 Generalized Fermat
 4257  9574*5^1169232+1                  817263 L5410 2021 
 4258  1717162^131072+1                  817210 L4226 2015 Generalized Fermat
 4259  133*2^2713410+1                   816820 L3223 2015 
 4260  9022*96^411931-1                  816563 L5410 2023 
 4261b 17423*52^475727-1                 816354 A11   2025 
 4262  45*2^2711732+1                    816315 L1349 2012 
 4263  569*2^2711451+1                   816231 L4568 2019 
 4264  567*2^2710898-1                   816065 L5516 2023 
 4265  12830*3^1709456+1                 815622 L5410 2021 
 4266  335*2^2708958-1                   815481 L2235 2020 
 4267  93*2^2708718-1                    815408 L1862 2016 
 4268  1660830^131072+1                  815311 L4207 2015 Generalized Fermat
 4269  837*2^2708160+1                   815241 L4314 2019 
 4270  261*2^2707551-1                   815057 A27   2024 
 4271  1005*2^2707268+1                  814972 L4687 2019 
 4272  13*458^306196+1                   814748 L3610 2015 
 4273  253*2^2705844+1                   814543 L4083 2015 
 4274  657*2^2705620+1                   814476 L4907 2019 
 4275  39*2^2705367+1                    814399 L1576 2013 
          Divides GF(2705360,3)
 4276  405*2^2704471-1                   814130 L5516 2023 
 4277  303*2^2703864+1                   813947 L1204 2019 
 4278  141*2^2702160+1                   813434 L1741 2015 
 4279  753*2^2701925+1                   813364 L4314 2019 
 4280  133*2^2701452+1                   813221 L3173 2015 
 4281  58434*5^1162930+1                 812858 A11   2024 
 4282  521*2^2700095+1                   812813 L4854 2019 
 4283  393*2^2698956+1                   812470 L1823 2019 
 4284  417*2^2698652+1                   812378 L3035 2019 
 4285  525*2^2698118+1                   812218 L1823 2019 
 4286  3125*2^2697651+1                  812078 L3924 2019 
 4287  287*2^2697536-1                   812042 A27   2024 
 4288  153*2^2697173+1                   811933 L3865 2015 
 4289  1560730^131072+1                  811772 L4201 2015 Generalized Fermat
 4290  26*3^1700041+1                    811128 L4799 2020 
 4291  1538654^131072-1538654^65536+1    810961 L4561 2017 Generalized unique
 4292  11*2^2691961+1                    810363 p286  2013 
          Divides GF(2691960,12)
 4293  555*2^2691334-1                   810176 L5516 2023 
 4294  58*536^296735-1                   809841 L5410 2021 
 4295  33016*3^1696980+1                 809670 L5366 2021 
 4296  7335*2^2689080-1                  809498 L4036 2015 
 4297  1049*2^2688749+1                  809398 L4869 2018 
 4298  120*957^271487-1                  809281 L541  2023 
 4299  329*2^2688221+1                   809238 L3035 2018 
 4300  1578*37^515979-1                  809163 p443  2024 
 4301  865*2^2687434+1                   809002 L4844 2018 
 4302  989*2^2686591+1                   808748 L2805 2018 
 4303  136*904^273532+1                  808609 L5410 2020 
 4304  243*2^2685873+1                   808531 L3865 2015 
 4305  909*2^2685019+1                   808275 L3431 2018 
 4306  1455*2^2683954-6325241166627*2^1290000-1
                                         807954 p423  2021 
          Arithmetic progression (3,d=1455*2^2683953-6325241166627*2^1290000)
 4307  1455*2^2683953-1                  807954 L1134 2020 
 4308  11210*241^339153-1                807873 L5410 2019 
 4309  1456746^131072-1456746^65536+1    807848 L4561 2017 Generalized unique
 4310  975*2^2681840+1                   807318 L4155 2018 
 4311  999*2^2681353-1                   807171 L4518 2022 
 4312  295*2^2680932+1                   807044 L1741 2015 
 4313  275*2^2679936-1                   806744 A27   2024 
 4314  1427604^131072-1427604^65536+1    806697 L4561 2017 Generalized unique
 4315  575*2^2679711+1                   806677 L2125 2018 
 4316c 46533*52^469992-1                 806513 L6248 2025 
 4317  2386*52^469972+1                  806477 L4955 2019 
 4318  2778*991^269162+1                 806433 p433  2023 
 4319  10*80^423715-1                    806369 p247  2023 
 4320  219*2^2676229+1                   805628 L1792 2015 
 4321  637*2^2675976+1                   805552 L3035 2018 
 4322  1395583^131072-1395583^65536+1    805406 L4561 2017 Generalized unique
 4323  951*2^2674564+1                   805127 L1885 2018 
 4324  531*2^2673250-1                   804732 L5516 2023 
 4325  1372930^131072+1                  804474 g236  2003 Generalized Fermat
 4326  662*1009^267747-1                 804286 L5410 2020 
 4327  261*2^2671677+1                   804258 L3035 2015 
 4328  895*2^2671520+1                   804211 L3035 2018 
 4329  1361244^131072+1                  803988 g236  2004 Generalized Fermat
 4330  789*2^2670409+1                   803877 L3035 2018 
 4331  256*11^771408+1                   803342 L3802 2014 Generalized Fermat
 4332  503*2^2668529+1                   803310 L4844 2018 
 4333  255*2^2668448+1                   803286 L1129 2015 
 4334  4189*2^2666639-1                  802742 L1959 2017 
 4335  539*2^2664603+1                   802129 L4717 2018 
 4336  3^1681130+3^445781+1              802103 CH9   2022 
 4337  26036*745^279261-1                802086 L4189 2020 
 4338  295*2^2663855-1                   801903 A27   2024 
 4339  1396*5^1146713-1                  801522 L3547 2013 
 4340  676*687^282491-1                  801418 L5426 2023 
 4341  267*2^2662090+1                   801372 L3234 2015 
          Divides Fermat F(2662088)
 4342  51*892^271541+1                   801147 L5410 2019 
 4343  1851*24^580404+1                  801084 A49   2024 
 4344e 12124*477^299035-1                800975 A11   2025 
 4345  297*2^2660048+1                   800757 L3865 2015 
 4346  133*2^2658587-1                   800317 L1817 2024 
 4347  99*2^2658496-1                    800290 L1862 2021 
 4348  851*2^2656411+1                   799663 L4717 2018 
 4349  487*2^2655008+1                   799240 L3760 2018 
 4350  153*2^2654686-1                   799143 A27   2024 
 4351  441*2^2652807-1                   798578 L5516 2023 
 4352b 77594*78^421949-1                 798373 A11   2025 
 4353  371*2^2651663+1                   798233 L3760 2018 
 4354  69*2^2649939-1                    797713 L3764 2014 
 4355  207*2^2649810+1                   797675 L1204 2015 
 4356  505*2^2649496+1                   797581 L3760 2018 
 4357  993*2^2649256+1                   797509 L3760 2018 
 4358  225*718^279185-1                  797390 A11   2024 
 4359  517*2^2648698+1                   797341 L3760 2018 
 4360  340*703^280035+1                  797250 L4001 2018 
 4361  441*2^2648307+1                   797223 L3760 2018 
 4362  1129*2^2646590+1                  796707 L3760 2018 
 4363  128*518^293315+1                  796156 L4001 2019 
 4364  211*744^277219-1                  796057 L5410 2021 
 4365  1181782^131072-1181782^65536+1    795940 L4142 2015 Generalized unique
 4366  1176694^131072+1                  795695 g236  2003 Generalized Fermat
 4367  13*2^2642943-1                    795607 L1862 2012 
 4368b 73406*105^393484+1                795311 A11   2025 
 4369  119*410^304307+1                  795091 L4294 2019 
 4370  501*2^2641052+1                   795039 L3035 2018 
 4371  267*2^2640554-1                   794889 A27   2024 
 4372  879*2^2639962+1                   794711 L3760 2018 
 4373  57*2^2639528-1                    794579 L2484 2016 
 4374  342673*2^2639439-1                794556 L53   2007 
 4375  813*2^2639092+1                   794449 L2158 2018 
 4376  1147980^131072-1147980^65536+1    794288 L4142 2015 Generalized unique
 4377  197*972^265841-1                  794247 L4955 2022 
 4378  1027*2^2638186+1                  794177 L3760 2018 
 4379  889*2^2637834+1                   794071 L3545 2018 
 4380  175*2^2637399-1                   793939 A27   2024 
 4381  421*2^2636975-1                   793812 L5516 2023 
 4382  92182*5^1135262+1                 793520 L3547 2013 
 4383  5608*70^429979+1                  793358 L5390 2021 
 4384  741*2^2634385+1                   793032 L1204 2018 
 4385c 34449*52^461672-1                 792236 A11   2025 
 4386  465*2^2630496+1                   791861 L1444 2018 
 4387  189*2^2630487+1                   791858 L3035 2015 
 4388  87*2^2630468+1                    791852 L3262 2013 
 4389  123454321*2^2630208+1             791780 L6049 2024 Generalized Fermat
 4390b 5252*53^459192-1                  791778 A63   2025 
 4391  4*5^1132659-1                     791696 L4965 2022 
 4392  1131*2^2629345+1                  791515 L4826 2018 
 4393  967*2^2629344+1                   791515 L3760 2018 
 4394  267*2^2629210+1                   791474 L3035 2015 
 4395  154*883^268602+1                  791294 L5410 2020 
 4396  237*2^2627713-1                   791023 L1817 2024 
 4397  819*2^2627529+1                   790968 L1387 2018 
 4398  183*2^2626880-1                   790772 L1817 2024 
 4399  17152*5^1131205-1                 790683 L3552 2013 
 4400  183*2^2626442+1                   790641 L3035 2015 
 4401  137*2^2626238-1                   790579 A27   2024 
 4402  813*2^2626224+1                   790576 L4830 2018 
 4403d 66*952^265412+1                   790568 A52   2025 
 4404  807*2^2625044+1                   790220 L1412 2018 
 4405  557*2^2624952-1                   790193 L5516 2023 
 4406  4*10^789955+1                     789956 L4789 2024 
 4407  1063730^131072+1                  789949 g260  2013 Generalized Fermat
 4408  1243*2^2623707-1                  789818 L1828 2011 
 4409  693*2^2623557+1                   789773 L3278 2018 
 4410  981*2^2622032+1                   789314 L1448 2018 
 4411  145*2^2621020+1                   789008 L3035 2015 
 4412  963*792^271959-1                  788338 L5410 2021 
 4413  1798*165^354958+1                 787117 p365  2024 
 4414  541*2^2614676+1                   787099 L4824 2018 
 4415  545*2^2614294-1                   786984 L5516 2023 
 4416  (10^393063-1)^2-2                 786126 p405  2022 Near-repdigit
 4417  1061*268^323645-1                 785857 L5410 2019 
 4418  1662*483^292719-1                 785646 L5410 2022 
 4419  984522^131072-984522^65536+1      785545 p379  2015 Generalized unique
 4420  1071*2^2609316+1                  785486 L3760 2018 
 4421  87*2^2609046+1                    785404 L2520 2013 
 4422  18922*111^383954+1                785315 L4927 2021 
 4423  543*2^2608129+1                   785128 L4822 2018 
 4424  377*2^2607856-1                   785046 L2257 2023 
 4425  329584*5^1122935-1                784904 L3553 2013 
 4426  10*311^314806+1                   784737 L3610 2014 
 4427b 85806*52^457298-1                 784730 A11   2025 
 4428  1019*2^2606525+1                  784646 L1201 2018 
 4429  977*2^2606211+1                   784551 L4746 2018 
 4430  13*2^2606075-1                    784508 L1862 2011 
 4431  693*2^2605905+1                   784459 L4821 2018 
 4432e 6984*507^289940-1                 784294 A54   2025 
 4433  147*2^2604275+1                   783968 L1741 2015 
 4434  105*2^2603631+1                   783774 L3459 2015 
 4435  93*2^2602483-1                    783428 L1862 2016 
 4436  155*2^2602213+1                   783347 L2719 2015 
 4437  545*2^2602018-1                   783289 L5516 2023 
 4438  303*2^2601525+1                   783140 L4816 2018 
 4439  711*2^2600535+1                   782842 L4815 2018 
 4440  1133*2^2599345+1                  782484 L4796 2018 
 4441  397*2^2598796+1                   782319 L3877 2018 
 4442  421*2^2597273-1                   781860 L5516 2023 
 4443  585*2^2596523-1                   781635 L5819 2023 
 4444  203*2^2595752-1                   781402 A27   2024 
 4445  1536*177^347600+1                 781399 L5410 2020 
 4446  1171*2^2595736+1                  781398 L3035 2018 
 4447  (146^180482+1)^2-2                781254 p405  2022 
 4448  579*2^2595159-1                   781224 L5516 2023 
 4449  543*2^2594975-1                   781169 L5516 2023 
 4450  909548^131072+1                   781036 p387  2015 Generalized Fermat
 4451  7386*82^408082-1                  780997 A11   2024 
 4452  2*218^333925+1                    780870 L4683 2017 
 4453  15690*29^533930+1                 780823 L5787 2023 
 4454  1149*2^2593359+1                  780682 L1125 2018 
 4455  225*2^2592918+1                   780549 L1792 2015 Generalized Fermat
 4456  495*2^2592802-1                   780514 L5516 2023 
 4457  333*2^2591874-1                   780235 L2017 2019 
 4458  883969^131072-883969^65536+1      779412 p379  2015 Generalized unique
 4459  2154*687^274573-1                 778956 L5752 2023 
 4460  872989^131072-872989^65536+1      778700 p379  2015 Generalized unique
 4461  703*2^2586728+1                   778686 L4256 2018 
 4462  2642*372^302825-1                 778429 L5410 2019 
 4463  120*825^266904+1                  778416 L4001 2018 
 4464  337*2^2585660+1                   778364 L2873 2018 
 4465  31*2^2585311-1                    778258 L4521 2022 
 4466  393*2^2584957+1                   778153 L4600 2018 
 4467  151*2^2584480+1                   778009 L4043 2015 
 4468  862325^131072-862325^65536+1      778001 p379  2015 Generalized unique
 4469  385*2^2584280+1                   777949 L4600 2018 
 4470  861088^131072-861088^65536+1      777919 p379  2015 Generalized unique
 4471  65*2^2583720-1                    777780 L2484 2015 
 4472  25*2^2583690+1                    777770 L3249 2013 Generalized Fermat
 4473  82*920^262409-1                   777727 L4064 2015 
 4474  123*2^2583362-1                   777672 L1817 2024 
 4475  1041*2^2582112+1                  777297 L1456 2018 
 4476  153*2^2581916-1                   777237 L1817 2024 
 4477  334310*211^334310-1               777037 p350  2012 
          Generalized Woodall
 4478  229*2^2581111-1                   776995 L1862 2017 
 4479  61*2^2580689-1                    776867 L2484 2015 
 4480  1113*2^2580205+1                  776723 L4724 2018 
 4481  51*2^2578652+1                    776254 L3262 2013 
 4482  173*2^2578197+1                   776117 L3035 2015 
 4483  833*2^2578029+1                   776067 L4724 2018 
 4484b 51729*52^452017-1                 775668 A11   2025 
 4485  80*394^298731-1                   775358 L541  2020 
 4486b 41748*78^409654-1                 775109 A11   2025 
 4487  302*423^295123-1                  775096 L5413 2021 
 4488  460*628^276994+1                  775021 L5410 2020 
 4489  459*2^2573899+1                   774824 L1204 2018 
 4490  593*2^2572634-1                   774443 L5516 2023 
 4491  806883^131072-806883^65536+1      774218 p379  2015 Generalized unique
 4492  3*2^2571360-3*2^1285680+1         774057 A3    2023 Generalized unique
 4493  181*2^2570921-1                   773927 A27   2024 
 4494  285*2^2570839-1                   773903 A27   2024 
 4495  357*2^2568110-1                   773081 L2257 2023 
 4496  627*2^2567718+1                   772963 L3803 2018 
 4497  933*2^2567598+1                   772927 L4724 2018 
 4498  757*2^2566468+1                   772587 L2606 2018 
 4499  471*2^2566323-1                   772543 L5516 2023 
 4500  231*2^2565263+1                   772224 L3035 2015 
 4501  4*737^269302+1                    772216 L4294 2016 Generalized Fermat
 4502  941*2^2564867+1                   772105 L4724 2018 
 4503  923*2^2563709+1                   771757 L1823 2018 
 4504  151*596^278054+1                  771671 L4876 2019 
 4505  770202^131072-770202^65536+1      771570 p379  2015 Generalized unique
 4506  303*2^2562423-1                   771369 L2017 2018 
 4507  75*2^2562382-1                    771356 L2055 2011 
 4508  147559*2^2562218+1                771310 L764  2012 
 4509  117*412^294963+1                  771300 p268  2021 
 4510  829*2^2561730+1                   771161 L1823 2018 
 4511  404*12^714558+1                   771141 L1471 2011 
 4512  5*308^309755+1                    770842 L4294 2024 
 4513  757576^131072-757576^65536+1      770629 p379  2015 Generalized unique
 4514  295*80^404886+1                   770537 L5410 2021 
 4515  1193*2^2559453+1                  770476 L2030 2018 
 4516  205*2^2559417-1                   770464 A27   2024 
 4517  19*984^257291+1                   770072 L5410 2020 
 4518  116*950^258458-1                  769619 L5410 2021 
 4519  147314*91^392798-1                769513 A11   2024 
 4520  612497*18^612497+1                768857 L5765 2023 Generalized Cullen
 4521  19861029*2^2553830+1              768787 A31   2024 
 4522  175*2^2553699-1                   768743 A27   2024 
 4523  731582^131072-731582^65536+1      768641 p379  2015 Generalized unique
 4524  479*2^2553152-1                   768579 L5516 2023 
 4525  65*752^267180-1                   768470 L5410 2020 
 4526  120312*91^392238-1                768416 A15   2024 
 4527  419*2^2552363+1                   768341 L4713 2018 
 4528  369*2^2551955-1                   768218 L2257 2023 
 4529  34*759^266676-1                   768093 L4001 2019 
 4530  315*2^2550412+1                   767754 L4712 2017 
 4531  415*2^2549590+1                   767506 L4710 2017 
 4532  1152*792^264617-1                 767056 L4955 2021 
 4533  693*2^2547752+1                   766953 L4600 2017 
 4534  673*2^2547226+1                   766795 L2873 2017 
 4535  169*2^2545526+1                   766282 L2125 2015 
          Divides GF(2545525,10), generalized Fermat
 4536  196*814^263256+1                  766242 L5410 2021 Generalized Fermat
 4537  183*2^2545116+1                   766159 L3035 2015 
 4538  311*2^2544778-1                   766058 L2017 2018 
 4539  9*2^2543551+1                     765687 L1204 2011 
          Divides Fermat F(2543548), GF(2543549,3), GF(2543549,6),
          GF(2543549,12)
 4540  67*446^288982+1                   765612 L4273 2020 
 4541  663*2^2542990+1                   765520 L4703 2017 
 4542  705*2^2542464+1                   765361 L2873 2017 
 4543  689186^131072+1                   765243 g429  2013 Generalized Fermat
 4544  745*2^2540726+1                   764838 L4696 2017 
 4545  682504^131072-682504^65536+1      764688 p379  2015 Generalized unique
 4546  64*177^340147-1                   764644 L3610 2015 
 4547  421*2^2539336+1                   764419 L4148 2017 
 4548  (2^64-189)*10^764330+1            764350 p439  2024 
 4549  123287*2^2538167+1                764070 L3054 2012 
 4550  305716*5^1093095-1                764047 L3547 2013 
 4551  223*2^2538080+1                   764041 L2125 2015 
 4552  83*2^2537641+1                    763908 L1300 2013 
 4553  543539*2^2536028-1                763427 L4187 2022 
 4554  473*2^2533376-1                   762625 L5516 2023 
 4555  645*2^2532811+1                   762455 L4600 2017 
 4556  953*2^2531601+1                   762091 L4404 2017 
 4557  694*567^276568-1                  761556 L4444 2021 
 4558  545*2^2528179+1                   761061 L1502 2017 
 4559  517*2^2527857-1                   760964 L5516 2023 
 4560  203*2^2526505+1                   760557 L3910 2015 
 4561  967*2^2526276+1                   760488 L1204 2017 
 4562  3317*2^2523366-1                  759613 L5399 2021 
 4563  241*2^2522801-1                   759442 L2484 2018 
 4564  153*2^2522271-1                   759282 A27   2024 
 4565  360307*6^975466-1                 759066 p255  2017 
 4566  326*80^398799+1                   758953 L4444 2021 
 4567  749*2^2519457+1                   758436 L1823 2017 
 4568  199*2^2518871-1                   758259 L2484 2018 
 4569  6*10^758068+1                     758069 L5009 2019 
 4570  87*2^2518122-1                    758033 L2484 2014 
 4571  515*2^2517626-1                   757884 L5516 2023 
 4572  605347^131072-605347^65536+1      757859 p379  2015 Generalized unique
 4573  711*2^2516187+1                   757451 L3035 2017 
 4574  967*2^2514698+1                   757003 L4600 2017 
 4575  33*2^2513872-1                    756753 L3345 2013 
 4576  1-V(-3,-3,1307101)-3^1307101      756533 p437  2024 
 4577  973*2^2511920+1                   756167 L1823 2017 
 4578  679*2^2511814+1                   756135 L4598 2017 
 4579  1093*2^2511384+1                  756005 L1823 2017 
 4580  38*875^256892-1                   755780 L4001 2019 
 4581  209*2^2510308-1                   755681 A27   2024 
 4582  45*2^2507894+1                    754953 L1349 2012 
 4583  130484*5^1080012-1                754902 L3547 2013 
 4584  572186^131072+1                   754652 g0    2004 Generalized Fermat
 4585  242*501^279492-1                  754586 L4911 2019 
 4586  883*2^2506382+1                   754500 L1823 2017 
 4587f 9702*871^256606+1                 754431 A44   2025 
 4588  77*2^2505854-1                    754340 A27   2024 
 4589  847*2^2505540+1                   754246 L4600 2017 
 4590  39768*5^1079005+1                 754197 A11   2024 
 4591  175604*91^384974-1                754186 A16   2024 
 4592  191*2^2504121+1                   753818 L3035 2015 
 4593  783*2^2500912+1                   752853 L1823 2017 
 4594  133*488^279973-1                  752688 L541  2023 
 4595  165*2^2500130-1                   752617 L2055 2011 
 4596  33*2^2499883-1                    752542 L3345 2013 
 4597  319*2^2498685-1                   752182 L2017 2018 
 4598  215206*5^1076031-1                752119 L20   2023 
          Generalized Woodall
 4599c 41712*52^438229-1                 752008 A11   2025 
 4600  477*2^2496685-1                   751580 L5516 2023 
 4601  321*2^2496594-1                   751553 L2235 2018 
 4602  531*2^2495930-1                   751353 L5516 2023 
 4603  365*2^2494991+1                   751070 L3035 2017 
 4604  91*2^2494467-1                    750912 L1817 2024 
 4605  213*2^2493004-1                   750472 L1863 2017 
 4606  777*2^2492560+1                   750339 L3035 2017 
 4607  57*2^2492031+1                    750178 L1230 2013 
 4608  879*2^2491342+1                   749972 L4600 2017 
 4609  14*152^343720-1                   749945 L3610 2015 
 4610  231*2^2489083+1                   749292 L3035 2015 
 4611  255*2^2488562+1                   749135 L3035 2015 
 4612  483*2^2488154-1                   749012 L5516 2023 
 4613  708*48^445477-1                   748958 L5410 2022 
 4614  221*780^258841-1                  748596 L4001 2018 
 4615  303*2^2486629+1                   748553 L3035 2017 
 4616  6*433^283918-1                    748548 L3610 2015 
 4617  413*2^2486596-1                   748543 L5516 2023 
 4618  617*2^2485919+1                   748339 L1885 2017 
 4619  4118*82^390928-1                  748168 A11   2024 
 4620  515*2^2484885+1                   748028 L3035 2017 
 4621  1095*2^2484828+1                  748011 L3035 2017 
 4622  1113*2^2484125+1                  747800 L3035 2017 
 4623  607*2^2483616+1                   747646 L3035 2017 
 4624  625*2^2483272+1                   747543 L2487 2017 Generalized Fermat
 4625  527*2^2482876-1                   747423 L5516 2023 
 4626  723*2^2482064+1                   747179 L3035 2017 
 4627  2154*687^263317-1                 747023 L5410 2023 
 4628  26*3^1565545+1                    746957 L4799 2020 
 4629  14336*3^1563960+1                 746203 L5410 2021 
 4630  3*2^2478785+1                     746190 g245  2003 
          Divides Fermat F(2478782), GF(2478782,3), GF(2478776,6),
          GF(2478782,12)
 4631  483*2^2478266-1                   746036 L5516 2023 
 4632  429*2^2478139-1                   745997 L5516 2023 
 4633  33324*5^1067123+1                 745892 A11   2024 
 4634  1071*2^2477584+1                  745831 L3035 2017 
 4635  22*30^504814-1                    745673 p355  2014 
 4636  2074*483^277812-1                 745637 L5410 2022 
 4637  11*2^2476839+1                    745604 L2691 2011 
 4638  95977*6^957680-1                  745225 L4521 2024 
 4639  825*2^2474996+1                   745051 L1300 2017 
 4640  1061*2^2474282-1                  744837 L1828 2012 
 4641  435*2^2473905+1                   744723 L3035 2017 
 4642  1005*2^2473724-1                  744669 L4518 2021 
 4643  1121*2^2473401+1                  744571 L3924 2017 
 4644  325*2^2473267-1                   744531 L2017 2018 
 4645  400*639^265307-1                  744322 L5410 2022 
 4646  11996*3^1559395+1                 744025 L5410 2021 
 4647  889*2^2471082+1                   743873 L1300 2017 
 4648  529*2^2470514+1                   743702 L3924 2017 Generalized Fermat
 4649  561*2^2469713-1                   743461 L5516 2023 
 4650  883*2^2469268+1                   743327 L4593 2017 
 4651  5754*313^297824-1                 743237 L5089 2020 
 4652  81*2^2468789+1                    743182 g418  2009 
 4653  55154*5^1063213+1                 743159 L3543 2013 
 4654  119*2^2468556-1                   743112 L2484 2018 
 4655  2136*396^285974+1                 742877 L5410 2021 
 4656  525*2^2467658+1                   742842 L3035 2017 
 4657  465*2^2467625-1                   742832 L5516 2023 
 4658  715*2^2465640+1                   742235 L3035 2017 
 4659  26773*2^2465343-1                 742147 L197  2006 
 4660  581*550^270707-1                  741839 L5410 2020 
 4661  993*2^2464082+1                   741766 L3035 2017 
 4662  295*2^2463785-1                   741676 L1817 2024 
 4663  1179*2^2463746+1                  741665 L3035 2017 
 4664  857*2^2463411+1                   741564 L3662 2017 
 4665  227*2^2462914-1                   741414 L1817 2024 
 4666  103*2^2462567-1                   741309 L2484 2014 
 4667  12587*2^2462524-1                 741298 L2012 2017 
 4668e 6962*507^273940-1                 741014 A11   2025 
 4669  15592*67^405715+1                 740871 A11   2024 
 4670  5*2^2460482-1                     740680 L503  2008 
 4671  763*2^2458592+1                   740113 L1823 2017 
 4672  453*2^2458461+1                   740074 L3035 2017 
 4673  519*2^2458058+1                   739952 L3803 2017 
 4674  373*2^2457859-1                   739892 L2257 2023 
 4675  545*2^2457692-1                   739842 L5516 2023 
 4676  137*2^2457639+1                   739826 L4021 2014 
 4677  411*2^2457241-1                   739706 L5516 2023 
 4678  41676*7^875197-1                  739632 L2777 2012 
          Generalized Woodall
 4679  2688*991^246849+1                 739582 L5410 2021 
 4680  6143*82^386291-1                  739293 A11   2024 
 4681  133*2^2455666+1                   739232 L2322 2014 
 4682  99*2^2455541-1                    739194 L1862 2015 
 4683  115*2^2454363-1                   738839 L1817 2024 
 4684  14855*82^385937-1                 738616 A11   2024 
 4685  129*2^2452892-1                   738397 L1817 2024 
 4686  377*2^2452639+1                   738321 L3035 2017 
 4687  2189*138^345010+1                 738284 L5410 2020 
 4688  1129*2^2452294+1                  738218 L3035 2017 
 4689  1103*2^2451133+1                  737868 L4531 2017 
 4690  65*2^2450614-1                    737711 L2074 2014 
 4691  549*2^2450523+1                   737684 L3035 2017 
 4692  4*789^254595+1                    737582 L4955 2019 
 4693  3942*55^423771-1                  737519 L4955 2019 
 4694  441*2^2449825-1                   737474 L5516 2023 
 4695  (3*2^1224895)^2-3*2^1224895+1     737462 A3    2023 Generalized unique
 4696  2166*483^274670-1                 737204 L5410 2022 
 4697  765*2^2448660+1                   737123 L4412 2017 
 4698  77*2^2448152-1                    736970 L5819 2024 
 4699  607*2^2447836+1                   736875 L4523 2017 
 4700  1261*988^246031+1                 736807 L5342 2021 
 4701  1005*2^2446722+1                  736540 L4522 2017 
 4702  703*2^2446472+1                   736465 L2805 2017 
 4703  75*2^2446050+1                    736337 L3035 2013 
 4704  115*26^520277-1                   736181 L1471 2014 
 4705  114986*5^1052966-1                735997 L3528 2013 
 4706  1029*2^2444707+1                  735934 L3035 2017 
 4707  4*5^1052422+1                     735613 L4965 2023 Generalized Fermat
 4708  1035*2^2443369+1                  735531 L3173 2017 
 4709  1052072*5^1052072-1               735373 L20   2023 
          Generalized Woodall
 4710b 13194*93^373570+1                 735371 A11   2025 
 4711  1017*2^2442723+1                  735336 L4417 2017 
 4712  489*2^2442281-1                   735203 L5516 2023 
 4713  962*3^1540432+1                   734976 L5410 2021 
 4714  1065*2^2441132+1                  734857 L1823 2017 
 4715  210060*91^374955-1                734558 A10   2024 
 4716  369*2^2436949-1                   733598 L2257 2023 
 4717  393*2^2436849+1                   733568 L3035 2016 
 4718  1425*2^2435607-1                  733194 L1134 2020 
 4719  183*2^2433172-1                   732461 L1817 2024 
 4720  386892^131072+1                   732377 p259  2009 Generalized Fermat
 4721  465*2^2431455+1                   731944 L3035 2016 
 4722  905*2^2430509+1                   731660 L4408 2016 
 4723  223*2^2430490+1                   731653 L4016 2014 
 4724  8*410^279991+1                    731557 L4700 2019 
 4725f 962*333^289821+1                  731061 A52   2025 
 4726  69*2^2428251-1                    730979 L384  2014 
 4727  6070*466^273937+1                 730974 L5410 2021 
 4728  541*2^2427667-1                   730804 L5516 2023 
 4729  233*2^2426512-1                   730456 L2484 2020 
 4730  645*2^2426494+1                   730451 L3035 2016 
 4731  665*2^2425789+1                   730239 L3173 2016 
 4732  539*2^2425704-1                   730213 L5516 2023 
 4733  23*2^2425641+1                    730193 L2675 2011 
 4734  527*2^2424868-1                   729961 L5516 2023 
 4735  361*2^2424232+1                   729770 L3035 2016 Generalized Fermat
 4736  433*2^2423839-1                   729651 L5516 2023 
 4737  753*2^2422914+1                   729373 L3035 2016 
 4738  5619*52^424922+1                  729172 L5410 2019 
 4739  105*2^2422105+1                   729129 L2520 2014 
 4740  62*962^244403+1                   729099 L5409 2021 
 4741  3338*396^280633+1                 729003 L5410 2021 
 4742  539*2^2421556-1                   728964 L5516 2023 
 4743  201*2^2421514-1                   728951 L1862 2016 
 4744  1084*7^862557+1                   728949 L5211 2021 
 4745  239*2^2421404-1                   728918 L2484 2018 
 4746  577*2^2420868+1                   728757 L4489 2016 
 4747  3156*82^380339-1                  727902 A11   2024 
 4748  929*2^2417767+1                   727824 L3924 2016 
 4749  4075*2^2417579-1                  727768 L1959 2017 
 4750  303*2^2417452-1                   727729 L2235 2018 
 4751  895*2^2417396+1                   727712 L3035 2016 
 4752  113*1010^242194-1                 727631 L5789 2023 
 4753  1764*327^289322+1                 727518 L5410 2020 Generalized Fermat
 4754  3317*2^2415998-1                  727292 L5399 2021 
 4755c 43406*52^423786-1                 727223 A11   2025 
 4756  115*2^2415271-1                   727072 A27   2024 
 4757  5724*313^291243-1                 726814 L4444 2020 
 4758  1081*2^2412780+1                  726323 L1203 2016 
 4759  333*2^2412735-1                   726309 L2017 2018 
 4760  6891*52^423132+1                  726100 L5410 2019 
 4761  83*2^2411962-1                    726075 L1959 2018 
 4762  69*2^2410035-1                    725495 L2074 2013 
 4763  12362*1027^240890-1               725462 L4444 2018 
 4764  143157*2^2409056+1                725204 L4504 2016 
 4765  340594^131072-340594^65536+1      725122 p379  2015 Generalized unique
 4766  339*2^2408337+1                   724985 L3029 2016 
 4767  811*2^2408096+1                   724913 L2526 2016 
 4768  157*2^2407958+1                   724870 L1741 2014 
 4769  243686*5^1036954-1                724806 L3549 2013 
 4770  91*2^2407249-1                    724657 A27   2024 
 4771  3660*163^327506+1                 724509 L4955 2019 
 4772  303*2^2406433+1                   724411 L4425 2016 
 4773  345*2^2405701+1                   724191 L3035 2016 
 4774  921*2^2405056+1                   723997 L2805 2016 
 4775  970*323^288448+1                  723778 A11   2024 
 4776  673*2^2403606+1                   723561 L3035 2016 
 4777  475*2^2403220+1                   723444 L4445 2016 
 4778  837*2^2402798+1                   723318 L3372 2016 
 4779  329886^131072-329886^65536+1      723303 p379  2015 Generalized unique
 4780  231*2^2402748+1                   723302 L3995 2014 
 4781  375*2^2401881+1                   723041 L2805 2016 
 4782  511*2^2401795-1                   723016 L5516 2023 
 4783  107*2^2401731+1                   722996 L3998 2014 
 4784  419*2^2401672-1                   722978 L5516 2023 
 4785  143*2^2400710-1                   722688 L5819 2024 
 4786  1023*2^2398601+1                  722054 L4414 2016 
 4787  539*2^2398227+1                   721941 L4061 2016 
 4788  659*2^2397567+1                   721743 L4441 2016 
 4789  40*844^246524+1                   721416 L4001 2017 
 4790  453*2^2395836-1                   721222 L5516 2023 
 4791  465*2^2395133+1                   721010 L4088 2016 
 4792  56*318^288096+1                   720941 L1471 2019 
 4793  667*2^2394430+1                   720799 L4408 2016 
 4794  15*2^2393365+1                    720476 L1349 2010 
 4795  1642*273^295670+1                 720304 L5410 2019 
 4796  8*908^243439+1                    720115 L5410 2021 
 4797  427*2^2391685-1                   719972 L5516 2023 
 4798  633*2^2391222+1                   719833 L3743 2016 
 4799b 5096*53^417366-1                  719658 A11   2025 
 4800  9*10^719055+1                     719056 L4789 2024 
 4801  273*2^2388104+1                   718894 L3668 2014 
 4802  118*558^261698+1                  718791 L4877 2019 
 4803  77*2^2387116-1                    718596 L1817 2024 
 4804  1485*2^2386037-1                  718272 L1134 2017 
 4805  399*2^2384115+1                   717693 L4412 2016 
 4806  99*2^2383846+1                    717612 L1780 2013 
 4807  737*2^2382804-1                   717299 L191  2007 
 4808  111*2^2382772+1                   717288 L3810 2014 
 4809  423*2^2382134-1                   717097 L2519 2023 
 4810  61*2^2381887-1                    717022 L2432 2012 
 4811  202*249^299162+1                  716855 L5410 2019 
 4812d 170*938^240974-1                  716226 A11   2025 
 4813  321*2^2378535-1                   716013 L2017 2018 
 4814  435*2^2378522+1                   716010 L1218 2016 
 4815  829*672^253221+1                  715953 p433  2023 
 4816  4*3^1499606+1                     715495 L4962 2020 Generalized Fermat
 4817  147*2^2375995+1                   715248 L1130 2014 
 4818  915*2^2375923+1                   715228 L1741 2016 
 4819  1981*2^2375591-1                  715128 L1134 2017 
 4820  81*2^2375447-1                    715083 L3887 2021 
 4821  1129*2^2374562+1                  714818 L3035 2016 
 4822  97*2^2374485-1                    714794 L2484 2018 
 4823  1117*2^2373977-1                  714642 L1828 2012 
 4824  161*2^2373286-1                   714433 L1817 2024 
 4825  949*2^2372902+1                   714318 L4408 2016 
 4826  1005*2^2372754-1                  714274 L4518 2021 
 4827  659*2^2372657+1                   714244 L3035 2016 
 4828  1365*2^2372586+1                  714223 L1134 2016 
 4829  509*2^2370721+1                   713661 L1792 2016 
 4830  99*2^2370390+1                    713561 L1204 2013 
 4831  959*2^2370077+1                   713468 L1502 2016 
 4832  21683*82^372763-1                 713404 A11   2024 
 4833  1135*2^2369808+1                  713387 L2520 2016 
 4834  125*2^2369461+1                   713281 L3035 2014 
 4835  475*2^2369411-1                   713267 L5516 2023 
 4836  1183953*2^2367907-1               712818 L447  2007 Woodall
 4837  57671892869766803925...(712708 other digits)...06520121133805600769
                                         712748 p360  2013 
 4838  119878*5^1019645-1                712707 L3528 2013 
 4839  453*2^2367388+1                   712658 L3035 2016 
 4840  150209!+1                         712355 p3    2011 Factorial
 4841  77*2^2363352-1                    711442 L1817 2024 
 4842  281*2^2363327+1                   711435 L1741 2014 
 4843  225408*5^1017214-1                711008 A11   2024 
 4844  2683*2^2360743-1                  710658 L1959 2012 
 4845  16132*67^389127+1                 710580 A11   2024 
 4846f 411522!3-1                        710578 x46   2025 Multifactorial
 4847  409*2^2360166+1                   710484 L1199 2016 
 4848  465*2^2360088-1                   710460 L5516 2023 
 4849  561*2^2359543-1                   710296 L5516 2023 
 4850  305*2^2358854-1                   710089 L2017 2018 
 4851  1706*123^339764+1                 710078 L5410 2021 
 4852  169324*5^1015854+1                710057 A36   2024 
 4853  403*2^2357572+1                   709703 L3029 2016 
 4854  155*2^2357111+1                   709564 L3975 2014 
 4855  523*2^2356047-1                   709244 L2519 2023 
 4856  365*2^2355607+1                   709111 L2117 2016 
 4857  33706*6^910462+1                  708482 L587  2014 
 4858  423*2^2353447-1                   708461 L5516 2023 
 4859  1087*2^2352830+1                  708276 L1492 2016 
 4860  152*1002^235971+1                 708120 L5410 2019 
 4861  179*2^2352291+1                   708113 L1741 2014 
 4862  85*2^2352083-1                    708050 L1817 2024 
 4863  559*2^2351894+1                   707994 L3924 2016 
 4864  24573*2^2350824+1                 707673 p168  2018 
 4865  1035*2^2350388+1                  707541 L2526 2016 
 4866  51306*5^1011671-1                 707133 A34   2024 
 4867  513*2^2348508-1                   706975 L5516 2023 
 4868  433*2^2348252+1                   706897 L2322 2016 
 4869  329*2^2348105+1                   706853 L3029 2016 
 4870b 821*2^2347438-1                   706653 A58   2025 
 4871  45*2^2347187+1                    706576 L1349 2012 
 4872  7675*46^424840+1                  706410 L5410 2019 
 4873  127*2^2346377-1                   706332 L282  2009 
 4874  933*2^2345893+1                   706188 L3035 2016 
 4875  903*2^2345013+1                   705923 L2006 2016 
 4876  33*2^2345001+1                    705918 L2322 2013 
 4877d 704*733^246349-1                  705819 A56   2025 
 4878b 917*2^2344474-1                   705760 A27   2025 
 4879  242079^131072-242079^65536+1      705687 p379  2015 Generalized unique
 4880b 905*2^2344164-1                   705667 A27   2025 
 4881b 635*2^2344154-1                   705664 A58   2025 
 4882  495*2^2343641-1                   705509 L5516 2023 
 4883  627*2^2343140+1                   705359 L3125 2016 
 4884  83*2^2342345+1                    705119 L2626 2013 
 4885b 985*2^2342059-1                   705034 A27   2025 
 4886  914*871^239796-1                  705008 L5410 2023 
 4887b 879*2^2341883-1                   704980 A27   2025 
 4888  61*380^273136+1                   704634 L5410 2019 
 4889  277*2^2340182+1                   704468 L1158 2014 
 4890b 819*2^2339643-1                   704306 A27   2025 
 4891  159*2^2339566+1                   704282 L3035 2014 
 4892b 767*2^2339244-1                   704186 A27   2025 
 4893  335*2^2338972-1                   704104 L2235 2017 
 4894  535*2^2338971-1                   704104 L2519 2023 
 4895  22*422^268038+1                   703685 L4955 2019 
 4896  9602*241^295318-1                 703457 L5410 2019 
 4897  1149*2^2336638+1                  703402 L4388 2016 
 4898  339*2^2336421-1                   703336 L2519 2017 
 4899  231*2^2335281-1                   702992 L1862 2019 
 4900  275293*2^2335007-1                702913 L193  2006 
 4901  105*2^2334755-1                   702834 L1959 2018 
 4902  228188^131072+1                   702323 g124  2010 Generalized Fermat
 4903  809*2^2333017+1                   702312 L2675 2016 
 4904  795*2^2332488+1                   702152 L3029 2016 
 4905  3^1471170-3^529291+1              701927 p269  2019 
 4906  351*2^2331311-1                   701798 L2257 2023 
 4907  229*2^2331017-1                   701709 L1862 2021 
 4908  118*761^243458+1                  701499 L5410 2019 
 4909  435*2^2329948+1                   701387 L2322 2016 
 4910  205906*5^1003382+1                701340 A39   2024 
 4911b 617*2^2329682-1                   701307 A58   2025 
 4912  585*2^2329350+1                   701207 L2707 2016 
 4913  213*2^2328530-1                   700960 L1863 2017 
 4914  1482*327^278686+1                 700773 L5410 2020 
 4915  26472*91^357645+1                 700646 L5410 2020 
 4916  1107*2^2327472+1                  700642 L3601 2016 
 4917  435*2^2327152+1                   700546 L2337 2016 
 4918  413*2^2327048-1                   700514 L5516 2023 
 4919  4161*2^2326875-1                  700463 L1959 2016 
 4920  427*2^2326288+1                   700286 L2719 2016 
 4921  438*19^547574-1                   700215 L5410 2020 
 4922c 12778*58^397058+1                 700188 A62   2025 
 4923  147855!-1                         700177 p362  2013 Factorial
 4924  5872*3^1467401+1                  700132 L4444 2021 
 4925b 981*2^2324786-1                   699834 A58   2025 
 4926  421*2^2324375-1                   699710 L5516 2023 
 4927  451*2^2323952+1                   699582 L3173 2016 
 4928b 803*2^2323684-1                   699502 A58   2025 
 4929  431*2^2323633+1                   699486 L3260 2016 
 4930  3084*871^237917-1                 699484 L5790 2023 
 4931  228*912^236298-1                  699444 L5366 2022 
 4932  1085*2^2323291+1                  699384 L1209 2016 
 4933d 3338*187^307843-1                 699375 A57   2025 
 4934  15*2^2323205-1                    699356 L2484 2011 
 4935  7566*46^420563+1                  699299 L5410 2019 
 4936  1131*2^2322167+1                  699045 L1823 2016 
 4937  385*2^2321502+1                   698845 L1129 2016 
 4938  8348*3^1464571+1                  698782 L5367 2021 
 4939  645*2^2320231+1                   698462 L3377 2016 
 4940  51306*5^999035-1                  698301 A28   2024 
 4941  1942*877^237267+1                 698280 L5410 2022 
 4942  165*2^2319575+1                   698264 L2627 2014 
 4943  809*2^2319373+1                   698204 L3924 2016 
 4944  10*11^670128+1                    697868 A2    2024 
 4945b 4708*53^404689-1                  697800 A11   2025 
 4946  125098*6^896696+1                 697771 L587  2014 
 4947  65536*5^997872+1                  697488 L3802 2014 Generalized Fermat
 4948  381*2^2314743+1                   696810 L4358 2016 
 4949  120*825^238890+1                  696714 L4837 2018 
 4950  3375*2^2314297+1                  696677 L1745 2019 
 4951c 759*2^2314104-1                   696618 A58   2025 
 4952  4063*2^2313843-1                  696540 L1959 2016 
 4953  345*2^2313720-1                   696502 L2017 2017 
 4954  74*830^238594-1                   696477 L5410 2020 
 4955  495*2^2313462-1                   696425 L5545 2023 
 4956  926*639^248221-1                  696388 L4444 2022 
 4957  361*2^2312832+1                   696235 L3415 2016 Generalized Fermat
 4958  1983*366^271591-1                 696222 L2054 2012 
 4959  3*2^2312734-1                     696203 L158  2005 
 4960  46188*5^995988-1                  696171 A11   2024 
 4961  2643996*7^823543-1                695981 p396  2021 
 4962  53653*2^2311848+1                 695941 L2012 2017 
 4963  873*2^2311086+1                   695710 L2526 2016 
 4964  1033*2^2310976+1                  695677 L4352 2016 
 4965  4063*2^2310187-1                  695440 L1959 2016 
 4966  4063*2^2309263-1                  695162 L1959 2016 
 4967  565*2^2308984+1                   695077 L2322 2016 
 4968  447*2^2308104-1                   694812 L5516 2023 
 4969c 691*2^2307933-1                   694760 L2257 2025 
 4970  450457*2^2307905-1                694755 L172  2006 
 4971  1018*3^1455600+1                  694501 L5410 2021 
 4972  553*2^2306343-1                   694282 L5516 2023 
 4973  1185*2^2306324+1                  694276 L4347 2016 
 4974  702*718^243032-1                  694133 A11   2024 
 4975  3267*2^2305266+1                  693958 L1204 2019 
 4976  107*770^240408-1                  693938 L4955 2020 
 4977  467*2^2304298-1                   693666 L5516 2023 
 4978  537*2^2304115+1                   693611 L3267 2016 
 4979  842*1017^230634-1                 693594 L4001 2017 
 4980  729*2^2303162+1                   693324 L1204 2016 Generalized Fermat
 4981  641*2^2302879+1                   693239 L2051 2016 
 4982c 939*2^2301535-1                   692835 A27   2025 
 4983  729*2^2300290+1                   692460 L1204 2016 Generalized Fermat
 4984  189*2^2299959+1                   692359 L2627 2014 
 4985b 29389*78^365841-1                 692211 A11   2025 
 4986  2582*111^338032-1                 691389 L4786 2021 
 4987  659*2^2294393+1                   690684 L3378 2016 
 4988  3*2^2291610+1                     689844 L753  2008 
          Divides GF(2291607,3), GF(2291609,5)
 4989  2*11171^168429+1                  681817 g427  2014 
          Divides Phi(11171^168429,2)
 4990  11*2^2230369+1                    671410 L2561 2011 
          Divides GF(2230368,3)
 4991  2*179^294739+1                    664004 g424  2011 
          Divides Phi(179^294739,2)
 4992e 2717*2^2196891+1                  661334 L5239 2025 
          Divides GF(2196890,12)
 4993  2*10271^164621+1                  660397 g427  2014 
          Divides Phi(10271^164621,2)
 4994  2*659^233973+1                    659544 g424  2015 
          Divides Phi(659^233973,2)
 4995  2*191^287901+1                    656713 g424  2015 
          Divides Phi(191^287901,2)
 4996  7*2^2167800+1                     652574 g279  2007 
          Divides Fermat F(2167797), GF(2167799,5), GF(2167799,10)
 4997  1179*2^2158475+1                  649769 L3035 2014 
          Divides GF(2158470,6)
 4998  3*2^2145353+1                     645817 g245  2003 
          Divides Fermat F(2145351), GF(2145351,3), GF(2145352,5),
          GF(2145348,6), GF(2145352,10), GF(2145351,12)
 4999  753*2^2143388+1                   645227 L2583 2014 
          Divides GF(2143383,3)
 5000  25*2^2141884+1                    644773 L1741 2011 
          Divides Fermat F(2141872), GF(2141871,5), GF(2141872,10);
          generalized Fermat
 5001  7*2^2139912+1                     644179 g279  2007 
          Divides GF(2139911,12)
 5002  189*2^2115473+1                   636824 L3784 2014 
          Divides GF(2115468,6)
 5003  107*2^2081775+1                   626679 L3432 2013 
          Divides GF(2081774,6)
 5004f 2167*2^2050616+1                  617301 L6095 2025 
          Divides GF(2050615,5)
 5005  45*2^2014557+1                    606444 L1349 2012 
          Divides GF(2014552,10)
 5006  251749*2^2013995-1                606279 L436  2007 Woodall
 5007  657*2^1998854+1                   601718 L2520 2013 
          Divides GF(1998852,10)
 5008  101*2^1988279+1                   598534 L3141 2013 
          Divides GF(1988278,12)
 5009  175*2^1962288+1                   590710 L2137 2013 
          Divides GF(1962284,10)
 5010  225*2^1960083+1                   590047 L3548 2013 
          Divides GF(1960078,6)
 5011  2*47^346759+1                     579816 g424  2011 
          Divides Phi(47^346759,2)
 5012  4401*2^1925824+1                  579735 L5309 2024 
          Divides GF(1925823,5)
 5013  71*2^1873569+1                    564003 L1223 2011 
          Divides GF(1873568,5)
 5014  13*2^1861732+1                    560439 g267  2005 
          Divides GF(1861731,6)
 5015  3*2^1832496+1                     551637 p189  2007 
          Divides GF(1832490,3), GF(1832494,5)
 5016  39*2^1824871+1                    549343 L2664 2011 
          Divides GF(1824867,6)
 5017  45*2^1779971+1                    535827 L1223 2011 
          Divides GF(1779969,5)
 5018  5*2^1777515+1                     535087 p148  2005 
          Divides GF(1777511,5), GF(1777514,6)
 5019  129*2^1774709+1                   534243 L2526 2013 
          Divides GF(1774705,12)
 5020  2*191^232149+1                    529540 g424  2011 
          Divides Phi(191^232149,2)
 5021  183*2^1747660+1                   526101 L2163 2013 
          Divides Fermat F(1747656)
 5022  110059!+1                         507082 p312  2011 Factorial
 5023  2^1667321-2^833661+1              501914 L137  2011 
          Gaussian Mersenne norm 38, generalized unique
 5024  2*359^192871+1                    492804 g424  2014 
          Divides Phi(359^192871,2)
 5025  10^490030+10^309648+12345678987654321*10^245007+10^180382+1
                                         490031 p363  2024 Palindrome
 5026  10^490000+3*(10^7383-1)/9*10^241309+1
                                         490001 p413  2021 Palindrome
 5027  1098133#-1                        476311 p346  2012 Primorial
 5028  10^474500+999*10^237249+1         474501 p363  2014 Palindrome
 5029  103040!-1                         471794 p301  2010 Factorial
 5030  135*2^1515894+1                   456332 L1129 2013 
          Divides GF(1515890,10)
 5031  2*839^155785+1                    455479 g424  2014 
          Divides Phi(839^155785,2)
 5032  131*2^1494099+1                   449771 L2959 2012 
          Divides Fermat F(1494096)
 5033  1467763*2^1467763-1               441847 L381  2007 Woodall
 5034  4125*2^1445205-1                  435054 L1959 2014 
          Arithmetic progression (2,d=4125*2^1445205-2723880039837*2^1290000)
          [p199]
 5035  94550!-1                          429390 p290  2010 Factorial
 5036  2415*2^1413627-1                  425548 L1959 2014 
          Arithmetic progression (2,d=2415*2^1413627-1489088842587*2^1290000)
          [p199]
 5037  2985*2^1404274-1                  422733 L1959 2014 
          Arithmetic progression (2,d=2985*2^1404274-770527213395*2^1290000)
          [p199]
 5038  2^1398269-1                       420921 G1    1996 Mersenne 35
 5039  17*2^1388355+1                    417938 g267  2005 
          Divides GF(1388354,10)
 5040  338707*2^1354830+1                407850 L124  2005 Cullen
 5041  107*2^1337019+1                   402485 L2659 2012 
          Divides GF(1337018,10)
 5042  1389*2^1335434+1                  402009 L1209 2015 
          Divides GF(1335433,10)
 5043  10^400000+4*(10^102381-1)/9*10^148810+1
                                         400001 p413  2021 Palindrome
 5044  10^390636+999*10^195317+1         390637 p363  2014 Palindrome
 5045  6325241166627*2^1290000-1         388342 L3573 2021 
          Arithmetic progression (1,d=1455*2^2683953-6325241166627*2^1290000)
 5046  5606879602425*2^1290000-1         388342 L3573 2021 
          Arithmetic progression (1,d=33*2^2939063-5606879602425*2^1290000)
 5047  2618163402417*2^1290001-1         388342 L927  2016 
          Sophie Germain (2p+1)
 5048  4966510140375*2^1290000-1         388342 L3573 2020 
          Arithmetic progression (2,d=2227792035315*2^1290001)
 5049  2996863034895*2^1290000+1         388342 L2035 2016 Twin (p+2)
 5050  2996863034895*2^1290000-1         388342 L2035 2016 Twin (p)
 5051  2723880039837*2^1290000-1         388342 L3829 2016 
          Arithmetic progression (1,d=4125*2^1445205-2723880039837*2^1290000)
          [p199]
 5052  2618163402417*2^1290000-1         388342 L927  2016 Sophie Germain (p)
 5053  2060323099527*2^1290000-1         388342 L3606 2015 
          Arithmetic progression (2,d=69718264533*2^1290002) [p199]
 5054  1938662032575*2^1290000-1         388341 L927  2015 
          Arithmetic progression (1,d=10032831585*2^1290001) [p199]
 5055  1781450041395*2^1290000-1         388341 L3203 2015 
          Arithmetic progression (1,d=69718264533*2^1290002) [p199]
 5056  15*2^1276177+1                    384169 g279  2006 
          Divides GF(1276174,3), GF(1276174,10)
 5057  1268979*2^1268979-1               382007 L201  2007 Woodall
 5058  2^1257787-1                       378632 SG    1996 Mersenne 34
 5059  329*2^1246017+1                   375092 L2085 2012 
          Divides Fermat F(1246013)
 5060  843301#-1                         365851 p302  2010 Primorial
 5061  10^362600+666*10^181299+1         362601 p363  2014 Palindrome
 5062  2^1203793-2^601897+1              362378 L192  2006 
          Gaussian Mersenne norm 37, generalized unique
 5063  1195203*2^1195203-1               359799 L124  2005 Woodall
 5064  2145*2^1099064+1                  330855 L1792 2013 
          Divides Fermat F(1099061)
 5065  10^320236+10^160118+1+(137*10^160119+731*10^159275)*(10^843-1)/999
                                         320237 p44   2014 Palindrome
 5066  10^320096+10^160048+1+(137*10^160049+731*10^157453)*(10^2595-1)/999
                                         320097 p44   2014 Palindrome
 5067  10^314727-8*10^157363-1           314727 p235  2013 
          Near-repdigit, palindrome
 5068  10^300010+10^204235+12345678987654321*10^149997+10^95775+1
                                         300011 x45   2024 Palindrome
 5069  10^300000+5*(10^48153-1)/9*10^125924+1
                                         300001 p413  2021 Palindrome
 5070  10^300000+10^158172+11011*10^149998+10^141828+1
                                         300001 p409  2024 Palindrome
 5071  2^991961-2^495981+1               298611 x28   2005 
          Gaussian Mersenne norm 36, generalized unique
 5072  11*2^960901+1                     289262 g277  2005 
          Divides Fermat F(960897)
 5073  1705*2^906110+1                   272770 L3174 2012 
          Divides Fermat F(906108)
 5074  2^859433-1                        258716 SG    1994 Mersenne 33
 5075  13243*2^699764+1                  210655 L5808 2023 
          Divides Fermat F(699760)
 5076  667071*2^667071-1                 200815 g55   2000 Woodall
 5077  18543637900515*2^666668-1         200701 L2429 2012 
          Sophie Germain (2p+1)
 5078  18543637900515*2^666667-1         200701 L2429 2012 Sophie Germain (p)
 5079  3756801695685*2^666669+1          200700 L1921 2011 Twin (p+2)
 5080  3756801695685*2^666669-1          200700 L1921 2011 Twin (p)
 5081  392113#+1                         169966 p16   2001 Primorial
 5082  213778324725*2^561418+1           169015 p430  2023 
          Cunningham chain 2nd kind (2p-1)
 5083  213778324725*2^561417+1           169015 p430  2023 
          Cunningham chain 2nd kind (p)
 5084  366439#+1                         158936 p16   2001 Primorial
 5085  2*893962950^16384+1               146659 p428  2023 
          Cunningham chain 2nd kind (2p-1)
 5086  893962950^16384+1                 146659 p427  2023 
          Cunningham chain 2nd kind (p), generalized Fermat
 5087  481899*2^481899+1                 145072 gm    1998 Cullen
 5088  669821552^16384-669821552^8192+1  144605 A18   2024 
          Twin (p+2), generalized unique
 5089  669821552^16384-669821552^8192-1  144605 A18   2024 Twin (p)
 5090  34790!-1                          142891 p85   2002 Factorial
 5091  (124750^27751-1)/124749           141416 p441  2024 
          Generalized repunit
 5092  222710306^16384-222710306^8192+1  136770 A13   2024 
          Twin (p+2), generalized unique
 5093  222710306^16384-222710306^8192-1  136770 A13   2024 Twin (p)
 5094  (92365^24691-1)/92364             122599 CH14  2024 
          Generalized repunit
 5095c 9955858992*11^111111+1            115721 A25   2025 Twin (p+2)
 5096c 9955858992*11^111111-1            115721 A25   2025 Twin (p)
 5097b 7977227425*(2^368352-2^257849)+2^110505+1
                                         110895 x52   2025 
          Consecutive primes arithmetic progression (2,d=6)
 5098b 7977227425*(2^368352-2^257849)+2^110505-5
                                         110895 x52   2025 
          Consecutive primes arithmetic progression (1,d=6)
 5099  (102936^21961-1)/102935           110076 CH14  2023 
          Generalized repunit
 5100  2^364289-2^182145+1               109662 p58   2001 
          Gaussian Mersenne norm 35, generalized unique
 5101b R(109297)                         109297 E12   2025 
          Repunit, ECPP, unique
 5102  361275*2^361275+1                 108761 DS    1998 Cullen
 5103  26951!+1                          107707 p65   2002 Factorial
 5104  47356235323005*2^333444-1         100391 L6077 2024 
          Sophie Germain (2p+1)
 5105  47356235323005*2^333443-1         100391 L6077 2024 Sophie Germain (p)
 5106  21480284945595*2^333444-1         100390 L6029 2024 
          Sophie Germain (2p+1)
 5107  21480284945595*2^333443-1         100390 L6029 2024 Sophie Germain (p)
 5108  65516468355*2^333333+1            100355 L923  2009 Twin (p+2)
 5109  65516468355*2^333333-1            100355 L923  2009 Twin (p)
 5110c 954589277*(2^332267-2^110758)+2^221511+1
                                         100032 p408  2025 
          Consecutive primes arithmetic progression (2,d=4)
 5111c 954589277*(2^332267-2^110758)+2^221511-3
                                         100032 p408  2025 
          Consecutive primes arithmetic progression (1,d=4)
 5112e 8797170843*(2^317583+2^190552)+2^127033+3
                                          95612 p408  2025 
          Consecutive primes arithmetic progression (2,d=4)
 5113e 8797170843*(2^317583+2^190552)+2^127033-1
                                          95612 p408  2025 
          Consecutive primes arithmetic progression (1,d=4)
 5114  (7176^24691-1)/7175                95202 CH2   2017 
          Generalized repunit
 5115  R(86453)                           86453 E3    2023 
          Repunit, ECPP, unique
 5116  (84741735735*(2^190738-1)+4)*2^95369+5
                                          86138 p408  2024 
          Consecutive primes arithmetic progression (2,d=6)
 5117  (84741735735*(2^190738-1)+4)*2^95369-1
                                          86138 p408  2024 
          Consecutive primes arithmetic progression (1,d=6)
 5118  (74018908351*(2^190738-1)+4)*2^95369+3
                                          86138 p408  2024 
          Consecutive primes arithmetic progression (2,d=4)
 5119  (74018908351*(2^190738-1)+4)*2^95369-1
                                          86138 p408  2024 
          Consecutive primes arithmetic progression (1,d=4)
 5120  21480!-1                           83727 p65   2001 Factorial
 5121  (74968^17107-1)/74967              83390 p441  2024 
          Generalized repunit
 5122b 66629493*2^269335-1                81086 L3494 2025 
          Sophie Germain (2p+1)
 5123b 66629493*2^269334-1                81086 L3494 2025 Sophie Germain (p)
 5124b 1867513233*2^266698+1              80294 L527  2025 Twin (p+2)
 5125b 1867513233*2^266698-1              80294 L527  2025 Twin (p)
 5126  201926367*2^266668+1               80284 A25   2024 Twin (p+2)
 5127  201926367*2^266668-1               80284 A25   2024 Twin (p)
 5128  107928275961*2^265876+1            80048 p364  2023 
          Cunningham chain 2nd kind (2p-1)
 5129  107928275961*2^265875+1            80048 p364  2023 
          Cunningham chain 2nd kind (p)
 5130  22942396995*2^265777-1             80018 L3494 2023 
          Sophie Germain (2p+1)
 5131  22942396995*2^265776-1             80017 L3494 2023 Sophie Germain (p)
 5132  183027*2^265441-1                  79911 L983  2010 
          Sophie Germain (2p+1)
 5133  183027*2^265440-1                  79911 L983  2010 Sophie Germain (p)
 5134  262419*2^262419+1                  79002 DS    1998 Cullen
 5135  160204065*2^262148+1               78923 L5115 2021 Twin (p+2)
 5136  160204065*2^262148-1               78923 L5115 2021 Twin (p)
 5137  3622179275715*2^256003+1           77078 x47   2020 
          Cunningham chain 2nd kind (2p-1)
 5138  3622179275715*2^256002+1           77077 x47   2020 
          Cunningham chain 2nd kind (p)
 5139  648621027630345*2^253825-1         76424 x24   2009 
          Sophie Germain (2p+1)
 5140  620366307356565*2^253825-1         76424 x24   2009 
          Sophie Germain (2p+1)
 5141  648621027630345*2^253824-1         76424 x24   2009 Sophie Germain (p)
 5142  620366307356565*2^253824-1         76424 x24   2009 Sophie Germain (p)
 5143  2570606397*2^252763+1              76099 p364  2020 
          Cunningham chain 2nd kind (2p-1)
 5144  2570606397*2^252762+1              76099 p364  2020 
          Cunningham chain 2nd kind (p)
 5145  1893611985^8192-1893611985^4096+1
                                          76000 A13   2024 
          Twin (p+2), generalized unique
 5146  1893611985^8192-1893611985^4096-1
                                          76000 A13   2024 Twin (p)
 5147  1589173270^8192-1589173270^4096+1
                                          75376 A22   2024 
          Twin (p+2), generalized unique
 5148  1589173270^8192-1589173270^4096-1
                                          75376 A22   2024 Twin (p)
 5149  (40734^16111-1)/40733              74267 CH2   2015 
          Generalized repunit
 5150  (64758^15373-1)/64757              73960 p170  2018 
          Generalized repunit
 5151  996094234^8192-996094234^4096+1    73715 A18   2024 
          Twin (p+2), generalized unique
 5152  996094234^8192-996094234^4096-1    73715 A18   2024 Twin (p)
 5153  895721531^8192-895721531^4096+1    73337 A7    2024 
          Twin (p+2), generalized unique
 5154  895721531^8192-895721531^4096-1    73337 A7    2024 Twin (p)
 5155  5^104824+104824^5                  73269 E4    2023 ECPP
 5156  795507696^8192-795507696^4096+1    72915 A5    2024 
          Twin (p+2), generalized unique
 5157  795507696^8192-795507696^4096-1    72915 A5    2024 Twin (p)
 5158  primV(111534,1,27000)              72683 x25   2013 
          Generalized Lucas primitive part
 5159  691595760^8192-691595760^4096+1    72417 A13   2024 
          Twin (p+2), generalized unique
 5160  691595760^8192-691595760^4096-1    72417 A13   2024 Twin (p)
 5161  647020826^8192-647020826^4096+1    72180 A5    2024 
          Twin (p+2), generalized unique
 5162  647020826^8192-647020826^4096-1    72180 A5    2024 Twin (p)
 5163  629813654^8192-629813654^4096+1    72084 A5    2024 
          Twin (p+2), generalized unique
 5164  629813654^8192-629813654^4096-1    72084 A5    2024 Twin (p)
 5165  (58729^15091-1)/58728              71962 CH2   2017 
          Generalized repunit
 5166  504983334^8192-504983334^4096+1    71298 A7    2024 
          Twin (p+2), generalized unique
 5167  504983334^8192-504983334^4096-1    71298 A7    2024 Twin (p)
 5168  314305725^8192-314305725^4096+1    69611 A7    2023 
          Twin (p+2), generalized unique
 5169  314305725^8192-314305725^4096-1    69611 A7    2023 Twin (p)
 5170  (27987^15313-1)/27986              68092 CH12  2020 
          Generalized repunit
 5171  184534086^8192-184534086^4096+1    67716 A5    2023 
          Twin (p+2), generalized unique
 5172  184534086^8192-184534086^4096-1    67716 A5    2023 Twin (p)
 5173  (23340^15439-1)/23339              67435 p170  2020 
          Generalized repunit
 5174  10957126745325*2^222334-1          66943 L5843 2023 
          Sophie Germain (2p+1)
 5175  20690306380455*2^222333-1          66943 L5843 2023 
          Sophie Germain (2p+1)
 5176  10030004436315*2^222334-1          66943 L5843 2023 
          Sophie Germain (2p+1)
 5177  8964472847055*2^222334-1           66943 L5843 2023 
          Sophie Germain (2p+1)
 5178  10957126745325*2^222333-1          66942 L5843 2023 Sophie Germain (p)
 5179  20690306380455*2^222332-1          66942 L5843 2023 Sophie Germain (p)
 5180  10030004436315*2^222333-1          66942 L5843 2023 Sophie Germain (p)
 5181  8964472847055*2^222333-1           66942 L5843 2023 Sophie Germain (p)
 5182  (2^221509-1)/292391881             66673 E12   2023 
          Mersenne cofactor, ECPP
 5183  (24741^15073-1)/24740              66218 p170  2020 
          Generalized repunit
 5184  (63847^13339-1)/63846              64091 p170  2013 
          Generalized repunit
 5185  1068669447*2^211089-1              63554 L4166 2020 
          Sophie Germain (2p+1)
 5186  1068669447*2^211088-1              63553 L4166 2020 Sophie Germain (p)
 5187  145823#+1                          63142 p21   2000 Primorial
 5188  U(15694,1,14700)+U(15694,1,14699)
                                          61674 x45   2019 Lehmer number
 5189  (28507^13831-1)/28506              61612 CH12  2020 
          Generalized repunit
 5190  2^203789+2^101895+1                61347 O     2000 
          Gaussian Mersenne norm 34, generalized unique
 5191  (26371^13681-1)/26370              60482 p170  2012 
          Generalized repunit
 5192  U(24,-25,43201)                    60391 CH12  2020 
          Generalized Lucas number
 5193  99064503957*2^200009-1             60220 L95   2016 
          Sophie Germain (2p+1)
 5194  99064503957*2^200008-1             60220 L95   2016 Sophie Germain (p)
 5195  (4529^16381-1)/4528                59886 CH2   2012 
          Generalized repunit
 5196  3^125330+1968634623437000          59798 E4    2022 ECPP
 5197  (9082^15091-1)/9081                59729 CH2   2014 
          Generalized repunit
 5198  primV(27655,1,19926)               57566 x25   2013 
          Generalized Lucas primitive part
 5199  Ramanujan tau function at 199^4518
                                          57125 E3    2022 ECPP
 5200  (43326^12041-1)/43325              55827 p170  2017 
          Generalized repunit
 5201  12443794755*2^184517-1             55556 L3494 2021 
          Sophie Germain (2p+1)
 5202  21749869755*2^184516-1             55556 L3494 2021 
          Sophie Germain (2p+1)
 5203  14901867165*2^184516-1             55556 L3494 2021 
          Sophie Germain (2p+1)
 5204  12443794755*2^184516-1             55555 L3494 2021 Sophie Germain (p)
 5205  21749869755*2^184515-1             55555 L3494 2021 Sophie Germain (p)
 5206  14901867165*2^184515-1             55555 L3494 2021 Sophie Germain (p)
 5207  607095*2^176312-1                  53081 L983  2009 
          Sophie Germain (2p+1)
 5208  607095*2^176311-1                  53081 L983  2009 Sophie Germain (p)
 5209  (38284^11491-1)/38283              52659 CH2   2013 
          Generalized repunit
 5210  (2^174533-1)/193594572654550537/91917886778031629891960890057
                                          52494 E5    2022 
          Mersenne cofactor, ECPP
 5211f (940^17581-1)/939                  52268 E2    2025 
          ECPP generalized repunit
 5212  48047305725*2^172404-1             51910 L99   2007 
          Sophie Germain (2p+1)
 5213  48047305725*2^172403-1             51910 L99   2007 Sophie Germain (p)
 5214  (34120^11311-1)/34119              51269 CH2   2011 
          Generalized repunit
 5215  U(809,1,17325)-U(809,1,17324)      50378 x45   2019 Lehmer number
 5216  10^50000+65859                     50001 E3    2022 ECPP
 5217  R(49081)                           49081 c70   2022 
          Repunit, unique, ECPP
 5218  2^160423-2^80212+1                 48293 O     2000 
          Gaussian Mersenne norm 33, generalized unique
 5219  U(67,-1,26161)                     47773 x45   2019 
          Generalized Lucas number
 5220  primV(40395,-1,15588)              47759 x23   2007 
          Generalized Lucas primitive part
 5221  primV(53394,-1,15264)              47200 CH4   2007 
          Generalized Lucas primitive part
 5222  151023*2^151023-1                  45468 g25   1998 Woodall
 5223c 24157096*104561#+1                 45260 p364  2025 
          Arithmetic progression (4,d=6519272*104561#)
 5224c 17637824*104561#+1                 45259 p364  2025 
          Arithmetic progression (3,d=6519272*104561#)
 5225c 11118552*104561#+1                 45259 p364  2025 
          Arithmetic progression (2,d=6519272*104561#)
 5226c 4599280*104561#+1                  45259 p364  2025 
          Arithmetic progression (1,d=6519272*104561#)
 5227  2^148227+60443                     44621 E11   2024 ECPP
 5228  U(52245,1,9241)+U(52245,1,9240)    43595 x45   2019 Lehmer number
 5229  71509*2^143019-1                   43058 g23   1998 
          Woodall, arithmetic progression (2,d=(143018*2^83969-80047)*2^59049)
          [x12]
 5230  U(2449,-1,12671)                   42939 x45   2018 
          Generalized Lucas number, cyclotomy
 5231  V(202667)                          42355 E4    2023 Lucas number, ECPP
 5232  2^139964+35461                     42134 E11   2024 ECPP
 5233  U(201107)                          42029 E11   2023 
          Fibonacci number, ECPP
 5234  (2^138937+1)/3                     41824 E12   2023 
          Wagstaff, ECPP, generalized Lucas number
 5235  E(11848)/7910215                   40792 E8    2022 
          Euler irregular, ECPP
 5236  V(193201)                          40377 E4    2023 Lucas number, ECPP
 5237  10^40000+14253                     40001 E3    2022 ECPP
 5238  p(1289844341)                      40000 c84   2020 Partitions, ECPP
 5239  primV(4836,1,16704)                39616 x25   2013 
          Generalized Lucas primitive part
 5240  (2^130439-1)/260879                39261 E9    2023 
          Mersenne cofactor, ECPP
 5241  U(21041,-1,9059)                   39159 x45   2018 
          Generalized Lucas number, cyclotomy
 5242  V(183089)                          38264 E4    2023 Lucas number, ECPP
 5243  (2^127031+1)/3                     38240 E5    2023 
          Wagstaff, ECPP, generalized Lucas number
 5244  U(5617,-1,9539)                    35763 x45   2019 
          Generalized Lucas number, cyclotomy
 5245  (2^117239+1)/3                     35292 E2    2022 
          Wagstaff, ECPP, generalized Lucas number
 5246  p(1000007396)                      35219 E4    2022 Partitions, ECPP
 5247  (V(60145,1,7317)-1)/(V(60145,1,27)-1)
                                          34841 x45   2019 
          Lehmer primitive part
 5248  primV(38513,-1,11502)              34668 x23   2006 
          Generalized Lucas primitive part
 5249  E(10168)/1097239206089665          34323 E10   2023 
          Euler irregular, ECPP
 5250  primV(9008,1,16200)                34168 x23   2005 
          Generalized Lucas primitive part
 5251  (V(28138,1,7587)-1)/(V(28138,1,27)-1)
                                          33637 x45   2019 
          Lehmer primitive part
 5252  V(159521)                          33338 E4    2023 Lucas number, ECPP
 5253  U(35896,1,7260)+U(35896,1,7259)    33066 x45   2019 Lehmer number
 5254  primV(6586,1,16200)                32993 x25   2013 
          Generalized Lucas primitive part
 5255  U(1624,-1,10169)                   32646 x45   2018 
          Generalized Lucas number, cyclotomy
 5256  (V(48395,1,6921)-1)/(V(48395,1,9)-1)
                                          32382 x45   2019 
          Lehmer primitive part
 5257c 7300751*74719#-1                   32315 p364  2025 
          Arithmetic progression (4,d=1475275*74719#)
 5258c 5825476*74719#-1                   32314 p364  2025 
          Arithmetic progression (3,d=1475275*74719#)
 5259c 4350201*74719#-1                   32314 p364  2025 
          Arithmetic progression (2,d=1475275*74719#)
 5260c 2874926*74719#-1                   32314 p364  2025 
          Arithmetic progression (1,d=1475275*74719#)
 5261  2^106693+2^53347+1                 32118 O     2000 
          Gaussian Mersenne norm 32, generalized unique
 5262  primV(28875,1,13500)               32116 x25   2016 
          Generalized Lucas primitive part
 5263  (2^106391-1)/286105171290931103    32010 c95   2022 
          Mersenne cofactor, ECPP
 5264  (2^105269-1)/308568703561/44450301591671/36340288035156065237111970871\
       /304727251426107823036749303510161
                                          31603 E17   2024 
          Mersenne cofactor, ECPP
 5265  (V(77786,1,6453)+1)/(V(77786,1,27)+1)
                                          31429 x25   2012 
          Lehmer primitive part
 5266  primV(10987,1,14400)               31034 x25   2005 
          Generalized Lucas primitive part
 5267  V(148091)                          30950 c81   2015 Lucas number, ECPP
 5268  U(148091)                          30949 x49   2021 
          Fibonacci number, ECPP
 5269  -E(9266)/2129452307358569777       30900 E10   2023 
          Euler irregular, ECPP
 5270  Phi(11589,-10000)                  30897 E1    2022 Unique,ECPP
 5271  (V(73570,1,6309)-1)/(V(73570,1,9)-1)
                                          30661 x25   2016 
          Lehmer primitive part
 5272  V(145703)/179214691                30442 E4    2023 
          Lucas cofactor, ECPP
 5273  V(145193)/38621339                 30336 E4    2023 
          Lucas cofactor, ECPP
 5274  1524633857*2^99902-1               30083 p364  2022 
          Arithmetic progression (4,d=928724769*2^99901)
 5275  2120542945*2^99901-1               30083 p364  2022 
          Arithmetic progression (3,d=928724769*2^99901)
 5276  18622159*2^99907-1                 30083 p364  2022 
          Arithmetic progression (2,d=928724769*2^99901)
 5277  263093407*2^99901-1                30082 p364  2022 
          Arithmetic progression (1,d=928724769*2^99901)
 5278  Phi(36547,-10)                     29832 E1    2022 Unique, ECPP
 5279  49363*2^98727-1                    29725 Y     1997 Woodall
 5280  U(2341,-1,8819)                    29712 x25   2008 
          Generalized Lucas number
 5281  primV(24127,-1,6718)               29433 CH3   2005 
          Generalized Lucas primitive part
 5282  primV(12215,-1,13500)              29426 x25   2016 
          Generalized Lucas primitive part
 5283  V(140057)                          29271 c76   2014 Lucas number,ECPP
 5284  U(1404,-1,9209)                    28981 CH10  2018 
          Generalized Lucas number, cyclotomy
 5285  U(23396,1,6615)+U(23396,1,6614)    28898 x45   2019 Lehmer number
 5286  (2^95369+1)/3                      28709 x49   2021 
          Generalized Lucas number, Wagstaff, ECPP
 5287  primV(45922,1,11520)               28644 x25   2011 
          Generalized Lucas primitive part
 5288  primV(205011)                      28552 x39   2009 
          Lucas primitive part
 5289  -30*Bern(10264)/262578313564364605963
                                          28506 c94   2021 Irregular, ECPP
 5290  U(16531,1,6721)-U(16531,1,6720)    28347 x36   2007 Lehmer number
 5291  (V(28286,1,6309)+1)/(V(28286,1,9)+1)
                                          28045 x25   2016 
          Lehmer primitive part
 5292  U(5092,1,7561)+U(5092,1,7560)      28025 x25   2014 Lehmer number
 5293  U(132409)/2882138154561602271737   27651 E16   2024 
          Fibonacci cofactor, ECPP
 5294  90825*2^90825+1                    27347 Y     1997 Cullen
 5295  U(5239,1,7350)-U(5239,1,7349)      27333 CH10  2017 Lehmer number
 5296  U(130021)                          27173 x48   2021 
          Fibonacci number, ECPP
 5297  primV(5673,1,13500)                27028 CH3   2005 
          Generalized Lucas primitive part
 5298  primV(44368,1,9504)                26768 CH3   2005 
          Generalized Lucas primitive part
 5299  546351925018076058*Bern(9702)/129255048976106804786904258880518941
                                          26709 c77   2021 Irregular, ECPP
 5300  22359307*60919#+1                  26383 p364  2022 
          Arithmetic progression (4,d=5210718*60919#)
 5301  17148589*60919#+1                  26383 p364  2022 
          Arithmetic progression (3,d=5210718*60919#)
 5302  17029817*60919#+1                  26383 p364  2022 
          Arithmetic progression (4,d=1809778*60919#)
 5303  15220039*60919#+1                  26383 p364  2022 
          Arithmetic progression (3,d=1809778*60919#)
 5304  13410261*60919#+1                  26383 p364  2022 
          Arithmetic progression (2,d=1809778*60919#)
 5305  11937871*60919#+1                  26382 p364  2022 
          Arithmetic progression (2,d=5210718*60919#)
 5306  11600483*60919#+1                  26382 p364  2022 
          Arithmetic progression (1,d=1809778*60919#)
 5307  6727153*60919#+1                   26382 p364  2022 
          Arithmetic progression (1,d=5210718*60919#)
 5308  (2^87691-1)/806957040167570408395443233
                                          26371 E1    2022 
          Mersenne cofactor, ECPP
 5309  primV(10986,-1,9756)               26185 x23   2005 
          Generalized Lucas primitive part
 5310  (2^86371-1)/41681512921035887      25984 E2    2022 
          Mersenne cofactor, ECPP
 5311  (2^86137-1)/2584111/7747937967916174363624460881
                                          25896 c84   2022 
          Mersenne cofactor, ECPP
 5312  primV(11076,-1,12000)              25885 x25   2005 
          Generalized Lucas primitive part
 5313  -E(7894)/19                        25790 E10   2023 
          Euler irregular, ECPP
 5314  2^85237+2^42619+1                  25659 x16   2000 
          Gaussian Mersenne norm 31, generalized unique
 5315  V(122869)/40546771/1243743094029841
                                          25656 E1    2024 
          Lucas cofactor, ECPP
 5316  primU(183537)                      25571 E1    2024 
          Fibonacci primitive part, ECPP
 5317  primV(17505,1,11250)               25459 x25   2011 
          Generalized Lucas primitive part
 5318  U(2325,-1,7561)                    25451 x20   2013 
          Generalized Lucas number
 5319  U(13084,-13085,6151)               25319 x45   2018 
          Generalized Lucas number, cyclotomy
 5320  (2^84211-1)/1347377/31358793176711980763958121/33146416760423478241695\
       91561
                                          25291 c95   2020 
          Mersenne cofactor, ECPP
 5321  U(120937)/241873/13689853218820385381
                                          25250 E1    2024 
          Fibonacci cofactor, ECPP
 5322  primV(42,-1,23376)                 25249 x23   2007 
          Generalized Lucas primitive part
 5323  U(1064,-1065,8311)                 25158 CH10  2018 
          Generalized Lucas number, cyclotomy
 5324  primV(7577,-1,10692)               25140 x33   2007 
          Generalized Lucas primitive part
 5325  (2^83339+1)/3                      25088 c54   2014 
          ECPP, generalized Lucas number, Wagstaff
 5326  (2^82939-1)/883323903012540278033571819073
                                          24938 c84   2021 
          Mersenne cofactor, ECPP
 5327  primV(194181)                      24908 E1    2024 
          Lucas primitive part, ECPP
 5328  primV(119162)                      24903 E1    2024 
          Lucas primitive part, ECPP
 5329  -E(7634)/1559                      24828 E10   2023 
          Euler irregular, ECPP
 5330  primU(118319)                      24553 E1    2024 
          Fibonacci primitive part, ECPP
 5331  U(1766,1,7561)-U(1766,1,7560)      24548 x25   2013 Lehmer number
 5332  U(117167)/17658707237              24476 E1    2024 
          Fibonacci cofactor, ECPP
 5333  V(116593)/120790349                24359 E4    2023 
          Lucas cofactor, ECPP
 5334  primV(214470)                      23895 E1    2024 
          Lucas primitive part, ECPP
 5335  primU(115373)                      23875 E1    2024 
          Fibonacci primitive part, ECPP
 5336  U(1383,1,7561)+U(1383,1,7560)      23745 x25   2013 Lehmer number
 5337  798*Bern(8766)/14670751334144820770719
                                          23743 c94   2021 Irregular, ECPP
 5338  Phi(11867,-100)                    23732 c47   2021 Unique, ECPP
 5339  primU(135421)                      23725 E1    2024 
          Fibonacci primitive part, ECPP
 5340  primV(143234)                      23654 E1    2024 
          Lucas primitive part, ECPP
 5341  (2^78737-1)/1590296767505866614563328548192658003295567890593
                                          23654 E2    2022 
          Mersenne cofactor, ECPP
 5342  Phi(35421,-10)                     23613 c77   2021 Unique, ECPP
 5343  6917!-1                            23560 g1    1998 Factorial
 5344  primU(164185)                      23524 E1    2024 
          Fibonacci primitive part, ECPP
 5345  2^77291+2^38646+1                  23267 O     2000 
          Gaussian Mersenne norm 30, generalized unique
 5346  primU(166737)                      23231 E1    2024 
          Fibonacci primitive part, ECPP
 5347  (V(59936,1,4863)+1)/(V(59936,1,3)+1)
                                          23220 x25   2013 
          Lehmer primitive part
 5348  U(1118,1,7561)-U(1118,1,7560)      23047 x25   2013 Lehmer number
 5349  primA(275285)                      23012 E1    2024 
          Lucas Aurifeuillian primitive part, ECPP
 5350  primV(110723)                      22997 E1    2024 
          Lucas primitive part, ECPP
 5351  primV(180906)                      22905 E1    2024 
          Lucas primitive part, ECPP
 5352  (V(45366,1,4857)+1)/(V(45366,1,3)+1)
                                          22604 x25   2013 
          Lehmer primitive part
 5353  U(106663)/35892566541651557        22275 E1    2024 
          Fibonacci cofactor, ECPP
 5354  348054*Bern(8286)/1570865077944473903275073668721
                                          22234 E1    2022 Irregular, ECPP
 5355  p(398256632)                       22223 E1    2022 Partitions, ECPP
 5356  U(105509)/144118801533126010445795676378394340544227572822879081
                                          21997 E1    2022 
          Fibonacci cofactor, ECPP
 5357  U(104911)                          21925 c82   2015 
          Fibonacci number, ECPP
 5358  primB(282035)                      21758 E1    2023 
          Lucas Aurifeuillian primitive part, ECPP
 5359  primA(276335)                      21736 E1    2024 
          Lucas Aurifeuillian primitive part, ECPP
 5360  Phi(1203,10^27)                    21600 c47   2021 Unique, ECPP
 5361  U(19258,-1,5039)                   21586 x23   2007 
          Generalized Lucas number
 5362  6380!+1                            21507 g1    1998 Factorial
 5363  primV(154281)                      21495 E4    2023 
          Lucas primitive part, ECPP
 5364  U(43100,1,4620)+U(43100,1,4619)    21407 x25   2016 Lehmer number
 5365  -E(6658)/85079                     21257 c77   2020 
          Euler irregular, ECPP
 5366  Phi(39855,-10)                     21248 c95   2020 Unique, ECPP
 5367  (V(23354,1,4869)-1)/(V(23354,1,9)-1)
                                          21231 x25   2013 
          Lehmer primitive part
 5368  primA(296695)                      21137 E1    2023 
          Lucas Aurifeuillian primitive part, ECPP
 5369  U(15631,1,5040)-U(15631,1,5039)    21134 x25   2003 Lehmer number
 5370  primA(413205)                      21127 E1    2023 
          Lucas Aurifeuillian primitive part, ECPP
 5371  U(35759,1,4620)+U(35759,1,4619)    21033 x25   2016 Lehmer number
 5372  p(355646102)                       21000 E1    2022 Partitions, ECPP
 5373  V(100417)/713042903779101607511808799053206435494854433884796747437071\
       9436805470448849
                                          20911 E1    2024 
          Lucas cofactor, ECPP
 5374  p(350199893)                       20838 E7    2022 Partitions, ECPP
 5375  U(31321,1,4620)-U(31321,1,4619)    20767 x25   2016 Lehmer number
 5376  primU(102689)                      20715 E1    2024 
          Fibonacci primitive part, ECPP
 5377  primU(105821)                      20598 E1    2022 
          Fibonacci primitive part, ECPP
 5378  primU(172179)                      20540 E1    2022 
          Fibonacci primitive part, ECPP
 5379  V(98081)/31189759/611955609270431/6902594225498651/641303018340927841
                                          20442 E1    2024 
          Lucas cofactor, ECPP
 5380  U(11200,-1,5039)                   20400 x25   2004 
          Generalized Lucas number, cyclotomy
 5381  4404139952163*2^67002+1            20183 p408  2024 Triplet (3)
 5382  4404139952163*2^67002-1            20183 p408  2024 Triplet (2)
 5383  4404139952163*2^67002-5            20183 E15   2024 Triplet (1), ECPP
 5384  Phi(23749,-10)                     20160 c47   2014 Unique, ECPP
 5385  U(22098,1,4620)+U(22098,1,4619)    20067 x25   2016 Lehmer number
 5386  primV(112028)                      20063 E1    2022 
          Lucas primitive part, ECPP
 5387  1128330746865*2^66441-1            20013 p158  2020 
          Cunningham chain (4p+3)
 5388  1128330746865*2^66440-1            20013 p158  2020 
          Cunningham chain (2p+1)
 5389  1128330746865*2^66439-1            20013 p158  2020 
          Cunningham chain (p)
 5390  4111286921397*2^66420+5            20008 c88   2019 Triplet (3)
 5391  4111286921397*2^66420+1            20008 L4808 2019 Triplet (2)
 5392  4111286921397*2^66420-1            20008 L4808 2019 Triplet (1)
 5393  U(21412,1,4620)-U(21412,1,4619)    20004 x25   2016 Lehmer number
 5394  p(322610098)                       20000 E1    2022 Partitions, ECPP
 5395  primV(151521)                      19863 E1    2022 
          Lucas primitive part, ECPP
 5396  V(94823)                           19817 c73   2014 Lucas number, ECPP
 5397  U(19361,1,4620)+U(19361,1,4619)    19802 x25   2016 Lehmer number
 5398  U(8454,-1,5039)                    19785 x25   2013 
          Generalized Lucas number
 5399  (2^64381-1)/1825231878561264571177401910928543898820492254252817499611\
       8699181907547497
                                          19308 E13   2024 
          Mersenne cofactor, ECPP
 5400  U(6584,-1,5039)                    19238 x23   2007 
          Generalized Lucas number
 5401  V(91943)/551659/2390519/9687119153094919
                                          19187 E1    2022 
          Lucas cofactor, ECPP
 5402  (V(428,1,8019)-1)/(V(428,1,729)-1)
                                          19184 E1    2022 
          Lehmer primitive part, ECPP
 5403  V(91873)/3674921/193484539/167745030829
                                          19175 E1    2022 
          Lucas cofactor, ECPP
 5404  (2^63703-1)/42808417               19169 c59   2014 
          Mersenne cofactor, ECPP
 5405  primU(137439)                      19148 E1    2022 
          Fibonacci primitive part, ECPP
 5406  primU(107779)                      18980 E1    2022 
          Fibonacci primitive part, ECPP
 5407  (U(162,1,8581)+U(162,1,8580))/(U(162,1,66)+U(162,1,65))
                                          18814 E1    2022 
          Lehmer primitive part, ECPP
 5408  V(89849)                           18778 c70   2014 Lucas number, ECPP
 5409  primV(145353)                      18689 c69   2013 
          ECPP, Lucas primitive part
 5410  Phi(14943,-100)                    18688 c47   2014 Unique, ECPP
 5411  (U(859,1,6385)-U(859,1,6384))/(U(859,1,57)-U(859,1,56))
                                          18567 E1    2022 
          Lehmer primitive part, ECPP
 5412  Phi(18827,10)                      18480 c47   2014 Unique, ECPP
 5413  primB(220895)                      18465 E1    2022 
          Lucas Aurifeuillian primitive part, ECPP
 5414  primV(153279)                      18283 E1    2022 
          Lucas primitive part, ECPP
 5415  42209#+1                           18241 p8    1999 Primorial
 5416  (V(46662,1,3879)-1)/(V(46662,1,9)-1)
                                          18069 x25   2012 
          Lehmer primitive part
 5417  V(86477)/1042112515940998434071039
                                          18049 c77   2020 
          Lucas cofactor, ECPP
 5418  7457*2^59659+1                     17964 Y     1997 Cullen
 5419  primB(235015)                      17856 E1    2022 
          Lucas Aurifeuillian primitive part, ECPP
 5420  primV(148197)                      17696 E1    2022 
          Lucas primitive part, ECPP
 5421  (V(447,1,6723)+1)/(V(447,1,81)+1)
                                          17604 E1    2022 
          Lehmer primitive part, ECPP
 5422  (2^58199-1)/237604901713907577052391
                                          17497 c59   2015 
          Mersenne cofactor, ECPP
 5423  Phi(26031,-10)                     17353 c47   2014 Unique, ECPP
 5424  primV(169830)                      17335 E1    2022 
          Lucas primitive part, ECPP
 5425  (V(561,1,6309)+1)/(V(561,1,9)+1)   17319 x25   2016 
          Lehmer primitive part
 5426  U(9657,1,4321)-U(9657,1,4320)      17215 x23   2005 Lehmer number
 5427  (2^57131-1)/61481396117165983261035042726614288722959856631
                                          17152 c59   2015 
          Mersenne cofactor, ECPP
 5428  U(81839)                           17103 p54   2001 Fibonacci number
 5429  (V(1578,1,5589)+1)/(V(1578,1,243)+1)
                                          17098 E1    2022 
          Lehmer primitive part, ECPP
 5430  V(81671)                           17069 c66   2013 Lucas number, ECPP
 5431  primV(101510)                      16970 E1    2022 
          Lucas primitive part, ECPP
 5432  primV(86756)                       16920 c74   2015 
          Lucas primitive part, ECPP
 5433  V(80761)/570100885555095451        16861 c77   2020 
          Lucas cofactor, ECPP
 5434  6521953289619*2^55555+1            16737 p296  2013 Triplet (3)
 5435  6521953289619*2^55555-1            16737 p296  2013 Triplet (2)
 5436  6521953289619*2^55555-5            16737 c58   2013 Triplet (1), ECPP
 5437  primV(122754)                      16653 c77   2021 
          Lucas primitive part, ECPP
 5438  U(15823,1,3960)-U(15823,1,3959)    16625 x25   2002 
          Lehmer number, cyclotomy
 5439  p(221444161)                       16569 c77   2017 Partitions, ECPP
 5440  (V(1240,1,5589)-1)/(V(1240,1,243)-1)
                                          16538 E1    2022 
          Lehmer primitive part, ECPP
 5441  primA(201485)                      16535 E1    2022 
          Lucas Aurifeuillian primitive part, ECPP
 5442  U(78919)/15574900936381642440917   16471 c77   2020 
          Fibonacci cofactor, ECPP
 5443  (U(800,1,5725)-U(800,1,5724))/(U(800,1,54)-U(800,1,53))
                                          16464 E1    2022 
          Lehmer primitive part, ECPP
 5444  17484430616589*2^54201+5           16330 E14   2024 
          Consecutive primes arithmetic progression (3,d=6), ECPP
 5445  17484430616589*2^54201-1           16330 p440  2024 
          Consecutive primes arithmetic progression (2,d=6)
 5446  17484430616589*2^54201-7           16330 E14   2024 
          Consecutive primes arithmetic progression (1,d=6), ECPP
 5447  (V(21151,1,3777)-1)/(V(21151,1,3)-1)
                                          16324 x25   2011 
          Lehmer primitive part
 5448  primV(123573)                      16198 c77   2019 
          Lucas primitive part, ECPP
 5449  primB(225785)                      16176 E1    2022 
          Lucas Aurifeuillian primitive part, ECPP
 5450  V(77417)/313991497376559420151     16159 c77   2020 
          Lucas cofactor, ECPP
 5451  (2^53381-1)/15588960193/38922536168186976769/1559912715971690629450336\
       68006103
                                          16008 c84   2017 
          Mersenne cofactor, ECPP
 5452  -E(5186)/295970922359784619239409649676896529941379763
                                          15954 c63   2018 
          Euler irregular, ECPP
 5453  primV(121227)                      15890 c77   2019 
          Lucas primitive part, ECPP
 5454  Phi(2949,-100000000)               15713 c47   2013 Unique, ECPP
 5455  primU(131481)                      15695 c77   2019 
          Fibonacci primitive part, ECPP
 5456  primV(120258)                      15649 c77   2019 
          Lucas primitive part, ECPP
 5457  (U(9275,1,3961)+U(9275,1,3960))/(U(9275,1,45)+U(9275,1,44))
                                          15537 x38   2009 
          Lehmer primitive part
 5458  (2^51487-1)/57410994232247/17292148963401772464767849635553
                                          15455 c77   2018 
          Mersenne cofactor, ECPP
 5459  primB(183835)                      15368 c77   2019 
          Lucas Aurifeuillian primitive part, ECPP
 5460  primU(77387)                       15319 c77   2019 
          Fibonacci primitive part, ECPP
 5461  primB(181705)                      15189 c77   2019 
          Lucas Aurifeuillian primitive part, ECPP
 5462  U(71983)/5614673/363946049         15028 c77   2018 
          Fibonacci cofactor, ECPP
 5463  2494779036241*2^49800+13           15004 c93   2022 
          Consecutive primes arithmetic progression (3,d=6)
 5464  2494779036241*2^49800+7            15004 c93   2022 
          Consecutive primes arithmetic progression (2,d=6)
 5465  2494779036241*2^49800+1            15004 p408  2022 
          Consecutive primes arithmetic progression (1,d=6)
 5466  primB(268665)                      14972 c77   2019 
          Lucas Aurifeuillian primitive part, ECPP
 5467  Phi(5015,-10000)                   14848 c47   2013 Unique, ECPP
 5468  2^49207-2^24604+1                  14813 x16   2000 
          Gaussian Mersenne norm 29, generalized unique
 5469f 214923707595*2^49073+1             14784 p364  2025 
          Cunningham chain 2nd kind (4p-3)
 5470  primA(284895)                      14626 c77   2019 
          Lucas Aurifeuillian primitive part, ECPP
 5471  U(69239)/1384781                   14464 c77   2018 
          Fibonacci cofactor, ECPP
 5472  primA(170575)                      14258 c77   2018 
          Lucas Aurifeuillian primitive part, ECPP
 5473  V(68213)/7290202116115634431       14237 c77   2018 
          Lucas cofactor, ECPP
 5474  p(158375386)                       14011 E1    2022 Partitions, ECPP
 5475  p(158295265)                       14007 E1    2022 Partitions, ECPP
 5476  p(158221457)                       14004 E1    2022 Partitions, ECPP
 5477  primU(67703)                       13954 c77   2018 
          Fibonacci primitive part, ECPP
 5478  U(66947)/12485272838388758877279873712131648167413
                                          13951 c77   2017 
          Fibonacci cofactor, ECPP
 5479  V(66533)/2128184670585621839884209100279
                                          13875 c77   2018 
          Lucas cofactor, ECPP
 5480  6*Bern(5534)/226840561549600012633271691723599339
                                          13862 c71   2014 Irregular, ECPP
 5481  4410546*Bern(5526)/9712202742835546740714595866405369616019
                                          13840 c63   2018 Irregular,ECPP
 5482c 191279029*32003#+1                 13773 p364  2025 
          Arithmetic progression (5,d=20571563*32003#)
 5483c 170707466*32003#+1                 13773 p364  2025 
          Arithmetic progression (4,d=20571563*32003#)
 5484c 150135903*32003#+1                 13773 p364  2025 
          Arithmetic progression (3,d=20571563*32003#)
 5485c 129564340*32003#+1                 13773 p364  2025 
          Arithmetic progression (2,d=20571563*32003#)
 5486c 108992777*32003#+1                 13773 p364  2025 
          Arithmetic progression (1,d=20571563*32003#)
 5487  primB(163595)                      13675 c77   2018 
          Lucas Aurifeuillian primitive part, ECPP
 5488  6*Bern(5462)/23238026668982614152809832227
                                          13657 c64   2013 Irregular, ECPP
 5489  56667641271*2^44441+5              13389 c99   2022 Triplet (3), ECPP
 5490  56667641271*2^44441+1              13389 p426  2022 Triplet (2)
 5491  56667641271*2^44441-1              13389 p426  2022 Triplet (1)
 5492  V(64063)/464426465381142115542697818362662865912299
                                          13347 E1    2024 
          Lucas cofactor, ECPP
 5493  512792361*30941#+1                 13338 p364  2022 
          Arithmetic progression (5,d=18195056*30941#)
 5494  494597305*30941#+1                 13338 p364  2022 
          Arithmetic progression (4,d=18195056*30941#)
 5495  476402249*30941#+1                 13338 p364  2022 
          Arithmetic progression (3,d=18195056*30941#)
 5496  458207193*30941#+1                 13338 p364  2022 
          Arithmetic progression (2,d=18195056*30941#)
 5497  440012137*30941#+1                 13338 p364  2022 
          Arithmetic progression (1,d=18195056*30941#)
 5498  1815615642825*2^44046-1            13272 p395  2016 
          Cunningham chain (4p+3)
 5499  1815615642825*2^44045-1            13272 p395  2016 
          Cunningham chain (2p+1)
 5500  1815615642825*2^44044-1            13271 p395  2016 
          Cunningham chain (p)
 5501  p(141528106)                       13244 E6    2022 Partitions, ECPP
 5502  p(141513546)                       13244 E6    2022 Partitions, ECPP
 5503  p(141512238)                       13244 E6    2022 Partitions, ECPP
 5504  p(141255053)                       13232 E6    2022 Partitions, ECPP
 5505  p(141150528)                       13227 E6    2022 Partitions, ECPP
 5506  p(141112026)                       13225 E6    2022 Partitions, ECPP
 5507  p(141111278)                       13225 E6    2022 Partitions, ECPP
 5508  p(140859260)                       13213 E6    2022 Partitions, ECPP
 5509  p(140807155)                       13211 E6    2022 Partitions, ECPP
 5510  p(140791396)                       13210 E6    2022 Partitions, ECPP
 5511  primU(94551)                       13174 c77   2018 
          Fibonacci primitive part, ECPP
 5512  primB(242295)                      13014 c77   2018 
          Lucas Aurifeuillian primitive part, ECPP
 5513  U(61813)/594517433/3761274442997   12897 c77   2018 
          Fibonacci cofactor, ECPP
 5514  (2^42737+1)/3                      12865 M     2007 
          ECPP, generalized Lucas number, Wagstaff
 5515  primU(62771)                       12791 c77   2018 
          Fibonacci primitive part, ECPP
 5516  primA(154415)                      12728 c77   2018 
          Lucas Aurifeuillian primitive part, ECPP
 5517  primA(263865)                      12570 c77   2018 
          Lucas Aurifeuillian primitive part, ECPP
 5518  6*Bern(5078)/643283455240626084534218914061
                                          12533 c63   2013 Irregular, ECPP
 5519  (2^41681-1)/1052945423/16647332713153/2853686272534246492102086015457
                                          12495 c77   2015 
          Mersenne cofactor, ECPP
 5520  (2^41521-1)/41602235382028197528613357724450752065089
                                          12459 c54   2012 
          Mersenne cofactor, ECPP
 5521  (2^41263-1)/1379707143199991617049286121
                                          12395 c59   2012 
          Mersenne cofactor, ECPP
 5522  U(59369)/2442423669148466039458303756169988568809269383644075940757020\
       9763004757
                                          12337 c79   2015 
          Fibonacci cofactor, ECPP
 5523  742478255901*2^40069+1             12074 p395  2016 
          Cunningham chain 2nd kind (4p-3)
 5524  996824343*2^40074+1                12073 p395  2016 
          Cunningham chain 2nd kind (4p-3)
 5525  664342014133*2^39840+1             12005 p408  2020 
          Consecutive primes arithmetic progression (3,d=30)
 5526  664342014133*2^39840-29            12005 c93   2020 
          Consecutive primes arithmetic progression (2,d=30), ECPP
 5527  664342014133*2^39840-59            12005 c93   2020 
          Consecutive primes arithmetic progression (1,d=30), ECPP
 5528  V(56003)                           11704 p193  2006 Lucas number
 5529  primA(143705)                      11703 c77   2017 
          Lucas Aurifeuillian primitive part, ECPP
 5530  4207993863*2^38624+5               11637 L5354 2021 Triplet (3), ECPP
 5531  4207993863*2^38624+1               11637 L5354 2021 Triplet (2)
 5532  4207993863*2^38624-1               11637 L5354 2021 Triplet (1)
 5533  primU(73025)                       11587 c77   2015 
          Fibonacci primitive part, ECPP
 5534  primU(67781)                       11587 c77   2015 
          Fibonacci primitive part, ECPP
 5535  primB(219165)                      11557 c77   2015 
          Lucas Aurifeuillian primitive part, ECPP
 5536  198429723072*11^11005+1            11472 L3323 2016 
          Cunningham chain 2nd kind (4p-3)
 5537  U(54799)/4661437953906084533621577211561
                                          11422 c8    2015 
          Fibonacci cofactor, ECPP
 5538  U(54521)/6403194135342743624071073
                                          11370 c8    2015 
          Fibonacci cofactor, ECPP
 5539  primU(67825)                       11336 x23   2007 
          Fibonacci primitive part
 5540  3610!-1                            11277 C     1993 Factorial
 5541  U(53189)/69431662887136064191105625570683133711989
                                          11075 c8    2014 
          Fibonacci cofactor, ECPP
 5542  primU(61733)                       11058 c77   2015 
          Fibonacci primitive part, ECPP
 5543  778965587811*2^36627-1             11038 p395  2016 
          Cunningham chain (4p+3)
 5544  778965587811*2^36626-1             11038 p395  2016 
          Cunningham chain (2p+1)
 5545  778965587811*2^36625-1             11038 p395  2016 
          Cunningham chain (p)
 5546  272879344275*2^36622-1             11036 p395  2016 
          Cunningham chain (4p+3)
 5547  272879344275*2^36621-1             11036 p395  2016 
          Cunningham chain (2p+1)
 5548  272879344275*2^36620-1             11036 p395  2016 
          Cunningham chain (p)
 5549  V(52859)/1124137922466041911       11029 c8    2014 
          Lucas cofactor, ECPP
 5550  3507!-1                            10912 C     1992 Factorial
 5551  V(52201)/70585804042896975505694709575919458733851279868446609
                                          10857 c8    2015 
          Lucas cofactor, ECPP
 5552  V(52009)/39772636393178951550299332730909
                                          10838 c8    2015 
          Lucas cofactor, ECPP
 5553  V(51941)/2808052157610902114547210696868337380250300924116591143641642\
       866931
                                          10789 c8    2015 
          Lucas cofactor, ECPP
 5554  1258566*Bern(4462)/6610083971965402783802518108033
                                          10763 c64   2013 Irregular, ECPP
 5555  3428602715439*2^35678+13           10753 c93   2020 
          Consecutive primes arithmetic progression (3,d=6), ECPP
 5556  3428602715439*2^35678+7            10753 c93   2020 
          Consecutive primes arithmetic progression (2,d=6), ECPP
 5557  3428602715439*2^35678+1            10753 p408  2020 
          Consecutive primes arithmetic progression (1,d=6)
 5558  333645655005*2^35549-1             10713 p364  2015 
          Cunningham chain (4p+3)
 5559  333645655005*2^35548-1             10713 p364  2015 
          Cunningham chain (2p+1)
 5560  333645655005*2^35547-1             10713 p364  2015 
          Cunningham chain (p)
 5561  V(51349)/224417260052884218046541
                                          10708 c8    2014 
          Lucas cofactor, ECPP
 5562  V(51169)                           10694 p54   2001 Lucas number
 5563  U(51031)/95846689435051369         10648 c8    2014 
          Fibonacci cofactor, ECPP
 5564  V(50989)/69818796119453411         10640 c8    2014 
          Lucas cofactor, ECPP
 5565  Phi(13285,-10)                     10625 c47   2012 Unique, ECPP
 5566  U(50833)                           10624 CH4   2005 Fibonacci number
 5567  2683143625525*2^35176+13           10602 c92   2019 
          Consecutive primes arithmetic progression (3,d=6),ECPP
 5568  2683143625525*2^35176+7            10602 c92   2019 
          Consecutive primes arithmetic progression (2,d=6),ECPP
 5569  2683143625525*2^35176+1            10602 p407  2019 
          Consecutive primes arithmetic progression (1,d=6)
 5570  3020616601*24499#+1                10593 p422  2021 
          Arithmetic progression (6,d=56497325*24499#)
 5571  2964119276*24499#+1                10593 p422  2021 
          Arithmetic progression (5,d=56497325*24499#)
 5572  2907621951*24499#+1                10593 p422  2021 
          Arithmetic progression (4,d=56497325*24499#)
 5573  2851124626*24499#+1                10593 p422  2021 
          Arithmetic progression (3,d=56497325*24499#)
 5574  2794627301*24499#+1                10593 p422  2021 
          Arithmetic progression (2,d=56497325*24499#)
 5575  2738129976*24499#+1                10593 p422  2021 
          Arithmetic progression (1,d=56497325*24499#)
 5576  24029#+1                           10387 C     1993 Primorial
 5577  400791048*24001#+1                 10378 p155  2018 
          Arithmetic progression (5,d=59874860*24001#)
 5578  393142614*24001#+1                 10378 p155  2018 
          Arithmetic progression (5,d=54840724*24001#)
 5579  340916188*24001#+1                 10378 p155  2018 
          Arithmetic progression (4,d=59874860*24001#)
 5580  338301890*24001#+1                 10378 p155  2018 
          Arithmetic progression (4,d=54840724*24001#)
 5581  283461166*24001#+1                 10377 p155  2018 
          Arithmetic progression (3,d=54840724*24001#)
 5582  281041328*24001#+1                 10377 p155  2018 
          Arithmetic progression (3,d=59874860*24001#)
 5583  228620442*24001#+1                 10377 p155  2018 
          Arithmetic progression (2,d=54840724*24001#)
 5584  221488788*24001#+1                 10377 p155  2018 
          Arithmetic progression (5,d=22703701*24001#)
 5585  221166468*24001#+1                 10377 p155  2018 
          Arithmetic progression (2,d=59874860*24001#)
 5586  198785087*24001#+1                 10377 p155  2018 
          Arithmetic progression (4,d=22703701*24001#)
 5587  176081386*24001#+1                 10377 p155  2018 
          Arithmetic progression (3,d=22703701*24001#)
 5588  173779718*24001#+1                 10377 p155  2018 
          Arithmetic progression (1,d=54840724*24001#)
 5589  163456812*24001#+1                 10377 p155  2018 
          Arithmetic progression (2,d=10601738*24001#)
 5590  161291608*24001#+1                 10377 p155  2018 
          Arithmetic progression (1,d=59874860*24001#)
 5591  152855074*24001#+1                 10377 p155  2018 
          Arithmetic progression (1,d=10601738*24001#)
 5592  6*Bern(4306)/2153                  10342 FE8   2009 Irregular, ECPP
 5593  23801#+1                           10273 C     1993 Primorial
 5594  667674063382677*2^33608+7          10132 c88   2019 
          Quadruplet (4), ECPP
 5595  667674063382677*2^33608+5          10132 c88   2019 
          Quadruplet (3), ECPP
 5596  667674063382677*2^33608+1          10132 L4808 2019 Quadruplet (2)
 5597  667674063382677*2^33608-1          10132 L4808 2019 Quadruplet (1)
 5598  Phi(427,-10^28)                    10081 FE9   2009 Unique, ECPP
 5599  9649755890145*2^33335+1            10048 p364  2015 
          Cunningham chain 2nd kind (4p-3)
 5600  32469*2^32469+1                     9779 MM    1997 Cullen
 5601  8073*2^32294+1                      9726 MM    1997 Cullen
 5602  E(3308)/39308792292493140803643373186476368389461245
                                           9516 c8    2014 
          Euler irregular, ECPP
 5603  Phi(5161,-100)                      9505 c47   2012 Unique, ECPP
 5604  V(44507)                            9302 CH3   2005 Lucas number
 5605  U(43399)/470400609575881344601538056264109423291827366228494341196421
                                           9010 c8    2013 
          Fibonacci cofactor, ECPP
 5606  U(42829)/107130175995197969243646842778153077
                                           8916 c8    2014 
          Fibonacci cofactor, ECPP
 5607  U(42043)/1681721                    8780 c56   2012 
          Fibonacci cofactor, ECPP
 5608  Phi(6105,-1000)                     8641 c47   2010 Unique, ECPP
 5609  Phi(4667,-100)                      8593 c47   2009 Unique, ECPP
 5610  U(40763)/643247084652261620737      8498 c8    2013 
          Fibonacci cofactor, ECPP
 5611  2^27529-2^13765+1                   8288 O     2000 
          Gaussian Mersenne norm 28, generalized unique
 5612  18523#+1                            8002 D     1989 Primorial
 5613  6*Bern(3458)/28329084584758278770932715893606309
                                           7945 c8    2013 Irregular, ECPP
 5614  U(37987)/1832721858208455887947958246414213
                                           7906 c39   2012 
          Fibonacci cofactor, ECPP
 5615  U(37511)                            7839 x13   2005 Fibonacci number
 5616  -E(2762)/2670541                    7760 c11   2004 
          Euler irregular, ECPP
 5617  V(36779)                            7687 CH3   2005 Lucas number
 5618  U(35999)                            7523 p54   2001 
          Fibonacci number, cyclotomy
 5619  V(35449)                            7409 p12   2001 Lucas number
 5620  -30*Bern(3176)/6689693100056872989386833739813089720559189736259127537\
       0617658634396391181
                                           7138 c63   2016 Irregular, ECPP
 5621  2154675239*16301#+1                 7036 p155  2018 
          Arithmetic progression (6,d=141836149*16301#)
 5622  2012839090*16301#+1                 7036 p155  2018 
          Arithmetic progression (5,d=141836149*16301#)
 5623  1871002941*16301#+1                 7036 p155  2018 
          Arithmetic progression (4,d=141836149*16301#)
 5624  1729166792*16301#+1                 7036 p155  2018 
          Arithmetic progression (3,d=141836149*16301#)
 5625  1587330643*16301#+1                 7035 p155  2018 
          Arithmetic progression (2,d=141836149*16301#)
 5626  1445494494*16301#+1                 7035 p155  2018 
          Arithmetic progression (1,d=141836149*16301#)
 5627  -10365630*Bern(3100)/1670366116112864481699585217650438278080436881373\
       643007997602585219667
                                           6943 c63   2016 Irregular ECPP
 5628  23005*2^23005-1                     6930 Y     1997 Woodall
 5629  22971*2^22971-1                     6920 Y     1997 Woodall
 5630  15877#-1                            6845 CD    1992 Primorial
 5631  6*Bern(2974)/19622040971147542470479091157507
                                           6637 c8    2013 Irregular, ECPP
 5632  U(30757)                            6428 p54   2001 
          Fibonacci number, cyclotomy
 5633  E(2220)/392431891068600713525       6011 c8    2013 
          Euler irregular, ECPP
 5634  -E(2202)/53781055550934778283104432814129020709
                                           5938 c8    2013 
          Euler irregular, ECPP
 5635  13649#+1                            5862 D     1987 Primorial
 5636  274386*Bern(2622)/8518594882415401157891061256276973722693
                                           5701 c8    2013 Irregular, ECPP
 5637  18885*2^18885-1                     5690 K     1987 Woodall
 5638  1963!-1                             5614 CD    1992 Factorial
 5639  13033#-1                            5610 CD    1992 Primorial
 5640  289*2^18502+1                       5573 K     1984 
          Cullen, generalized Fermat
 5641  E(2028)/11246153954845684745        5412 c55   2011 
          Euler irregular, ECPP
 5642  -30*Bern(2504)/1248230090315232335602406373438221652417581490266755814\
       38903418303340323897
                                           5354 c63   2013 Irregular ECPP
 5643  U(25561)                            5342 p54   2001 Fibonacci number
 5644  -E(1990)/8338208577950624722417016286765473477033741642105671913
                                           5258 c8    2013 
          Euler irregular, ECPP
 5645  33957462*Bern(2370)/40685           5083 c11   2003 Irregular, ECPP
 5646  4122429552750669*2^16567+7          5003 c83   2016 
          Quadruplet (4), ECPP
 5647  4122429552750669*2^16567+5          5003 c83   2016 
          Quadruplet (3), ECPP
 5648  4122429552750669*2^16567+1          5003 L4342 2016 Quadruplet (2)
 5649  4122429552750669*2^16567-1          5003 L4342 2016 Quadruplet (1)
 5650  35734184537*11677#/3+9              5002 c98   2024 
          Consecutive primes arithmetic progression (4,d=6), ECPP
 5651  35734184537*11677#/3+3              5002 c98   2024 
          Consecutive primes arithmetic progression (3,d=6), ECPP
 5652  35734184537*11677#/3-3              5002 c98   2024 
          Consecutive primes arithmetic progression (2,d=6), ECPP
 5653  35734184537*11677#/3-9              5002 c98   2024 
          Consecutive primes arithmetic progression (1,d=6), ECPP
 5654  E(1840)/31237282053878368942060412182384934425
                                           4812 c4    2011 
          Euler irregular, ECPP
 5655  7911*2^15823-1                      4768 K     1987 Woodall
 5656  E(1736)/13510337079405137518589526468536905
                                           4498 c4    2004 
          Euler irregular, ECPP
 5657  2^14699+2^7350+1                    4425 O     2000 
          Gaussian Mersenne norm 27, generalized unique
 5658e 744029027072*10111#-1               4362 p364  2025 
          Cunningham chain (8p+7)
 5659  (2^14479+1)/3                       4359 c4    2004 
          Generalized Lucas number, Wagstaff, ECPP
 5660  62399583639*9923#-3399421517        4285 c98   2021 
          Consecutive primes arithmetic progression (4,d=30), ECPP
 5661  62399583639*9923#-3399421547        4285 c98   2021 
          Consecutive primes arithmetic progression (3,d=30), ECPP
 5662  62399583639*9923#-3399421577        4285 c98   2021 
          Consecutive primes arithmetic progression (2,d=30), ECPP
 5663  62399583639*9923#-3399421607        4285 c98   2021 
          Consecutive primes arithmetic progression (1,d=30), ECPP
 5664  49325406476*9811#*8+1               4234 p382  2019 
          Cunningham chain 2nd kind (8p-7)
 5665  276474*Bern(2030)/469951697500688159155
                                           4200 c8    2003 Irregular, ECPP
 5666  V(19469)                            4069 x25   2002 
          Lucas number, cyclotomy, APR-CL assisted
 5667  1477!+1                             4042 D     1984 Factorial
 5668  -2730*Bern(1884)/100983617849       3844 c8    2003 Irregular, ECPP
 5669  2840178*Bern(1870)/85               3821 c8    2003 Irregular, ECPP
 5670  (1049713153083*2917#*(567*2917#+1)+2310)*(567*2917#-1)/210+9
                                           3753 c101  2023 
          Quadruplet (4),ECPP
 5671  (1049713153083*2917#*(567*2917#+1)+2310)*(567*2917#-1)/210+7
                                           3753 c101  2023 
          Quadruplet (3),ECPP
 5672  (1049713153083*2917#*(567*2917#+1)+2310)*(567*2917#-1)/210+3
                                           3753 c101  2023 
          Quadruplet (2),ECPP
 5673  (1049713153083*2917#*(567*2917#+1)+2310)*(567*2917#-1)/210+1
                                           3753 c101  2023 
          Quadruplet (1),ECPP
 5674  12379*2^12379-1                     3731 K     1984 Woodall
 5675  (2^12391+1)/3                       3730 M     1996 
          Generalized Lucas number, Wagstaff
 5676  -E(1466)/167900532276654417372106952612534399239
                                           3682 c8    2013 
          Euler irregular, ECPP
 5677  E(1468)/12330876589623053882799895025030461658552339028064108285
                                           3671 c4    2003 
          Euler irregular, ECPP
 5678  1268118079424*8501#-1               3640 p434  2023 
          Cunningham chain (8p+7)
 5679  101406820312263*2^12042+7           3640 c67   2018 Quadruplet (4)
 5680  101406820312263*2^12042+5           3640 c67   2018 Quadruplet (3)
 5681  101406820312263*2^12042+1           3640 p364  2018 Quadruplet (2)
 5682  101406820312263*2^12042-1           3640 p364  2018 Quadruplet (1)
 5683  2673092556681*15^3048+4             3598 c67   2015 Quadruplet (4)
 5684  2673092556681*15^3048+2             3598 c67   2015 Quadruplet (3)
 5685  2673092556681*15^3048-2             3598 c67   2015 Quadruplet (2)
 5686  2673092556681*15^3048-4             3598 c67   2015 Quadruplet (1)
 5687  6016459977*7927#-1                  3407 p364  2022 
          Arithmetic progression (7,d=577051223*7927#)
 5688  5439408754*7927#-1                  3407 p364  2022 
          Arithmetic progression (6,d=577051223*7927#)
 5689  4862357531*7927#-1                  3407 p364  2022 
          Arithmetic progression (5,d=577051223*7927#)
 5690  4285306308*7927#-1                  3407 p364  2022 
          Arithmetic progression (4,d=577051223*7927#)
 5691  3708255085*7927#-1                  3407 p364  2022 
          Arithmetic progression (3,d=577051223*7927#)
 5692  3131203862*7927#-1                  3407 p364  2022 
          Arithmetic progression (2,d=577051223*7927#)
 5693  2554152639*7927#-1                  3407 p364  2022 
          Arithmetic progression (1,d=577051223*7927#)
 5694  62753735335*7919#+3399421667        3404 c98   2021 
          Consecutive primes arithmetic progression (4,d=30), ECPP
 5695  62753735335*7919#+3399421637        3404 c98   2021 
          Consecutive primes arithmetic progression (3,d=30), ECPP
 5696  62753735335*7919#+3399421607        3404 c98   2021 
          Consecutive primes arithmetic progression (2,d=30), ECPP
 5697  62753735335*7919#+3399421577        3404 c98   2021 
          Consecutive primes arithmetic progression (1,d=30), ECPP
 5698  (2^11279+1)/3                       3395 PM    1998 
          Cyclotomy, generalized Lucas number, Wagstaff
 5699  109766820328*7877#-1                3385 p395  2016 
          Cunningham chain (8p+7)
 5700  585150568069684836*7757#/85085+17
                                           3344 c88   2022 
          Quintuplet (5), ECPP
 5701  585150568069684836*7757#/85085+13
                                           3344 c88   2022 
          Quintuplet (4), ECPP
 5702  585150568069684836*7757#/85085+11
                                           3344 c88   2022 
          Quintuplet (3), ECPP
 5703  585150568069684836*7757#/85085+7    3344 c88   2022 
          Quintuplet (2), ECPP
 5704  585150568069684836*7757#/85085+5    3344 c88   2022 
          Quintuplet (1), ECPP
 5705  104052837*7759#-1                   3343 p398  2017 
          Arithmetic progression (6,d=12009836*7759#)
 5706  92043001*7759#-1                    3343 p398  2017 
          Arithmetic progression (5,d=12009836*7759#)
 5707  80033165*7759#-1                    3343 p398  2017 
          Arithmetic progression (4,d=12009836*7759#)
 5708  68023329*7759#-1                    3343 p398  2017 
          Arithmetic progression (3,d=12009836*7759#)
 5709  56013493*7759#-1                    3343 p398  2017 
          Arithmetic progression (2,d=12009836*7759#)
 5710  44003657*7759#-1                    3343 p398  2017 
          Arithmetic progression (1,d=12009836*7759#)
 5711  2072453060816*7699#+1               3316 p364  2019 
          Cunningham chain 2nd kind (8p-7)
 5712  (2^10691+1)/3                       3218 c4    2004 
          Generalized Lucas number, Wagstaff, ECPP
 5713  231692481512*7517#-1                3218 p395  2016 
          Cunningham chain (8p+7)
 5714  (1021328211729*2521#*(483*2521#+1)+2310)*(483*2521#-1)/210+19
                                           3207 c100  2023 
          Consecutive primes arithmetic progression (4,d=6),ECPP
 5715  (1021328211729*2521#*(483*2521#+1)+2310)*(483*2521#-1)/210+13
                                           3207 c100  2023 
          Consecutive primes arithmetic progression (3,d=6),ECPP
 5716  (1021328211729*2521#*(483*2521#+1)+2310)*(483*2521#-1)/210+7
                                           3207 c100  2023 
          Consecutive primes arithmetic progression (2,d=6),ECPP
 5717  (1021328211729*2521#*(483*2521#+1)+2310)*(483*2521#-1)/210+1
                                           3207 c100  2023 
          Consecutive primes arithmetic progression (1,d=6),ECPP
 5718  (2^10501+1)/3                       3161 M     1996 
          Generalized Lucas number, Wagstaff
 5719  2^10141+2^5071+1                    3053 O     2000 
          Gaussian Mersenne norm 26, generalized unique
 5720  121152729080*7019#/1729+19          3025 c92   2019 
          Consecutive primes arithmetic progression (4,d=6), ECPP
 5721  121152729080*7019#/1729+13          3025 c92   2019 
          Consecutive primes arithmetic progression (3,d=6), ECPP
 5722  121152729080*7019#/1729+7           3025 c92   2019 
          Consecutive primes arithmetic progression (2,d=6), ECPP
 5723  121152729080*7019#/1729+1           3025 p407  2019 
          Consecutive primes arithmetic progression (1,d=6)
 5724  V(14449)                            3020 DK    1995 Lucas number
 5725  3124777373*7001#+1                  3019 p155  2012 
          Arithmetic progression (7,d=481789017*7001#)
 5726  2996180304*7001#+1                  3019 p155  2012 
          Arithmetic progression (6,d=46793757*7001#)
 5727  2949386547*7001#+1                  3019 p155  2012 
          Arithmetic progression (5,d=46793757*7001#)
 5728  2946259686*7001#+1                  3019 p155  2012 
          Arithmetic progression (6,d=313558156*7001#)
 5729  2911906960*7001#+1                  3019 p155  2012 
          Arithmetic progression (5,d=3093612*7001#)
 5730  2908813348*7001#+1                  3019 p155  2012 
          Arithmetic progression (4,d=3093612*7001#)
 5731  2905719736*7001#+1                  3019 p155  2012 
          Arithmetic progression (3,d=3093612*7001#)
 5732  2902626124*7001#+1                  3019 p155  2012 
          Arithmetic progression (2,d=3093612*7001#)
 5733  2902592790*7001#+1                  3019 p155  2012 
          Arithmetic progression (4,d=46793757*7001#)
 5734  2899532512*7001#+1                  3019 p155  2012 
          Arithmetic progression (1,d=3093612*7001#)
 5735  2855799033*7001#+1                  3019 p155  2012 
          Arithmetic progression (3,d=46793757*7001#)
 5736  2809005276*7001#+1                  3019 p155  2012 
          Arithmetic progression (2,d=46793757*7001#)
 5737  2762211519*7001#+1                  3019 p155  2012 
          Arithmetic progression (1,d=46793757*7001#)
 5738  2642988356*7001#+1                  3019 p155  2012 
          Arithmetic progression (6,d=481789017*7001#)
 5739  2161199339*7001#+1                  3019 p155  2012 
          Arithmetic progression (5,d=481789017*7001#)
 5740  1679410322*7001#+1                  3019 p155  2012 
          Arithmetic progression (4,d=481789017*7001#)
 5741  1197621305*7001#+1                  3019 p155  2012 
          Arithmetic progression (3,d=481789017*7001#)
 5742  715832288*7001#+1                   3019 p155  2012 
          Arithmetic progression (2,d=481789017*7001#)
 5743  234043271*7001#+1                   3018 p155  2012 
          Arithmetic progression (1,d=481789017*7001#)
 5744  U(14431)                            3016 p54   2001 Fibonacci number
 5745  138281163736*6977#+1                3006 p395  2016 
          Cunningham chain 2nd kind (8p-7)
 5746  375967981369*6907#*8-1              2972 p382  2017 
          Cunningham chain (8p+7)
 5747  V(13963)                            2919 c11   2002 Lucas number, ECPP
 5748  284787490256*6701#+1                2879 p364  2015 
          Cunningham chain 2nd kind (8p-7)
 5749  9531*2^9531-1                       2874 K     1984 Woodall
 5750  -E(1174)/50550511342697072710795058639332351763
                                           2829 c8    2013 
          Euler irregular, ECPP
 5751  -E(1142)/6233437695283865492412648122953349079446935570718422828539863\
       59013986902240869
                                           2697 c77   2015 
          Euler irregular, ECPP
 5752  -E(1078)/361898544439043            2578 c4    2002 
          Euler irregular, ECPP
 5753  V(12251)                            2561 p54   2001 Lucas number
 5754  974!-1                              2490 CD    1992 Factorial
 5755  7755*2^7755-1                       2339 K     1984 Woodall
 5756  772463767240*5303#+1                2272 p308  2019 
          Cunningham chain 2nd kind (8p-7)
 5757  116814018316*5303#+1                2271 p406  2019 
          Arithmetic progression (7,d=10892863626*5303#)
 5758  116746086504*5303#+1                2271 p406  2019 
          Arithmetic progression (7,d=9726011684*5303#)
 5759  116242725347*5303#+1                2271 p406  2019 
          Arithmetic progression (7,d=10388428124*5303#)
 5760  107020074820*5303#+1                2271 p406  2019 
          Arithmetic progression (6,d=9726011684*5303#)
 5761  105921154690*5303#+1                2271 p406  2019 
          Arithmetic progression (6,d=10892863626*5303#)
 5762  105854297223*5303#+1                2271 p406  2019 
          Arithmetic progression (6,d=10388428124*5303#)
 5763  97867278281*5303#+1                 2271 p406  2019 
          Arithmetic progression (5,d=2972005888*5303#)
 5764  97348096836*5303#+1                 2271 p406  2019 
          Arithmetic progression (5,d=5447332033*5303#)
 5765  97294063136*5303#+1                 2271 p406  2019 
          Arithmetic progression (5,d=9726011684*5303#)
 5766  96461651937*5303#+1                 2271 p406  2019 
          Arithmetic progression (4,d=435232416*5303#)
 5767  96026419521*5303#+1                 2271 p406  2019 
          Arithmetic progression (3,d=435232416*5303#)
 5768  95664304943*5303#+1                 2271 p406  2019 
          Arithmetic progression (4,d=817534485*5303#)
 5769  95591187105*5303#+1                 2271 p406  2019 
          Arithmetic progression (2,d=435232416*5303#)
 5770  95155954689*5303#+1                 2271 p406  2019 
          Arithmetic progression (1,d=435232416*5303#)
 5771  94895272393*5303#+1                 2271 p406  2019 
          Arithmetic progression (4,d=2972005888*5303#)
 5772  94846770458*5303#+1                 2271 p406  2019 
          Arithmetic progression (3,d=817534485*5303#)
 5773  94029235973*5303#+1                 2271 p406  2019 
          Arithmetic progression (2,d=817534485*5303#)
 5774  93984538785*5303#+1                 2271 p406  2019 
          Arithmetic progression (3,d=387018369*5303#)
 5775  93597520416*5303#+1                 2271 p406  2019 
          Arithmetic progression (2,d=387018369*5303#)
 5776  93211701488*5303#+1                 2271 p406  2019 
          Arithmetic progression (1,d=817534485*5303#)
 5777  93210502047*5303#+1                 2271 p406  2019 
          Arithmetic progression (1,d=387018369*5303#)
 5778  69285767989*5303#+1                 2271 p406  2019 
          Arithmetic progression (8,d=3026809034*5303#)
 5779  66258958955*5303#+1                 2271 p406  2019 
          Arithmetic progression (7,d=3026809034*5303#)
 5780  63232149921*5303#+1                 2271 p406  2019 
          Arithmetic progression (6,d=3026809034*5303#)
 5781  60205340887*5303#+1                 2271 p406  2019 
          Arithmetic progression (5,d=3026809034*5303#)
 5782  57178531853*5303#+1                 2271 p406  2019 
          Arithmetic progression (4,d=3026809034*5303#)
 5783  54151722819*5303#+1                 2271 p406  2019 
          Arithmetic progression (3,d=3026809034*5303#)
 5784  51124913785*5303#+1                 2271 p406  2019 
          Arithmetic progression (2,d=3026809034*5303#)
 5785  48098104751*5303#+1                 2270 p406  2019 
          Arithmetic progression (1,d=3026809034*5303#)
 5786  V(10691)                            2235 DK    1995 Lucas number
 5787  566761969187*4733#/2+4              2034 c67   2020 Quintuplet (5)
 5788  566761969187*4733#/2+2              2034 c67   2020 Quintuplet (4)
 5789  566761969187*4733#/2-2              2034 c67   2020 Quintuplet (3)
 5790  566761969187*4733#/2-4              2034 c67   2020 Quintuplet (2)
 5791  566761969187*4733#/2-8              2034 c67   2020 Quintuplet (1)
 5792  U(9677)                             2023 c2    2000 
          Fibonacci number, ECPP
 5793  7610828704751636272*4679#-1         2020 p151  2024 
          Cunningham chain (16p+15)
 5794  126831252923413*4657#/273+13        2002 c88   2020 Quintuplet (5)
 5795  126831252923413*4657#/273+9         2002 c88   2020 Quintuplet (4)
 5796  126831252923413*4657#/273+7         2002 c88   2020 Quintuplet (3)
 5797  126831252923413*4657#/273+3         2002 c88   2020 Quintuplet (2)
 5798  126831252923413*4657#/273+1         2002 c88   2020 Quintuplet (1)
 5799  6611*2^6611+1                       1994 K     1984 Cullen
 5800  U(9311)                             1946 DK    1995 Fibonacci number
 5801  2738129459017*4211#+3399421637      1805 c98   2022 
          Consecutive primes arithmetic progression (5,d=30)
 5802  2738129459017*4211#+3399421607      1805 c98   2022 
          Consecutive primes arithmetic progression (4,d=30)
 5803  2738129459017*4211#+3399421577      1805 c98   2022 
          Consecutive primes arithmetic progression (3,d=30)
 5804  2738129459017*4211#+3399421547      1805 c98   2022 
          Consecutive primes arithmetic progression (2,d=30)
 5805  2738129459017*4211#+3399421517      1805 c98   2022 
          Consecutive primes arithmetic progression (1,d=30)
 5806  V(8467)                             1770 c2    2000 Lucas number, ECPP
 5807  5795*2^5795+1                       1749 K     1984 Cullen
 5808  (2^5807+1)/3                        1748 PM    1998 
          Cyclotomy, generalized Lucas number, Wagstaff
 5809  54201838768*3917#-1                 1681 p395  2016 
          Cunningham chain (16p+15)
 5810  102619722624*3797#+1                1631 p395  2016 
          Cunningham chain 2nd kind (16p-15)
 5811  394254311495*3733#/2+4              1606 c67   2017 Quintuplet (5)
 5812  394254311495*3733#/2+2              1606 c67   2017 Quintuplet (4)
 5813  394254311495*3733#/2-2              1606 c67   2017 Quintuplet (3)
 5814  394254311495*3733#/2-4              1606 c67   2017 Quintuplet (2)
 5815  394254311495*3733#/2-8              1606 c67   2017 Quintuplet (1)
 5816  83*2^5318-1                         1603 K     1984 Woodall
 5817  2316765173284*3593#+16073           1543 c18   2016 
          Quintuplet (5), ECPP
 5818  2316765173284*3593#+16069           1543 c18   2016 
          Quintuplet (4), ECPP
 5819  2316765173284*3593#+16067           1543 c18   2016 
          Quintuplet (3), ECPP
 5820  2316765173284*3593#+16063           1543 c18   2016 
          Quintuplet (2), ECPP
 5821  2316765173284*3593#+16061           1543 c18   2016 
          Quintuplet (1), ECPP
 5822  652229318541*3527#+3399421637       1504 c98   2021 
          Consecutive primes arithmetic progression (5,d=30), ECPP
 5823  652229318541*3527#+3399421607       1504 c98   2021 
          Consecutive primes arithmetic progression (4,d=30), ECPP
 5824  652229318541*3527#+3399421577       1504 c98   2021 
          Consecutive primes arithmetic progression (3,d=30), ECPP
 5825  652229318541*3527#+3399421547       1504 c98   2021 
          Consecutive primes arithmetic progression (2,d=30), ECPP
 5826  652229318541*3527#+3399421517       1504 c98   2021 
          Consecutive primes arithmetic progression (1,d=30), ECPP
 5827  3199190962192*3499#-1               1494 p382  2016 
          Cunningham chain (16p+15)
 5828  4713*2^4713+1                       1423 K     1984 Cullen
 5829  449209457832*3307#+1633050403       1408 c98   2021 
          Consecutive primes arithmetic progression (5,d=30), ECPP
 5830  449209457832*3307#+1633050373       1408 c98   2021 
          Consecutive primes arithmetic progression (4,d=30), ECPP
 5831  449209457832*3307#+1633050343       1408 c98   2021 
          Consecutive primes arithmetic progression (3,d=30), ECPP
 5832  449209457832*3307#+1633050313       1408 c98   2021 
          Consecutive primes arithmetic progression (2,d=30), ECPP
 5833  449209457832*3307#+1633050283       1408 c98   2021 
          Consecutive primes arithmetic progression (1,d=30), ECPP
 5834  5780736564512*3023#-1               1301 p364  2015 
          Cunningham chain (16p+15)
 5835  2746496109133*3001#+27011           1290 c97   2021 
          Consecutive primes arithmetic progression (5,d=30), ECPP
 5836  2746496109133*3001#+26981           1290 c97   2021 
          Consecutive primes arithmetic progression (4,d=30), ECPP
 5837  2746496109133*3001#+26951           1290 c97   2021 
          Consecutive primes arithmetic progression (3,d=30), ECPP
 5838  2746496109133*3001#+26921           1290 c97   2021 
          Consecutive primes arithmetic progression (2,d=30), ECPP
 5839  2746496109133*3001#+26891           1290 c97   2021 
          Consecutive primes arithmetic progression (1,d=30), ECPP
 5840  898966996992*3001#+1                1289 p364  2015 
          Cunningham chain 2nd kind (16p-15)
 5841  42530119784448*2969#+1              1281 p382  2017 
          Cunningham chain 2nd kind (16p-15)
 5842  22623218234368*2969#+1              1280 p382  2017 
          Cunningham chain 2nd kind (16p-15)
 5843  1542946580224*2851#-1               1231 p364  2023 
          Cunningham chain (16p+15)
 5844  406463527990*2801#+1633050403       1209 x38   2013 
          Consecutive primes arithmetic progression (5,d=30)
 5845  406463527990*2801#+1633050373       1209 x38   2013 
          Consecutive primes arithmetic progression (4,d=30)
 5846  406463527990*2801#+1633050343       1209 x38   2013 
          Consecutive primes arithmetic progression (3,d=30)
 5847  406463527990*2801#+1633050313       1209 x38   2013 
          Consecutive primes arithmetic progression (2,d=30)
 5848  406463527990*2801#+1633050283       1209 x38   2013 
          Consecutive primes arithmetic progression (1,d=30)
 5849  1290733709840*2677#+1               1141 p295  2011 
          Cunningham chain 2nd kind (16p-15)
 5850  U(5387)                             1126 WM    1990 Fibonacci number
 5851  1176100079*2591#+1                  1101 p252  2019 
          Arithmetic progression (8,d=60355670*2591#)
 5852  1115744409*2591#+1                  1101 p252  2019 
          Arithmetic progression (7,d=60355670*2591#)
 5853  1055388739*2591#+1                  1100 p252  2019 
          Arithmetic progression (6,d=60355670*2591#)
 5854  995033069*2591#+1                   1100 p252  2019 
          Arithmetic progression (5,d=60355670*2591#)
 5855  934677399*2591#+1                   1100 p252  2019 
          Arithmetic progression (4,d=60355670*2591#)
 5856  874321729*2591#+1                   1100 p252  2019 
          Arithmetic progression (3,d=60355670*2591#)
 5857  813966059*2591#+1                   1100 p252  2019 
          Arithmetic progression (2,d=60355670*2591#)
 5858  753610389*2591#+1                   1100 p252  2019 
          Arithmetic progression (1,d=60355670*2591#)
 5859  (2^3539+1)/3                        1065 M     1989 
          First titanic by ECPP, generalized Lucas number, Wagstaff
 5860  2968802755*2459#+1                  1057 p155  2009 
          Arithmetic progression (8,d=359463429*2459#)
 5861  2609339326*2459#+1                  1057 p155  2009 
          Arithmetic progression (7,d=359463429*2459#)
 5862  2249875897*2459#+1                  1057 p155  2009 
          Arithmetic progression (6,d=359463429*2459#)
 5863  1890412468*2459#+1                  1056 p155  2009 
          Arithmetic progression (5,d=359463429*2459#)
 5864  1530949039*2459#+1                  1056 p155  2009 
          Arithmetic progression (4,d=359463429*2459#)
 5865  1171485610*2459#+1                  1056 p155  2009 
          Arithmetic progression (3,d=359463429*2459#)
 5866  812022181*2459#+1                   1056 p155  2009 
          Arithmetic progression (2,d=359463429*2459#)
 5867  452558752*2459#+1                   1056 p155  2009 
          Arithmetic progression (1,d=359463429*2459#)
 5868d 5963982717*2417#-1                  1040 p364  2025 
          Arithmetic progression (8,d=108526765*2417#)
 5869d 5855455952*2417#-1                  1040 p364  2025 
          Arithmetic progression (7,d=108526765*2417#)
 5870d 5746929187*2417#-1                  1040 p364  2025 
          Arithmetic progression (6,d=108526765*2417#)
 5871d 5638402422*2417#-1                  1040 p364  2025 
          Arithmetic progression (5,d=108526765*2417#)
 5872d 5529875657*2417#-1                  1040 p364  2025 
          Arithmetic progression (4,d=108526765*2417#)
 5873d 5421348892*2417#-1                  1040 p364  2025 
          Arithmetic progression (3,d=108526765*2417#)
 5874d 5312822127*2417#-1                  1040 p364  2025 
          Arithmetic progression (2,d=108526765*2417#)
 5875d 5204295362*2417#-1                  1040 p364  2025 
          Arithmetic progression (1,d=108526765*2417#)
 5876d 4692090369*2417#-1                  1040 p364  2025 
          Arithmetic progression (8,d=370899838*2417#)
 5877d 4321190531*2417#-1                  1040 p364  2025 
          Arithmetic progression (7,d=370899838*2417#)
 5878d 3950290693*2417#-1                  1040 p364  2025 
          Arithmetic progression (6,d=370899838*2417#)
 5879d 3579390855*2417#-1                  1040 p364  2025 
          Arithmetic progression (5,d=370899838*2417#)
 5880d 3208491017*2417#-1                  1040 p364  2025 
          Arithmetic progression (4,d=370899838*2417#)
 5881d 2837591179*2417#-1                  1040 p364  2025 
          Arithmetic progression (3,d=370899838*2417#)
 5882d 2466691341*2417#-1                  1040 p364  2025 
          Arithmetic progression (2,d=370899838*2417#)
 5883d 2095791503*2417#-1                  1040 p364  2025 
          Arithmetic progression (1,d=370899838*2417#)
 5884  28993093368077*2399#+19433          1037 c18   2016 
          Sextuplet (6), ECPP
 5885  28993093368077*2399#+19429          1037 c18   2016 
          Sextuplet (5), ECPP
 5886  28993093368077*2399#+19427          1037 c18   2016 
          Sextuplet (4), ECPP
 5887  28993093368077*2399#+19423          1037 c18   2016 
          Sextuplet (3), ECPP
 5888  28993093368077*2399#+19421          1037 c18   2016 
          Sextuplet (2), ECPP
 5889  28993093368077*2399#+19417          1037 c18   2016 
          Sextuplet (1), ECPP
 5890b 64158976085*2399#+1                 1034 p41   2025 
          Arithmetic progression (9,d=6383832302*2399#)
 5891b 57775143783*2399#+1                 1034 p41   2025 
          Arithmetic progression (8,d=6383832302*2399#)
 5892b 51391311481*2399#+1                 1034 p41   2025 
          Arithmetic progression (7,d=6383832302*2399#)
 5893b 45007479179*2399#+1                 1034 p41   2025 
          Arithmetic progression (6,d=6383832302*2399#)
 5894b 38623646877*2399#+1                 1034 p41   2025 
          Arithmetic progression (5,d=6383832302*2399#)
 5895b 32239814575*2399#+1                 1034 p41   2025 
          Arithmetic progression (4,d=6383832302*2399#)
 5896b 25855982273*2399#+1                 1034 p41   2025 
          Arithmetic progression (3,d=6383832302*2399#)
 5897b 19472149971*2399#+1                 1034 p41   2025 
          Arithmetic progression (2,d=6383832302*2399#)
 5898b 13088317669*2399#+1                 1034 p41   2025 
          Arithmetic progression (1,d=6383832302*2399#)
 5899  R(1031)                             1031 WD    1985 Repunit
 5900  89595955370432*2371#-1              1017 p364  2015 
          Cunningham chain (32p+31)
 5901  116040452086*2371#+1                1014 p308  2012 
          Arithmetic progression (9,d=6317280828*2371#)
 5902  109723171258*2371#+1                1014 p308  2012 
          Arithmetic progression (8,d=6317280828*2371#)
 5903  103405890430*2371#+1                1014 p308  2012 
          Arithmetic progression (7,d=6317280828*2371#)
 5904  97336164242*2371#+1                 1014 p308  2013 
          Arithmetic progression (9,d=6350457699*2371#)
 5905  97088609602*2371#+1                 1014 p308  2012 
          Arithmetic progression (6,d=6317280828*2371#)
 5906  93537753980*2371#+1                 1014 p308  2013 
          Arithmetic progression (9,d=3388165411*2371#)
 5907  92836168856*2371#+1                 1014 p308  2013 
          Arithmetic progression (9,d=127155673*2371#)
 5908  92709013183*2371#+1                 1014 p308  2013 
          Arithmetic progression (8,d=127155673*2371#)
 5909  92581857510*2371#+1                 1014 p308  2013 
          Arithmetic progression (7,d=127155673*2371#)
 5910  92454701837*2371#+1                 1014 p308  2013 
          Arithmetic progression (6,d=127155673*2371#)
 5911  92327546164*2371#+1                 1014 p308  2013 
          Arithmetic progression (5,d=127155673*2371#)
 5912  92200390491*2371#+1                 1014 p308  2013 
          Arithmetic progression (4,d=127155673*2371#)
 5913  92073234818*2371#+1                 1014 p308  2013 
          Arithmetic progression (3,d=127155673*2371#)
 5914  91946079145*2371#+1                 1014 p308  2013 
          Arithmetic progression (2,d=127155673*2371#)
 5915  91818923472*2371#+1                 1014 p308  2013 
          Arithmetic progression (1,d=127155673*2371#)
 5916  90985706543*2371#+1                 1014 p308  2013 
          Arithmetic progression (8,d=6350457699*2371#)
 5917  90771328774*2371#+1                 1014 p308  2012 
          Arithmetic progression (5,d=6317280828*2371#)
 5918  90149588569*2371#+1                 1014 p308  2013 
          Arithmetic progression (8,d=3388165411*2371#)
 5919  86761423158*2371#+1                 1014 p308  2013 
          Arithmetic progression (7,d=3388165411*2371#)
 5920  84635248844*2371#+1                 1014 p308  2013 
          Arithmetic progression (7,d=6350457699*2371#)
 5921  84454047946*2371#+1                 1014 p308  2012 
          Arithmetic progression (4,d=6317280828*2371#)
 5922  83373257747*2371#+1                 1014 p308  2013 
          Arithmetic progression (6,d=3388165411*2371#)
 5923  79985092336*2371#+1                 1014 p308  2013 
          Arithmetic progression (5,d=3388165411*2371#)
 5924  78284791145*2371#+1                 1014 p308  2013 
          Arithmetic progression (6,d=6350457699*2371#)
 5925  78136767118*2371#+1                 1014 p308  2012 
          Arithmetic progression (3,d=6317280828*2371#)
 5926  76596926925*2371#+1                 1014 p308  2013 
          Arithmetic progression (4,d=3388165411*2371#)
 5927  73208761514*2371#+1                 1014 p308  2013 
          Arithmetic progression (3,d=3388165411*2371#)
 5928  71934333446*2371#+1                 1014 p308  2013 
          Arithmetic progression (5,d=6350457699*2371#)
 5929  71819486290*2371#+1                 1014 p308  2012 
          Arithmetic progression (2,d=6317280828*2371#)
 5930  69820596103*2371#+1                 1014 p308  2013 
          Arithmetic progression (2,d=3388165411*2371#)
 5931  66432430692*2371#+1                 1014 p308  2013 
          Arithmetic progression (1,d=3388165411*2371#)
 5932  65583875747*2371#+1                 1014 p308  2013 
          Arithmetic progression (4,d=6350457699*2371#)
 5933  65502205462*2371#+1                 1014 p308  2012 
          Arithmetic progression (1,d=6317280828*2371#)
 5934  61526034135*2371#+1                 1014 p308  2011 
          Arithmetic progression (3,d=1298717501*2371#)
 5935  60227316634*2371#+1                 1014 p308  2011 
          Arithmetic progression (2,d=1298717501*2371#)
 5936  58928599133*2371#+1                 1014 p308  2011 
          Arithmetic progression (1,d=1298717501*2371#)
 5937  533098369554*2357#+3399421667       1012 c98   2021 
          Consecutive primes arithmetic progression (6,d=30), ECPP
 5938  533098369554*2357#+3399421637       1012 c98   2021 
          Consecutive primes arithmetic progression (5,d=30), ECPP
 5939  533098369554*2357#+3399421607       1012 c98   2021 
          Consecutive primes arithmetic progression (4,d=30), ECPP
 5940  533098369554*2357#+3399421577       1012 c98   2021 
          Consecutive primes arithmetic progression (3,d=30), ECPP
 5941  533098369554*2357#+3399421547       1012 c98   2021 
          Consecutive primes arithmetic progression (2,d=30), ECPP
 5942  533098369554*2357#+3399421517       1012 c98   2021 
          Consecutive primes arithmetic progression (1,d=30), ECPP
 5943  113225039190926127209*2339#/57057+21
                                           1002 c88   2021 Septuplet (7)
 5944  113225039190926127209*2339#/57057+19
                                           1002 c88   2021 Septuplet (6)
 5945  113225039190926127209*2339#/57057+13
                                           1002 c88   2021 Septuplet (5)
 5946  113225039190926127209*2339#/57057+9
                                           1002 c88   2021 Septuplet (4)
 5947  113225039190926127209*2339#/57057+7
                                           1002 c88   2021 Septuplet (3)
 5948f 1184490310627008*2339#+1            1001 p364  2025 
          Cunningham chain 2nd kind (32p-31)
-----  ------------------------------- -------- ----- ---- --------------


KEY TO PROOF-CODES (primality provers):

A1    Propper, Srsieve, PrimeGrid, PRST
A2    Propper, Srsieve, PRST
A3    Atnashev, PRST
A5    Gahan, Cyclo, PRST
A6    Propper, Gcwsieve, PRST
A7    Baur, Cyclo, PRST
A8    Baur1, Srsieve, PRST
A9    Wright1, Srsieve, CRUS, PRST
A10   Grosvenor, Srsieve, CRUS, PRST
A11   Anonymous, Srsieve, CRUS, PRST
A12   Kruse, Srsieve, CRUS, PRST
A13   Marler, Cyclo, PRST
A14   Thompson5, Srsieve, CRUS, PRST
A15   Sielemann, Srsieve, CRUS, PRST
A16   Broer, Srsieve, CRUS, PRST
A18   Trunov, Cyclo, PRST
A19   Propper, Batalov, Srsieve, PRST
A20   Propper, Batalov, Gcwsieve, PRST
A21   Piesker, Srsieve, CRUS, PRST
A22   Doornink, Cyclo, PRST
A23   Brown1, Srsieve, PrimeGrid, PRST
A24   Ogawa, MultiSieve, NewPGen, PRST
A25   Schmidt2, NewPGen, PRST
A26   VISCAPI, Srsieve, CRUS, PRST
A27   Piesker, PSieve, Srsieve, NPLB, PRST
A28   Gingrich1, Srsieve, CRUS, PRST
A29   Kelava1, Srsieve, Prime95, PRST
A30   Silva2, Srsieve, PrimeGrid, PRST
A31   Dinkel, MultiSieve, PRST
A32   Cedric, Srsieve, CRUS, PRST
A34   Verhaagen, Srsieve, CRUS, PRST
A36   Glotzbach, Srsieve, CRUS, PRST
A38   Batalov, PSieve, Srsieve, PRST
A39   Majors, Srsieve, CRUS, PRST
A41   Gmirkin, Srsieve, PrimeGrid, PRST
A42   Dadocad72, Srsieve, CRUS, PRST
A43   Propper, MultiSieve, PRST
A44   Smith12, Srsieve, CRUS, PRST
A45   Kaczala, Srsieve, PrimeGrid, PRST
A46   Primecrunch.com, Hedges, Srsieve, PRST
A48   Peteri, Srsieve, CRUS, PRST
A49   Swerczek, Srsieve, CRUS, PRST
A50   Bird2, Srsieve, CRUS, PRST
A51   Gahan, NewPGen, PRST
A52   Schumacher, Srsieve, CRUS, PRST
A54   Lynch, Srsieve, CRUS, PRST
A55   Nielsen1, Gahan, PRST
A56   Loebmann, Srsieve, CRUS, PRST
A57   Busler, Srsieve, CRUS, PRST
A58   Schmidt2, PSieve, Srsieve, NPLB, PRST
A59   Straleger, Srsieve, CRUS, PRST
A60   Presler, Srsieve, PrimeGrid, PRST
A61   Williams7, Gcwsieve, MultiSieve, PrimeGrid, PRST
A62   Gehrke, Srsieve, CRUS, PRST
A63   Davies, Srsieve, CRUS, PRST
A64   Freeman.kennethgmail.com, Srsieve, CRUS, PRST
A65   Dickinson, Srsieve, CRUS, PRST
A66   Terber, Srsieve, CRUS, PRST
C     Caldwell, Cruncher
c2    Water, Primo
c4    Broadhurst, Primo
c8    Broadhurst, Water, Primo
c11   Oakes, Primo
c18   Luhn, Primo
c39   Minovic, OpenPFGW, Primo
c47   Chandler, Primo
c54   Wu_T, Primo
c55   Gramolin, Primo
c56   Soule, Minovic, OpenPFGW, Primo
c58   Kaiser1, NewPGen, OpenPFGW, Primo
c59   Metcalfe, OpenPFGW, Primo
c63   Ritschel, TOPS, Primo
c64   Metcalfe, Minovic, Ritschel, TOPS, Primo
c66   Steine, Primo
c67   Batalov, NewPGen, OpenPFGW, Primo
c69   Jacobsen, Primo
c70   Underwood, Dubner, Primo
c71   Metcalfe, Ritschel, Andersen, TOPS, Primo
c73   Underwood, Lifchitz, Primo
c74   Lasher, Dubner, Primo
c76   Kaiser1, Water, Underwood, Primo
c77   Batalov, Primo
c79   Batalov, Broadhurst, Water, Primo
c81   Water, Underwood, Primo
c82   Steine, Water, Primo
c83   Kaiser1, PolySieve, NewPGen, Primo
c84   Underwood, Primo
c88   Kaiser1, PolySieve, Primo
c92   Lamprecht, Luhn, Primo
c93   Batalov, PolySieve, Primo
c94   Gelhar, Ritschel, TOPS, Primo
c95   Gelhar, Primo
c97   Lamprecht, Luhn, APSieve, OpenPFGW, Primo
c98   Batalov, EMsieve, Primo
c99   Kruse, Schoeler, Primo
c100  DavisK, APTreeSieve, NewPGen, OpenPFGW, Primo
c101  DavisK, APTreeSieve, OpenPFGW, Primo
CD    Caldwell, Dubner, Cruncher
CH10  Batalov, OpenPFGW, Primo, CHG
CH12  Propper, Batalov, OpenPFGW, Primo, CHG
CH13  Propper, Batalov, EMsieve, OpenPFGW, CHG
CH14  Wu_T, CM, OpenPFGW, CHG
CH2   Wu_T, OpenPFGW, Primo, CHG
CH3   Broadhurst, Water, OpenPFGW, Primo, CHG
CH4   Irvine, Broadhurst, Water, OpenPFGW, Primo, CHG
CH9   Zhou, OpenPFGW, CHG
D     Dubner, Cruncher
DK    Dubner, Keller, Cruncher
DS    Smith_Darren, Proth.exe
E1    Batalov, CM
E2    Propper, CM
E3    Enge, CM
E4    Childers, CM
E5    Underwood, CM
E6    Lasher, Broadhurst, Underwood, CM
E7    Lasher, CM
E8    Broadhurst, Underwood, CM
E9    Mock, CM
E10   Doornink, CM
E11   Karpovich, CM
E12   Enge, Underwood, CM
E13   Batalov, Masser, CM
E14   Batalov, EMsieve, CM
E15   Batalov, PolySieve, CM
E16   Propper, Batalov, CM
E17   Foreman, Batalov, CM
FE8   Oakes, Broadhurst, Water, Morain, FastECPP
FE9   Broadhurst, Water, Morain, FastECPP
g0    Gallot, Proth.exe
g1    Caldwell, Proth.exe
G1    Armengaud, GIMPS, Prime95
G2    Spence, GIMPS, Prime95
G3    Clarkson, Kurowski, GIMPS, Prime95
G4    Hajratwala, Kurowski, GIMPS, Prime95
G5    Cameron, Kurowski, GIMPS, Prime95
G6    Shafer, GIMPS, Prime95
G7    Findley_J, GIMPS, Prime95
G8    Nowak, GIMPS, Prime95
G9    Boone, Cooper, GIMPS, Prime95
G10   Smith_E, GIMPS, Prime95
G11   Elvenich, GIMPS, Prime95
G12   Strindmo, GIMPS, Prime95
G13   Cooper, GIMPS, Prime95
G14   Cooper, GIMPS, Prime95
G15   Pace, GIMPS, Prime95
G16   Laroche, GIMPS, Prime95
g23   Ballinger, Proth.exe
g25   OHare, Proth.exe
g55   Toplic, Proth.exe
g124  Crickman, Proth.exe
g236  Heuer, GFN17Sieve, GFNSearch, Proth.exe
g245  Cosgrave, NewPGen, PRP, Proth.exe
g260  AYENI, Proth.exe
g267  Grobstich, NewPGen, PRP, Proth.exe
g277  Eaton, NewPGen, PRP, Proth.exe
g279  Cooper, NewPGen, PRP, Proth.exe
g337  Hsieh, NewPGen, PRP, Proth.exe
g403  Yoshimura, ProthSieve, PrimeSierpinski, LLR, Proth.exe
g407  HermleGC, MultiSieve, PRP, Proth.exe
g413  Scott, AthGFNSieve, Proth.exe
g414  Gilvey, Srsieve, PrimeGrid, PrimeSierpinski, LLR, Proth.exe
g418  Taura, NewPGen, PRP, Proth.exe
g424  Broadhurst, NewPGen, OpenPFGW, Proth.exe
g427  Batalov, Srsieve, LLR, Proth.exe
g429  Underbakke, GenefX64, AthGFNSieve, PrimeGrid, Proth.exe
g431  Shenton, Srsieve, Proth.exe
gm    Morii, Proth.exe
K     Keller
L20   Kapek, LLR
L53   Zaveri, ProthSieve, RieselSieve, PRP, LLR
L95   Urushi, LLR
L99   Underbakke, TwinGen, LLR
L124  Rodenkirch, MultiSieve, LLR
L129  Snyder, LLR
L137  Jaworski, Rieselprime, LLR
L158  Underwood, NewPGen, 321search, LLR
L161  Schafer, NewPGen, LLR
L172  Smith, ProthSieve, RieselSieve, LLR
L181  Siegert, LLR
L185  Hassler, NewPGen, LLR
L191  Banka, NewPGen, LLR
L192  Jaworski, LLR
L193  Rosink, ProthSieve, RieselSieve, LLR
L197  DaltonJ, ProthSieve, RieselSieve, LLR
L201  Siemelink, LLR
L256  Underwood, Srsieve, NewPGen, 321search, LLR
L282  Curtis, Srsieve, Rieselprime, LLR
L381  Mate, Siemelink, Rodenkirch, MultiSieve, LLR
L384  Pinho, Srsieve, Rieselprime, LLR
L426  Jaworski, Srsieve, Rieselprime, LLR
L436  Andersen2, Gcwsieve, MultiSieve, PrimeGrid, LLR
L447  Kohlman, Gcwsieve, MultiSieve, PrimeGrid, LLR
L466  Zhou, NewPGen, LLR
L503  Benson, Srsieve, LLR
L521  Thompson1, Gcwsieve, MultiSieve, PrimeGrid, LLR
L527  Tornberg, TwinGen, LLR
L541  Barnes, Srsieve, CRUS, LLR
L550  Bonath, Srsieve, CRUS, LLR
L587  Dettweiler, Srsieve, CRUS, LLR
L591  Penne, Srsieve, CRUS, LLR
L606  Bennett, Srsieve, NewPGen, PrimeGrid, 321search, LLR
L613  Keogh, Srsieve, ProthSieve, RieselSieve, LLR
L622  Cardall, Srsieve, ProthSieve, RieselSieve, LLR
L671  Wong, Srsieve, PrimeGrid, LLR
L689  Brown1, Srsieve, PrimeGrid, LLR
L690  Cholt, Srsieve, PrimeGrid, LLR
L753  Wolfram, Srsieve, PrimeGrid, LLR
L760  Riesen, Srsieve, Rieselprime, LLR
L764  Ewing, Srsieve, PrimeGrid, LLR
L780  Brady, Srsieve, PrimeGrid, LLR
L801  Gesker, Gcwsieve, MultiSieve, PrimeGrid, LLR
L802  Zachariassen, Srsieve, NPLB, LLR
L875  Hatland, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L917  Bergman1, Gcwsieve, MultiSieve, PrimeGrid, LLR
L923  Kaiser1, Klahn, NewPGen, PrimeGrid, TPS, SunGard, LLR
L927  Brown1, TwinGen, PrimeGrid, LLR
L983  Wu_T, LLR
L1056 Schwieger, Srsieve, PrimeGrid, LLR
L1115 Splain, PSieve, Srsieve, PrimeGrid, LLR
L1125 Laluk, PSieve, Srsieve, PrimeGrid, LLR
L1129 Slomma, PSieve, Srsieve, PrimeGrid, LLR
L1130 Adolfsson, PSieve, Srsieve, PrimeGrid, LLR
L1134 Ogawa, Srsieve, NewPGen, LLR
L1141 Ogawa, NewPGen, LLR
L1158 Vogel, PSieve, Srsieve, PrimeGrid, LLR
L1160 Sunderland, PSieve, Srsieve, PrimeGrid, LLR
L1188 Faith, PSieve, Srsieve, PrimeGrid, LLR
L1199 DeRidder, PSieve, Srsieve, PrimeGrid, LLR
L1201 Carpenter1, PSieve, Srsieve, PrimeGrid, LLR
L1203 Mauno, PSieve, Srsieve, PrimeGrid, LLR
L1204 Brown1, PSieve, Srsieve, PrimeGrid, LLR
L1209 Wong, PSieve, Srsieve, PrimeGrid, LLR
L1218 Winslow, PSieve, Srsieve, PrimeGrid, LLR
L1223 Courty, PSieve, Srsieve, PrimeGrid, LLR
L1230 Yooil1, PSieve, Srsieve, PrimeGrid, LLR
L1300 Yama, PSieve, Srsieve, PrimeGrid, LLR
L1301 Sorbera, Srsieve, CRUS, LLR
L1349 Wallace, Srsieve, NewPGen, PrimeGrid, LLR
L1353 Mumper, Srsieve, PrimeGrid, LLR
L1355 Beck, PSieve, Srsieve, PrimeGrid, LLR
L1372 Glennie, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L1387 Anonymous, PSieve, Srsieve, PrimeGrid, LLR
L1412 Jones_M, PSieve, Srsieve, PrimeGrid, LLR
L1422 Steichen, PSieve, Srsieve, PrimeGrid, LLR
L1444 Davies, PSieve, Srsieve, PrimeGrid, LLR
L1448 Hron, PSieve, Srsieve, PrimeGrid, LLR
L1455 Heikkila, PSieve, Srsieve, PrimeGrid, LLR
L1456 Webster, PSieve, Srsieve, PrimeGrid, LLR
L1460 Salah, Srsieve, PrimeGrid, PrimeSierpinski, LLR
L1471 Gunn, Srsieve, CRUS, LLR
L1474 Brown6, PSieve, Srsieve, PrimeGrid, LLR
L1486 Dinkel, PSieve, Srsieve, PrimeGrid, LLR
L1492 Eiterig, PSieve, Srsieve, PrimeGrid, LLR
L1502 Champ, PSieve, Srsieve, PrimeGrid, LLR
L1576 Craig, PSieve, Srsieve, PrimeGrid, LLR
L1675 Schwieger, PSieve, Srsieve, PrimeGrid, LLR
L1728 Gasewicz, PSieve, Srsieve, PrimeGrid, LLR
L1741 Granowski, PSieve, Srsieve, PrimeGrid, LLR
L1745 Cholt, PSieve, Srsieve, PrimeGrid, LLR
L1754 Hubbard, PSieve, Srsieve, PrimeGrid, LLR
L1774 Schoefer, PSieve, Srsieve, PrimeGrid, LLR
L1780 Ming, PSieve, Srsieve, PrimeGrid, LLR
L1792 Tang, PSieve, Srsieve, PrimeGrid, LLR
L1808 Reynolds1, PSieve, Srsieve, PrimeGrid, LLR
L1817 Barnes, PSieve, Srsieve, NPLB, LLR
L1823 Larsson, PSieve, Srsieve, PrimeGrid, LLR
L1828 Benson, PSieve, Srsieve, Rieselprime, LLR
L1862 Curtis, PSieve, Srsieve, Rieselprime, LLR
L1863 Wozny, PSieve, Srsieve, Rieselprime, LLR
L1884 Jaworski, PSieve, Srsieve, Rieselprime, LLR
L1885 Ostaszewski, PSieve, Srsieve, PrimeGrid, LLR
L1921 Winslow, TwinGen, PrimeGrid, LLR
L1932 Dragnev, PSieve, Srsieve, PrimeGrid, LLR
L1935 Channing, PSieve, Srsieve, PrimeGrid, LLR
L1949 Pritchard, Srsieve, PrimeGrid, RieselSieve, LLR
L1959 Metcalfe, PSieve, Srsieve, Rieselprime, LLR
L1979 Tibbott, PSieve, Srsieve, PrimeGrid, LLR
L2006 Rix, PSieve, Srsieve, PrimeGrid, LLR
L2012 Pedersen_K, Srsieve, CRUS, OpenPFGW, LLR
L2017 Hubbard, PSieve, Srsieve, NPLB, LLR
L2030 Tonner, PSieve, Srsieve, PrimeGrid, LLR
L2035 Greer, TwinGen, PrimeGrid, LLR
L2042 Lachance, PSieve, Srsieve, PrimeGrid, LLR
L2046 Melvold, Srsieve, PrimeGrid, LLR
L2051 Reich, PSieve, Srsieve, PrimeGrid, LLR
L2054 Kaiser1, Srsieve, CRUS, LLR
L2055 Soule, PSieve, Srsieve, Rieselprime, LLR
L2074 Minovic, PSieve, Srsieve, Rieselprime, LLR
L2085 Dodson1, PSieve, Srsieve, PrimeGrid, LLR
L2086 Sveen, PSieve, Srsieve, PrimeGrid, LLR
L2103 Schmidt1, PSieve, Srsieve, PrimeGrid, LLR
L2117 Karlsteen, PSieve, Srsieve, PrimeGrid, LLR
L2121 VanRangelrooij, PSieve, Srsieve, PrimeGrid, LLR
L2125 Greer, PSieve, Srsieve, PrimeGrid, LLR
L2137 Hayashi1, PSieve, Srsieve, PrimeGrid, LLR
L2142 Hajek, PSieve, Srsieve, PrimeGrid, LLR
L2158 Krauss, PSieve, Srsieve, PrimeGrid, LLR
L2163 VanRooijen1, PSieve, Srsieve, PrimeGrid, LLR
L2233 Herder, Srsieve, PrimeGrid, LLR
L2235 Mullage, PSieve, Srsieve, NPLB, LLR
L2257 Dettweiler, PSieve, Srsieve, NPLB, LLR
L2269 Schori, Srsieve, PrimeGrid, LLR
L2322 Szafranski, PSieve, Srsieve, PrimeGrid, LLR
L2337 Schmalen, PSieve, Srsieve, PrimeGrid, LLR
L2366 Satoh, PSieve, Srsieve, PrimeGrid, LLR
L2371 Luszczek, Srsieve, PrimeGrid, LLR
L2373 Tarasov1, Srsieve, PrimeGrid, LLR
L2408 Reinman, Srsieve, PrimeGrid, LLR
L2425 DallOsto, LLR
L2429 Bliedung, TwinGen, PrimeGrid, LLR
L2432 Sutton1, PSieve, Srsieve, Rieselprime, LLR
L2484 Ritschel, PSieve, Srsieve, Rieselprime, LLR
L2487 Liao, PSieve, Srsieve, PrimeGrid, LLR
L2519 Schmidt2, PSieve, Srsieve, NPLB, LLR
L2520 Mamanakis, PSieve, Srsieve, PrimeGrid, LLR
L2526 Martinik, PSieve, Srsieve, PrimeGrid, LLR
L2549 McKay, PSieve, Srsieve, PrimeGrid, LLR
L2552 Foulher, PSieve, Srsieve, PrimeGrid, LLR
L2561 Vinklat, PSieve, Srsieve, PrimeGrid, LLR
L2564 Bravin, PSieve, Srsieve, PrimeGrid, LLR
L2583 Nakamura, PSieve, Srsieve, PrimeGrid, LLR
L2602 Mueller4, PSieve, Srsieve, PrimeGrid, LLR
L2603 Hoffman, PSieve, Srsieve, PrimeGrid, LLR
L2606 Slakans, PSieve, Srsieve, PrimeGrid, LLR
L2626 DeKlerk, PSieve, Srsieve, PrimeGrid, LLR
L2627 Graham2, PSieve, Srsieve, PrimeGrid, LLR
L2629 Becker2, PSieve, Srsieve, PrimeGrid, LLR
L2659 Reber, PSieve, Srsieve, PrimeGrid, LLR
L2664 Koluvere, PSieve, Srsieve, PrimeGrid, LLR
L2675 Ling, PSieve, Srsieve, PrimeGrid, LLR
L2676 Cox2, PSieve, Srsieve, PrimeGrid, LLR
L2691 Pettersen, PSieve, Srsieve, PrimeGrid, LLR
L2707 Out, PSieve, Srsieve, PrimeGrid, LLR
L2714 Piotrowski, PSieve, Srsieve, PrimeGrid, LLR
L2715 Donovan, PSieve, Srsieve, PrimeGrid, LLR
L2719 Yost, PSieve, Srsieve, PrimeGrid, LLR
L2777 Ritschel, Gcwsieve, TOPS, LLR
L2785 Meili, PSieve, Srsieve, PrimeGrid, LLR
L2805 Barr, PSieve, Srsieve, PrimeGrid, LLR
L2840 Santana, PSieve, Srsieve, PrimeGrid, LLR
L2842 English1, PSieve, Srsieve, PrimeGrid, LLR
L2873 Jurach, PSieve, Srsieve, PrimeGrid, LLR
L2885 Busacker, PSieve, Srsieve, PrimeGrid, LLR
L2891 Lacroix, PSieve, Srsieve, PrimeGrid, LLR
L2914 Merrylees, PSieve, Srsieve, PrimeGrid, LLR
L2959 Derrera, PSieve, Srsieve, PrimeGrid, LLR
L2973 Kurtovic, Srsieve, PrimeGrid, LLR
L2975 Loureiro, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR
L2992 Boehm, PSieve, Srsieve, PrimeGrid, LLR
L2997 Williams2, PSieve, Srsieve, PrimeGrid, LLR
L3023 Winslow, PSieve, Srsieve, PrimeGrid, 12121search, LLR
L3029 Walsh, PSieve, Srsieve, PrimeGrid, LLR
L3033 Snow, PSieve, Srsieve, PrimeGrid, 12121search, LLR
L3035 Scalise, PSieve, Srsieve, PrimeGrid, LLR
L3048 Breslin, PSieve, Srsieve, PrimeGrid, LLR
L3054 Winslow, Srsieve, PrimeGrid, LLR
L3091 Ridgway, PSieve, Srsieve, PrimeGrid, LLR
L3101 Reichard, PSieve, Srsieve, PrimeGrid, LLR
L3118 Yama, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR
L3125 Rizman, PSieve, Srsieve, PrimeGrid, LLR
L3141 Kus, PSieve, Srsieve, PrimeGrid, LLR
L3168 Schwegler, PSieve, Srsieve, PrimeGrid, LLR
L3171 Bergelt, PSieve, Srsieve, PrimeGrid, LLR
L3173 Zhou2, PSieve, Srsieve, PrimeGrid, LLR
L3174 Boniecki, PSieve, Srsieve, PrimeGrid, LLR
L3183 Haller, Srsieve, PrimeGrid, LLR
L3184 Hayslette, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR
L3200 Athanas, PSieve, Srsieve, PrimeGrid, LLR
L3203 Scalise, TwinGen, PrimeGrid, LLR
L3209 McArdle, GenefX64, AthGFNSieve, PrimeGrid, LLR
L3222 Yamamoto, PSieve, Srsieve, PrimeGrid, LLR
L3223 Yurgandzhiev, PSieve, Srsieve, PrimeGrid, LLR
L3230 Kumagai, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR
L3234 Parangalan, PSieve, Srsieve, PrimeGrid, LLR
L3249 Lind, PSieve, Srsieve, PrimeGrid, LLR
L3260 Stanko, PSieve, Srsieve, PrimeGrid, LLR
L3261 Batalov, PSieve, Srsieve, PrimeGrid, LLR
L3262 Molder, PSieve, Srsieve, PrimeGrid, LLR
L3267 Cain, PSieve, Srsieve, PrimeGrid, LLR
L3278 Fischer1, PSieve, Srsieve, PrimeGrid, LLR
L3323 Ritschel, NewPGen, TOPS, LLR
L3325 Elvy, PSieve, Srsieve, PrimeGrid, LLR
L3329 Tatearka, PSieve, Srsieve, PrimeGrid, LLR
L3345 Domanov1, PSieve, Rieselprime, LLR
L3372 Ryan, PSieve, Srsieve, PrimeGrid, LLR
L3377 Ollivier, PSieve, Srsieve, PrimeGrid, LLR
L3378 Glasgow, PSieve, Srsieve, PrimeGrid, LLR
L3415 Johnston1, PSieve, Srsieve, PrimeGrid, LLR
L3430 Durstewitz, PSieve, Srsieve, PrimeGrid, LLR
L3431 Gahan, PSieve, Srsieve, PrimeGrid, LLR
L3432 Batalov, Srsieve, LLR
L3458 Jia, PSieve, Srsieve, PrimeGrid, LLR
L3459 Boruvka, PSieve, Srsieve, PrimeGrid, LLR
L3460 Ottusch, PSieve, Srsieve, PrimeGrid, LLR
L3483 Farrow, PSieve, Srsieve, PrimeGrid, LLR
L3494 Batalov, NewPGen, LLR
L3502 Ristic, PSieve, Srsieve, PrimeGrid, LLR
L3512 Tsuji, PSieve, Srsieve, PrimeGrid, LLR
L3514 Bishop1, PSieve, Srsieve, PrimeGrid, OpenPFGW, LLR
L3519 Kurtovic, PSieve, Srsieve, Rieselprime, LLR
L3523 Brown1, Srsieve, PrimeGrid, SierpinskiRiesel, LLR
L3528 Batalov, Srsieve, PrimeGrid, SierpinskiRiesel, LLR
L3532 Batalov, Gcwsieve, LLR
L3539 Jacobs, PSieve, Srsieve, PrimeGrid, LLR
L3543 Yama, PrimeGrid, LLR
L3545 Eskam1, PSieve, Srsieve, PrimeGrid, LLR
L3547 Ready, Srsieve, PrimeGrid, LLR
L3548 Ready, PSieve, Srsieve, PrimeGrid, LLR
L3549 Hirai, Srsieve, PrimeGrid, LLR
L3552 Benson2, Srsieve, PrimeGrid, LLR
L3553 Cilliers, Srsieve, PrimeGrid, LLR
L3562 Schouten, Srsieve, PrimeGrid, LLR
L3564 Jaworski, Srsieve, CRUS, LLR
L3566 Slakans, Srsieve, PrimeGrid, LLR
L3567 Meili, Srsieve, PrimeGrid, LLR
L3573 Batalov, TwinGen, PrimeGrid, LLR
L3593 Veit, PSieve, Srsieve, PrimeGrid, LLR
L3601 Jablonski1, PSieve, Srsieve, PrimeGrid, LLR
L3606 Sander, TwinGen, PrimeGrid, LLR
L3610 Batalov, Srsieve, CRUS, LLR
L3659 Volynsky, Srsieve, PrimeGrid, LLR
L3662 Schawe, PSieve, Srsieve, PrimeGrid, LLR
L3665 Kelava1, PSieve, Srsieve, Rieselprime, LLR
L3668 Prokopchuk, PSieve, Srsieve, PrimeGrid, LLR
L3686 Yost, Srsieve, PrimeGrid, LLR
L3719 Skinner, PSieve, Srsieve, PrimeGrid, LLR
L3720 Ohno, Srsieve, PrimeGrid, LLR
L3735 Kurtovic, Srsieve, LLR
L3743 Parker1, PSieve, Srsieve, PrimeGrid, LLR
L3749 Meador, Srsieve, PrimeGrid, LLR
L3760 Okazaki, PSieve, Srsieve, PrimeGrid, LLR
L3763 Martin4, PSieve, Srsieve, PrimeGrid, LLR
L3764 Diepeveen, PSieve, Srsieve, Rieselprime, LLR
L3770 Tang, Srsieve, PrimeGrid, LLR
L3772 Ottusch, Srsieve, PrimeGrid, LLR
L3784 Cavnaugh, PSieve, Srsieve, PrimeGrid, LLR
L3789 Toda, Srsieve, PrimeGrid, LLR
L3802 Aggarwal, Srsieve, LLR
L3803 Bredl, PSieve, Srsieve, PrimeGrid, LLR
L3810 Radle, PSieve, Srsieve, PrimeGrid, LLR
L3813 Chambers2, PSieve, Srsieve, PrimeGrid, LLR
L3824 Mazzucato, PSieve, Srsieve, PrimeGrid, LLR
L3829 Abrahmi, TwinGen, PrimeGrid, LLR
L3839 Batalov, EMsieve, LLR
L3849 Smith10, Srsieve, PrimeGrid, SierpinskiRiesel, LLR
L3859 Clifton, PSieve, Srsieve, PrimeGrid, LLR
L3865 Silva, PSieve, Srsieve, PrimeGrid, LLR
L3869 Cholt, Srsieve, PrimeGrid, SierpinskiRiesel, LLR
L3877 Jarne, PSieve, Srsieve, PrimeGrid, LLR
L3887 Byerly, PSieve, Rieselprime, LLR
L3895 Englehard, PSieve, Srsieve, PrimeGrid, LLR
L3898 Christy, PSieve, Srsieve, PrimeGrid, LLR
L3903 Miao, Srsieve, PrimeGrid, SierpinskiRiesel, LLR
L3904 Darimont, Srsieve, PrimeGrid, SierpinskiRiesel, LLR
L3910 Bischof, PSieve, Srsieve, PrimeGrid, LLR
L3917 Rodenkirch, PSieve, Srsieve, LLR
L3919 Pickering, PSieve, Srsieve, PrimeGrid, LLR
L3924 Kim5, PSieve, Srsieve, PrimeGrid, LLR
L3925 Okazaki, Srsieve, PrimeGrid, LLR
L3933 Batalov, PSieve, Srsieve, CRUS, Rieselprime, LLR
L3941 Lee8, PSieve, Srsieve, PrimeGrid, LLR
L3961 Darimont, Srsieve, PrimeGrid, LLR
L3964 Iakovlev, Srsieve, PrimeGrid, LLR
L3975 Hou, PSieve, Srsieve, PrimeGrid, LLR
L3993 Gushchak, Srsieve, PrimeGrid, LLR
L3994 Domanov1, PSieve, Srsieve, NPLB, LLR
L3995 Unbekannt, PSieve, Srsieve, PrimeGrid, LLR
L3998 Rossman, PSieve, Srsieve, PrimeGrid, LLR
L4001 Willig, Srsieve, CRUS, LLR
L4016 Bedenbaugh, PSieve, Srsieve, PrimeGrid, LLR
L4021 Busse, PSieve, Srsieve, PrimeGrid, LLR
L4031 Darney, PSieve, Srsieve, PrimeGrid, LLR
L4034 Vanc, Srsieve, PrimeGrid, LLR
L4036 Domanov1, PSieve, Srsieve, CRUS, LLR
L4043 Niedbala, PSieve, Srsieve, PrimeGrid, LLR
L4045 Chew, PSieve, Srsieve, PrimeGrid, LLR
L4061 Lee, PSieve, Srsieve, PrimeGrid, LLR
L4064 Davies, Srsieve, CRUS, LLR
L4082 Zimmerman, PSieve, Srsieve, PrimeGrid, LLR
L4083 Charrondiere, PSieve, Srsieve, PrimeGrid, LLR
L4087 Kecic, PSieve, Srsieve, PrimeGrid, LLR
L4088 Graeber, PSieve, Srsieve, PrimeGrid, LLR
L4099 Nietering, PSieve, Srsieve, PrimeGrid, LLR
L4103 Klopffleisch, Srsieve, PrimeGrid, LLR
L4108 Yoshioka, PSieve, Srsieve, PrimeGrid, LLR
L4113 Batalov, PSieve, Srsieve, LLR
L4114 Bubloski, PSieve, Srsieve, PrimeGrid, LLR
L4119 Nelson3, PSieve, Srsieve, PrimeGrid, LLR
L4139 Hawker, Srsieve, CRUS, LLR
L4142 Batalov, CycloSv, EMsieve, PIES, LLR
L4146 Schmidt1, Srsieve, PrimeGrid, LLR
L4147 Mohacsy, PSieve, Srsieve, PrimeGrid, LLR
L4148 Glatte, PSieve, Srsieve, PrimeGrid, LLR
L4155 Jones4, PSieve, Srsieve, PrimeGrid, LLR
L4159 Schulz5, Srsieve, PrimeGrid, LLR
L4166 Kwok, PSieve, LLR
L4185 Hoefliger, PSieve, Srsieve, PrimeGrid, LLR
L4187 Schmidt2, Srsieve, CRUS, LLR
L4189 Lawrence, Powell, Srsieve, CRUS, LLR
L4190 Fnasek, PSieve, Srsieve, PrimeGrid, LLR
L4197 Kumagai1, Srsieve, PrimeGrid, LLR
L4198 Rawles, PSieve, Srsieve, PrimeGrid, LLR
L4200 Harste, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4201 Brown1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4203 Azarenko, PSieve, Srsieve, PrimeGrid, LLR
L4204 Winslow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4205 Bischof, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4207 Jaamann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4208 Farrow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4210 Cholt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4226 Heath, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4231 Schneider1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4245 Greer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4249 Larsson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4250 Vogt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4252 Nietering, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4256 Gniesmer, PSieve, Srsieve, PrimeGrid, LLR
L4267 Batalov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4273 Rangelrooij, Srsieve, CRUS, LLR
L4274 AhlforsDahl, Srsieve, PrimeGrid, LLR
L4276 Borbely, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4285 Bravin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4286 Zimmerman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4289 Ito2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4293 Trunov, PSieve, Srsieve, PrimeGrid, LLR
L4294 Kurtovic, Srsieve, CRUS, Prime95, LLR
L4295 Splain, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4303 Thorson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4307 Keller1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4308 Matillek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4309 Kecic, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4314 DeThomas, PSieve, Srsieve, PrimeGrid, LLR
L4316 Nilsson1, PSieve, Srsieve, PrimeGrid, LLR
L4326 Steel, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4329 Okon, Srsieve, LLR
L4334 Miller5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4340 Becker4, Srsieve, PrimeGrid, LLR
L4341 Goetz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4342 Kaiser1, PolySieve, NewPGen, LLR
L4343 Norton, PSieve, Srsieve, PrimeGrid, LLR
L4347 Schaeffer, PSieve, Srsieve, PrimeGrid, LLR
L4348 Burridge, Srsieve, PrimeGrid, LLR
L4352 Fahlenkamp1, PSieve, Srsieve, PrimeGrid, LLR
L4358 Tesarz, PSieve, Srsieve, PrimeGrid, LLR
L4359 Andou, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4362 Mochizuki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4364 Steinbach, PSieve, Srsieve, PrimeGrid, LLR
L4371 Schmidt2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4380 Rix, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4387 Davies, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4388 Mena, PSieve, Srsieve, PrimeGrid, LLR
L4393 Veit1, Srsieve, CRUS, LLR
L4395 Nilsson1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4398 Greer, Srsieve, PrimeGrid, LLR
L4404 Stepnicka, PSieve, Srsieve, PrimeGrid, LLR
L4405 Eckhard, Srsieve, LLR
L4406 Mathers, PSieve, Srsieve, PrimeGrid, LLR
L4408 Fricke, PSieve, Srsieve, PrimeGrid, LLR
L4410 Andresson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4411 Leudesdorff, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4412 Simpson3, PSieve, Srsieve, PrimeGrid, LLR
L4414 Falk, PSieve, Srsieve, PrimeGrid, LLR
L4417 Rasp, PSieve, Srsieve, PrimeGrid, LLR
L4424 Miyauchi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4425 Weber1, PSieve, Srsieve, PrimeGrid, LLR
L4429 Lacroix, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4435 Larsson, Srsieve, PrimeGrid, LLR
L4441 Miyauchi, PSieve, Srsieve, PrimeGrid, LLR
L4444 Terber, Srsieve, CRUS, LLR
L4445 Leudesdorff, PSieve, Srsieve, PrimeGrid, LLR
L4454 Clark5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4456 Chambers2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4457 Geiger, PSieve, Srsieve, PrimeGrid, LLR
L4459 Biscop, PSieve, Srsieve, PrimeGrid, LLR
L4466 Falk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4472 Harvanek, Gcwsieve, MultiSieve, PrimeGrid, LLR
L4476 Shane, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4477 Tennant, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4482 Mena, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4488 Vrontakis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4489 Szreter, PSieve, Srsieve, PrimeGrid, LLR
L4490 Mazumdar, PSieve, Srsieve, PrimeGrid, LLR
L4499 Ohsugi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4501 Eskam1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4504 Sesok, NewPGen, LLR
L4505 Lind, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4506 Propper, Batalov, CycloSv, EMsieve, PIES, Prime95, LLR
L4510 Ming, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4511 Donovan1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4518 Primecrunch.com, Hedges, Srsieve, LLR
L4521 Curtis, Srsieve, CRUS, LLR
L4522 Lorsung, PSieve, Srsieve, PrimeGrid, LLR
L4523 Mull, PSieve, Srsieve, PrimeGrid, LLR
L4525 Kong1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4526 Schoefer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4527 Fruzynski, PSieve, Srsieve, PrimeGrid, LLR
L4530 Reynolds1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4531 Butez, PSieve, Srsieve, PrimeGrid, LLR
L4537 Mayer1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4544 Krauss, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4548 Sydekum, Srsieve, CRUS, Prime95, LLR
L4549 Schick, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4550 Terry, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4552 Koski, PSieve, Srsieve, PrimeGrid, LLR
L4559 Okazaki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4561 Propper, Batalov, CycloSv, Cyclo, EMsieve, PIES, LLR
L4562 Donovan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4564 DeThomas, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4568 Vrontakis, PSieve, Srsieve, PrimeGrid, LLR
L4582 Kinney, PSieve, Srsieve, PrimeGrid, LLR
L4583 Rohmann, PSieve, Srsieve, PrimeGrid, LLR
L4584 Goforth, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4585 Schawe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4591 Schwieger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4593 Mangio, PSieve, Srsieve, PrimeGrid, LLR
L4595 Mangio, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4598 Connaughty, PSieve, Srsieve, PrimeGrid, LLR
L4599 Loureiro, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4600 Simbarsky, PSieve, Srsieve, PrimeGrid, LLR
L4609 Elgetz, PSieve, Srsieve, PrimeGrid, LLR
L4620 Kinney, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4622 Jurach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4623 Dugger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4626 Iltus, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4645 McKibbon, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4649 Humphries, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4654 Voskoboynikov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4656 Beck, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4658 Maguin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4659 AverayJones, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4660 Snow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4664 Toledo, PSieve, Srsieve, PrimeGrid, LLR
L4665 Szeluga, Kupidura, Banka, LLR
L4666 Slade, PSieve, Srsieve, PrimeGrid, LLR
L4667 Morelli, LLR
L4668 Okazaki, Gcwsieve, MultiSieve, PrimeGrid, LLR
L4669 Schwegler, Srsieve, PrimeGrid, LLR
L4670 Drumm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4672 Slade, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4673 Okhrimouk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4675 Lind, Srsieve, PrimeGrid, LLR
L4676 Maloney, Srsieve, PrimeGrid, PrimeSierpinski, LLR
L4677 Provencher, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4683 Bird2, Srsieve, CRUS, LLR
L4684 Sveen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4685 Masser, Srsieve, CRUS, LLR
L4687 Campbell1, PSieve, Srsieve, PrimeGrid, LLR
L4689 Gordon2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4690 Brandt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4691 Fruzynski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4692 Hajek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4694 Schapendonk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4695 Goudie, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4696 Plottel, PSieve, Srsieve, PrimeGrid, LLR
L4697 Sellsted, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4699 Parsonnet, PSieve, Srsieve, PrimeGrid, LLR
L4700 Liu4, Srsieve, CRUS, LLR
L4701 Kalus, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4702 Charette, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4703 Pacini, PSieve, Srsieve, PrimeGrid, LLR
L4704 Kurtovic, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4706 Kraemer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4710 Wiedemann, PSieve, Srsieve, PrimeGrid, LLR
L4711 Closs, PSieve, Srsieve, PrimeGrid, LLR
L4712 Gravemeyer, PSieve, Srsieve, PrimeGrid, LLR
L4713 Post, PSieve, Srsieve, PrimeGrid, LLR
L4715 Skinner1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4717 Wypych, PSieve, Srsieve, PrimeGrid, LLR
L4718 Brown1, Gcwsieve, MultiSieve, PrimeGrid, LLR
L4720 Gahan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4723 Lexut, PSieve, Srsieve, PrimeGrid, LLR
L4724 Thonon, PSieve, Srsieve, PrimeGrid, LLR
L4726 Miller7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4729 Wimmer1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4730 Bowe, PSieve, Srsieve, PrimeGrid, LLR
L4732 Miller7, PSieve, Srsieve, PrimeGrid, LLR
L4733 Brazier, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4737 Reinhardt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4738 Gelhar, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4740 Silva1, PSieve, Srsieve, PrimeGrid, LLR
L4741 Wong, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4742 Schlereth, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4743 Plsak, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4745 Cavnaugh, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4746 Brech, PSieve, Srsieve, PrimeGrid, LLR
L4747 Brech, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4752 Harvey2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4753 Riemann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4754 Calvin, PSieve, Srsieve, PrimeGrid, LLR
L4755 Glatte, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4756 Dumange, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4757 Johnson9, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4758 Walling, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4760 Sipes, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4761 Romaidis, PSieve, Srsieve, PrimeGrid, LLR
L4763 Guilleminot, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4764 McLean2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4765 Kumsta, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4772 Bird1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4773 Tohmola, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4774 Boehm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4775 Steinbach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4776 Lee7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4783 Marini, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4784 Bertolotti, Gcwsieve, MultiSieve, PrimeGrid, LLR
L4786 Sydekum, Srsieve, CRUS, LLR
L4787 Sunderland, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4789 Kurtovic, Srsieve, Prime95, LLR
L4791 Vaisanen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4793 Koski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4795 Lawson2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4796 White2, PSieve, Srsieve, PrimeGrid, LLR
L4799 Vanderveen1, LLR
L4800 Doenges, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4802 Jones5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4806 Rajala, Srsieve, CRUS, LLR
L4807 Tsuji, Srsieve, PrimeGrid, LLR
L4808 Kaiser1, PolySieve, LLR
L4809 Bocan, Srsieve, PrimeGrid, LLR
L4810 Dhuyvetters, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4814 Telesz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4815 Kozisek, PSieve, Srsieve, PrimeGrid, LLR
L4816 Doenges, PSieve, Srsieve, PrimeGrid, LLR
L4819 Inci, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4821 Svantner, PSieve, Srsieve, PrimeGrid, LLR
L4822 Magklaras, PSieve, Srsieve, PrimeGrid, LLR
L4823 Helm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4824 Allivato, PSieve, Srsieve, PrimeGrid, LLR
L4826 Soraku, PSieve, Srsieve, PrimeGrid, LLR
L4830 Eisler1, PSieve, Srsieve, PrimeGrid, LLR
L4832 Meekins, Srsieve, CRUS, LLR
L4834 Helm, PSieve, Srsieve, PrimeGrid, LLR
L4835 Katzur, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4837 Hines, Srsieve, CRUS, LLR
L4840 Ylijoki, PSieve, Srsieve, PrimeGrid, LLR
L4841 Baur, PSieve, Srsieve, PrimeGrid, LLR
L4842 Smith11, PSieve, Srsieve, PrimeGrid, LLR
L4843 Hutchins, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4844 Valentino, PSieve, Srsieve, PrimeGrid, LLR
L4848 Adamec, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4849 Burt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4850 Jones5, PSieve, Srsieve, PrimeGrid, LLR
L4851 Schioler, PSieve, Srsieve, PrimeGrid, LLR
L4854 Gory, PSieve, Srsieve, PrimeGrid, LLR
L4858 Koriabine, PSieve, Srsieve, PrimeGrid, LLR
L4859 Wang4, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4861 Thonon, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4864 Freihube, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4868 Bergmann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4869 Ogata, PSieve, Srsieve, PrimeGrid, LLR
L4870 Wharton, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4871 Gory, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4875 Parsonnet, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4876 Tennant, Srsieve, CRUS, LLR
L4877 Cherenkov, Srsieve, CRUS, LLR
L4879 Propper, Batalov, Srsieve, LLR
L4880 Goossens, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4881 Bonath, Srsieve, LLR
L4884 Somer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4889 Hundhausen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4892 Hewitt1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4893 Little, PSieve, Srsieve, PrimeGrid, LLR
L4898 Kozisek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4899 Schioler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4903 Laurent1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4904 Dunchouk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4905 Niegocki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4907 Reinhardt, PSieve, Srsieve, PrimeGrid, LLR
L4909 Hall, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4911 Calveley, Srsieve, CRUS, LLR
L4914 Bishop_D, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4917 Corlatti, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4918 Weiss1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4920 Walsh, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4922 Bulba, Sesok, LLR
L4923 Koriabine, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4925 Korolev, Srsieve, CRUS, LLR
L4926 Shenton, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4927 Smith12, Srsieve, SRBase, CRUS, LLR
L4928 Doornink, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4929 Givoni, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4930 Shintani, PSieve, Srsieve, PrimeGrid, LLR
L4932 Schroeder2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4933 Jacques, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4935 Simard, PSieve, Srsieve, PrimeGrid, LLR
L4937 Ito2, Srsieve, PrimeGrid, LLR
L4939 Coscia, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4942 Matheis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4944 Schori, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L4945 Meili, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4948 SchwartzLowe, PSieve, Srsieve, PrimeGrid, LLR
L4951 Niegocki, PSieve, Srsieve, PrimeGrid, LLR
L4954 Romaidis, Srsieve, PrimeGrid, LLR
L4955 Grosvenor, Srsieve, CRUS, LLR
L4956 Merrylees, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4958 Shenton, PSieve, Srsieve, PrimeGrid, LLR
L4959 Deakin, PSieve, Srsieve, PrimeGrid, LLR
L4960 Kaiser1, NewPGen, TPS, LLR
L4962 Baur, Srsieve, NewPGen, LLR
L4963 Mortimore, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4964 Doescher, GFNSvCUDA, GeneFer, LLR
L4965 Propper, LLR
L4968 Kaczala, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4970 Michael, PSieve, Srsieve, PrimeGrid, LLR
L4972 Greer, Gcwsieve, MultiSieve, PrimeGrid, LLR
L4973 Landrum, PSieve, Srsieve, PrimeGrid, LLR
L4975 Thompson5, Srsieve, CRUS, LLR
L4976 Propper, Batalov, Gcwsieve, LLR
L4977 Miller8, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4979 Matheis, PSieve, Srsieve, PrimeGrid, LLR
L4980 Poon1, PSieve, Srsieve, PrimeGrid, LLR
L4981 MartinezCucalon, PSieve, Srsieve, PrimeGrid, LLR
L4984 Hemsley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4985 Veit, Srsieve, CRUS, LLR
L4987 Canossi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4988 Harris3, PSieve, Srsieve, PrimeGrid, LLR
L4990 Heindl, PSieve, Srsieve, PrimeGrid, LLR
L4997 Gardner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L4999 Andrews1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5001 Mamonov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5002 Kato, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5005 Hass, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5007 Faith, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5008 Niegocki, Srsieve, PrimeGrid, LLR
L5009 Jungmann, Srsieve, LLR
L5011 Strajt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5013 Wypych, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5014 Strokov, PSieve, Srsieve, PrimeGrid, LLR
L5016 NebredaJunghans, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5018 Nielsen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5019 Ayiomamitis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5020 Eikelenboom, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5021 Svantner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5022 Manz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5023 Schulz6, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5024 Schumacher, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5025 Lexut, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5027 Moudy, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5029 Krompolc, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5030 Calvin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5031 Schumacher, PSieve, Srsieve, PrimeGrid, LLR
L5033 Ni, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5036 Jung2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5037 Diepeveen, Underwood, PSieve, Srsieve, Rieselprime, LLR
L5039 Gilliland, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5041 Wallbaum, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5043 Vanderveen1, Propper, LLR
L5044 Bergelt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5047 Little, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5051 Veit, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5053 Yoshigoe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5056 Chu, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5057 Hauhia, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5061 Cooper5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5063 Wendelboe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5067 Tirkkonen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5068 Silva1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5069 Friedrichsen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5070 Millerick, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5071 McLean2, Srsieve, CRUS, LLR
L5072 Romaidis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5076 Atnashev, Srsieve, PrimeGrid, LLR
L5077 Martinelli, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5078 McDonald4, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5079 Meditz, PSieve, Srsieve, PrimeGrid, LLR
L5080 Gahan, GFNSvCUDA, PrivGfnServer, LLR
L5081 Howell, Srsieve, PrimeGrid, LLR
L5083 Pickering, Srsieve, PrimeGrid, LLR
L5084 Yagi, PSieve, Srsieve, PrimeGrid, LLR
L5085 Strajt, PSieve, Srsieve, PrimeGrid, LLR
L5087 Coscia, PSieve, Srsieve, PrimeGrid, LLR
L5088 Hall1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5089 MARSIN, Srsieve, CRUS, LLR
L5090 Jourdan, PSieve, Srsieve, PrimeGrid, LLR
L5094 Th�mmler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5099 Lobring, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5100 Stephens, PSieve, Srsieve, PrimeGrid, LLR
L5101 Candido, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5102 Liu6, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5104 Gahan, LLR2, NewPGen, LLR
L5105 Helm, LLR2, Srsieve, PrivGfnServer, LLR
L5106 Glennie, PSieve, Srsieve, PrimeGrid, LLR
L5110 Provencher, PSieve, Srsieve, PrimeGrid, LLR
L5112 Vanderveen1, Srsieve, CRUS, LLR
L5115 Doescher, LLR
L5117 Trunov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5120 Greer, LLR2, PrivGfnServer, LLR
L5122 Tennant, LLR2, PrivGfnServer, LLR
L5123 Propper, Batalov, EMsieve, LLR
L5125 Tirkkonen, PSieve, Srsieve, PrimeGrid, LLR
L5126 Warach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5127 Kemenes, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5129 Veit, Srsieve, PrimeGrid, LLR
L5130 Jourdan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5134 Cooper5, PSieve, Srsieve, PrimeGrid, LLR
L5139 Belozersky, PSieve, Srsieve, PrimeGrid, LLR
L5143 Dickinson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5144 McNary, PSieve, Srsieve, PrimeGrid, LLR
L5155 Harju, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5156 Dinkel, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5157 Asano, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5158 Zuschlag, PSieve, Srsieve, PrimeGrid, LLR
L5159 Huetter, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5161 Greer, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5162 Th�mmler, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5166 Jaros1, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5167 Gelhar, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5168 Hawkinson, PSieve, Srsieve, PrimeGrid, LLR
L5169 Atnashev, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5171 Brown1, LLR2, Srsieve, PrimeGrid, LLR
L5172 McNary, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5173 Bishop_D, PSieve, Srsieve, PrimeGrid, LLR
L5174 Scalise, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5175 Liiv, PSieve, Srsieve, Rieselprime, LLR
L5176 Early, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5177 Tapper, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5178 Larsson, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5179 Okazaki, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5180 Laluk, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5181 Atnashev, LLR2, Srsieve, PrimeGrid, LLR
L5183 Winskill1, PSieve, Srsieve, PrimeGrid, 12121search, LLR
L5184 Byerly, PSieve, Srsieve, NPLB, LLR
L5185 Elgetz, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5186 Anonymous, GFNSvCUDA, GeneFer, AthGFNSieve, United, PrimeGrid, LLR
L5188 Wong, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5189 Jackson1, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5191 Kaiser1, NewPGen, LLR
L5192 Anonymous, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5194 Jonas, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5195 Ridgway, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5196 Sielemann, Srsieve, CRUS, LLR
L5197 Propper, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5198 Elgetz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5199 Romaidis, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5200 Terry, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5201 Ford, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5202 Molne, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5203 Topham, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5205 Zuschlag, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5206 Wiseler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5207 Atnashev, LLR2, PrivGfnServer, LLR
L5208 Schnur, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5210 Brech, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5211 Orpen1, Srsieve, CRUS, LLR
L5214 Dinkel, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5215 Hawkinson, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5216 Brazier, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5217 Wiseler, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5220 Jones4, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5223 Vera, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5226 Brown1, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5228 Jacques, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5229 Karpenko, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5230 Tapper, LLR2, Srsieve, PrimeGrid, LLR
L5231 Veit, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5232 Bliedung, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5233 Sipes, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5234 Greeley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5235 Karpinski, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5236 Shenton, LLR2, PSieve, Srsieve, PrivGfnServer, PrimeGrid, LLR
L5237 Schwieger, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5238 Jourdan, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5239 Strajt, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5242 Krompolc, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5246 Vaisanen, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5248 Delgado, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5249 Racanelli, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5250 Nakamura, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5253 Burt, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5254 Gerstenberger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5256 Snow, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5260 Ostaszewski, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5261 Kim5, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5262 Clark5, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5263 Ito2, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5264 Cholt, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5265 Fleischman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5266 Sheridan, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5267 Schnur, LLR2, Srsieve, PrimeGrid, LLR
L5269 Clemence, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5270 Hennebert, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5272 Conner, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5273 McGonegal, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5275 Templin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5276 Schawe, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5277 McDevitt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5278 Nose, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5279 Schick, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5282 Somer, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5283 Hua, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5284 Fischer1, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5285 Merrylees, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5286 Reynolds1, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5287 Thonon, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5288 Heindl, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5290 Cooper5, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5294 Hewitt1, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5295 Gilliland, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5296 Piaive, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5297 Nakamura, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5298 Kaczmarek, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5299 Corlatti, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5300 Hajek, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5301 Harju, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5302 Davies, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5305 Thanry, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5307 Bauer2, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5308 Krauss, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5309 Bishop_D, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5310 Hubbard, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5311 Reich, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5312 Tyndall, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5313 Barnes, PSieve, Srsieve, Rieselprime, LLR
L5314 Satoh, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5315 Dec, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5316 Walsh, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5317 Freeze, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5318 Ruber, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5319 Abbey, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5320 Niegocki, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5321 Dark, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5322 Monnin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5323 Chan1, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5324 Boehm, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5325 Drager, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5326 Deakin, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5327 Shenton, LLR2, Srsieve, LLR
L5332 Mizusawa, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5334 Jones6, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5335 Harvey1, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5336 Leblanc, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5337 Kawamura1, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5338 Deakin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5342 Rodenkirch, Srsieve, CRUS, LLR
L5343 Tajika, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5344 Lowe1, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5345 Johnson8, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5346 Polansky, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5348 Adam, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5350 McDevitt, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5352 Eklof, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5353 Belolipetskiy, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5354 Doornink, NewPGen, OpenPFGW, LLR
L5355 Henriksson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5356 Hsu2, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5358 Gmirkin, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5359 Ridgway, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5360 Leitch, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5361 Schneider6, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5362 Domanov1, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5364 Blyth, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5366 Michael, Srsieve, CRUS, LLR
L5367 Hsu2, Srsieve, CRUS, LLR
L5368 Valentino, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5369 Schnur, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5370 Piotrowski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5372 Vitiello, Srsieve, CRUS, LLR
L5373 Baranchikov, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5375 Blanchard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5376 Ranch, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5377 Yasuhisa, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5378 Seeley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5379 Smith4, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5380 Campulka, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5381 Meppiel, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5382 Bulanov, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5384 Riemann, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5387 Johns, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5390 Lemkau, Srsieve, CRUS, LLR
L5391 Black1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5392 McDonald4, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5393 Lu, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5395 Early, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5399 Kolesov, LLR
L5400 Hefer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5401 Champ, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5402 Greer, LLR2, Gcwsieve, MultiSieve, PrimeGrid, LLR
L5403 Slade1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5404 Wiseler, LLR2, Srsieve, PrimeGrid, LLR
L5405 Gerstenberger, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5406 Jaros, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5407 Mahnken, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5408 Kreth, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5409 Lu, Srsieve, CRUS, LLR
L5410 Anonymous, Srsieve, CRUS, LLR
L5412 Poon1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5413 David1, Srsieve, CRUS, LLR
L5414 Mollerus, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5416 Anonymous, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5418 Pollak, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5421 Iwasaki, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5425 Lichtenwimmer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5426 Gilliland, Srsieve, CRUS, LLR
L5427 Hewitt1, LLR2, Srsieve, PrimeGrid, LLR
L5429 Meditz, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5432 Tatsianenka, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5433 Hatanaka, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5434 Parsonnet, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5435 Murphy, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5437 Rijfers, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5438 Tang, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5439 Batalov, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5440 McGonegal, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5441 Cherenkov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5442 Moreira, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5443 Venjakob, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5444 Platz, LLR2, Srsieve, PrimeGrid, LLR
L5448 Rubin, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5449 Reinhardt, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5450 Mizusawa, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5451 Wilkins, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5452 Morera, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5453 Slaets, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5456 Gundermann, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5457 Iwasaki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5459 Sekanina, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5460 Headrick, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5461 Anonymous, LLR2, Srsieve, PrimeGrid, LLR
L5462 Raimist, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5463 Goforth, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5464 Pickering, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5465 Hubbard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5466 Furushima, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5467 Tamai1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5470 Latge, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5471 Dunchouk, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5472 Ready, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5473 StPierre, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5476 Steinbach, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5477 Meador, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5480 Boddener, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5482 Raimist, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5485 Mahnken, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5488 Kecic, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5491 Piaive, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5492 Slaets, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5493 Liu6, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5497 Goetz, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5499 Osada, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5500 Racanelli, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5501 Seeley, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5502 Floyd, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5503 Soule, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5504 Cerny, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5505 Chovanec, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5507 Brandt2, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5508 Gauch, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5509 Nietering, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5512 Akesson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5514 Cavnaugh, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5516 Piesker, PSieve, Srsieve, NPLB, LLR
L5517 Cavecchia, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5518 Eisler1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5523 Sekanina, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5524 Matillek, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5526 Kickler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5527 Doornink, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5529 Baur1, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5530 Matillek, LLR2, Srsieve, PrimeGrid, LLR
L5531 Koci, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5532 Morera, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5534 Cervelle, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5535 Skahill, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5536 Bennett1, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5537 Schafer, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5540 Brown6, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5541 Parker, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5543 Lucendo, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5544 Byerly, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5545 Kruse, PSieve, Srsieve, NPLB, LLR
L5546 Steinwedel, PSieve, Srsieve, NPLB, LLR
L5547 Hoonoki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5548 Steinberg, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5549 Zhang, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5550 Provencher, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5553 DAmico, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5554 Lucendo, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5555 Parangalan, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5556 Javens, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5557 Drake, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5558 Lee7, LLR2, Srsieve, PrimeGrid, LLR
L5559 Roberts, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5560 Amberg, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5562 Cheung, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5563 Akesson, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5564 Lee7, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5565 Bailey, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5566 Latge, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5567 Marshall1, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5568 Schioler, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5569 Michael, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5570 Arnold, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5571 Williams7, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5572 Sveen, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5573 Friedrichsen, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5574 Laboisne, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5575 Blanchard, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5576 Amorim, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5577 Utebaev, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5578 Jablonski1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5579 Cox2, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5581 Pickles, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5582 Einvik, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5583 Tanaka3, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5584 Barr, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5585 Faith, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5586 Vultur, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5587 AverayJones, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5588 Shi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5589 Kupka, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5590 Schumacher, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5592 Shintani, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5594 Brown7, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5595 Hyvonen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5596 Kozisek, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5600 Steinberg, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5601 Sato1, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5604 Takahashi2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5606 Clark, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5607 Rodermond, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5608 Pieritz, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5609 Sielemann, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5610 Katzur, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5611 Smith13, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5612 Lugowski, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5613 Delisle, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5614 Becker2, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5615 Dodd, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5616 Miller7, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5617 Sliwicki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5618 Wilson4, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5619 Piotrowski, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5620 He, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5621 Millerick, LLR2, Srsieve, PrimeGrid, LLR
L5624 Farrow, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5625 Sellsted, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5626 Clark, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5627 Bulanov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5629 Dickinson, Srsieve, CRUS, LLR
L5631 Mittelstadt, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5632 Marler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5634 Gao, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5636 Santosa, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5637 Bestor, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5638 Piskun, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5639 Cavecchia, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5640 Xu2, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5641 Kwok, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5645 Orpen1, SRBase, LLR
L5646 Dickey, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5647 Soraku, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5648 York, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5649 Dietsch, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5650 Ketamino, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5651 Lexut, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5652 Wilson5, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5653 Beck1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5655 Hoffman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5656 McAdams, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5657 Alden, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5658 Sloan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5662 OMalley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5663 Li5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5666 Wendelboe, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5667 Totty, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5668 Finn, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5670 Heindl1, Srsieve, CRUS, LLR
L5671 Rauh, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5676 Fnasek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5679 Shane, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5682 Floyd, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5683 Glatte, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5685 Bestor, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5686 Pistorius, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5687 Wellck, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5690 Eldred, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5693 Huan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5694 Petersen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5696 Earle, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5697 Black2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5698 Stenschke, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5703 Koudelka, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5704 Hampicke, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5705 Wharton, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5706 Wallbaum, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5707 Johns, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5710 Hass, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5711 Gingrich1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5712 Stahl, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5714 Loucks, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5715 Calvin, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5718 Ketamino, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5720 Trigueiro, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5721 Fischer1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5722 Rickard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5723 Fergusson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5724 Pilz, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5725 Gingrich1, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5726 Noxe, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5727 Headrick, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5731 Michael, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5732 Monroe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5735 Kobrzynski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5736 Riva, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5738 Schaeffer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5740 Chu, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5742 Steinmetz, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5745 Saladin, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5746 Meister1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5748 Norbert, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5749 Gahan, LLR2, LLR
L5750 Shi, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5752 Wissel, LLR
L5754 Abad, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5755 Kwiatkowski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5756 Wei, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5758 Bishop1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5763 Williams7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5764 Tirkkonen, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5765 Propper, Gcwsieve, LLR
L5766 Takahashi2, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5767 Xu2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5768 Lewis2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5769 Welsh1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5770 Silva1, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5771 Becker-Bergemann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5772 Tarson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5773 Lugowski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5774 Chambers, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5775 Garambois, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5776 Anonymous, LLR2, PSieve, Srsieve, United, PrimeGrid, LLR
L5778 Sarok, Srsieve, CRUS, LLR
L5780 Blanchard, Srsieve, CRUS, LLR
L5782 Kang, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5783 Bishop1, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5784 Coplin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5787 Johnson10, Srsieve, CRUS, LLR
L5789 Williams8, LLR
L5790 Kolencik, Srsieve, CRUS, LLR
L5791 Rindahl, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5793 Wang5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5794 Morgan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5796 Hall1, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5797 Ivanovski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5798 Schoeberl, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5799 Lehmann1, LLR2, Srsieve, PrimeGrid, LLR
L5802 Borgerding, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5803 Kwok, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5804 Bowe, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5805 Belozersky, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5807 Krauss, Srsieve, PrimeGrid, PRST, LLR
L5808 Propper, Batalov, PSieve, Srsieve, LLR
L5809 Zhao, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5810 Meister1, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5811 Dettweiler, LLR2, Srsieve, CRUS, LLR
L5812 Song, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5814 Chodzinski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5816 Guenter, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5817 Kilstromer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5818 Belozersky, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5819 Schmidt2, LLR2, PSieve, Srsieve, NPLB, LLR
L5820 Hoonoki, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5821 Elmore, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5825 Norton, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5826 Morávek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5827 Yasuhisa, TwinGen, NewPGen, TPS, LLR
L5829 Dickinson, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5830 McLean2, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5831 Chapman2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5833 Russell2, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5834 Roberts, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5836 Becker2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5837 Lin1, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5839 Stewart1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5841 Yarham, Srsieve, CRUS, LLR
L5842 Steenerson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5843 Vink, Kruse, Kwok, TwinGen, NewPGen, TPS, LLR
L5844 Kadowaki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5847 Eldredge, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5848 Bressani, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5851 Liskay, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5852 Kwiatkowski, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5853 Simard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5854 Lehmann1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5855 Williams9, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5858 GervaisLavoie, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5860 Joseph, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5862 Oppliger, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5863 Duvinage, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5864 Amberg, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5865 Mendrik1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5866 Kim3, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5869 Arnold, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5870 Bodlina, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5871 Yakubchak, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5875 Monroe, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5878 Klinkenberg, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5879 Sanner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5880 Gehrke, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5881 Medcalf, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5882 Basil, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5888 Presler, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5894 Tamai1, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5904 Rix, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5913 Burtner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5923 Ryabchikov, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5929 Bauer2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5938 Philip, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5945 Bush, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5948 Meuler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5956 Garnier1, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5960 Jayaputera, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5961 Carlier, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5969 Kang, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5971 Da_Mota, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5974 Presler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5977 Brockerhoff, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5984 Desbonnet, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5986 Wolfe1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5989 Williams10, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L5995 Lee10, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5997 Smith15, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L5998 Da_Mota, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6005 Overstreet, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6006 Propper, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6010 Chaney, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6011 Mehner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6015 Uehara1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6019 Anonymous, GFNSvCUDA, GeneFer, AthGFNSieve, Rechenkraft, PrimeGrid, LLR
L6026 Bruner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6027 Johnson10, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6029 Schmidt2, Kwok, LLR2, TwinGen, NewPGen, TPS, LLR
L6033 Tang3, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6035 Garrison1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6036 Hogan1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6038 Schafer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6040 Garland, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6042 Fink, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L6043 Podsada, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6044 Chesnut, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6047 Wheeler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6049 Chen4, LLR
L6057 Kim7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6058 StGeorge, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6064 Adrian, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L6065 Yakubchak1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6067 O’Hara, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6070 Mumper, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6072 Lundström, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6073 Rojas, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6075 Chodzinski, LLR2, Srsieve, PrimeGrid, LLR
L6076 Yakubchak2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6077 Vink, Schmidt2, Kwok, TwinGen, NewPGen, TPS, LLR
L6078 Zhaozheng, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6080 Sondergard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6082 Mckinley, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L6083 Yagi, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L6084 Criswell, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6085 Granowski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6086 Pastierik, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6087 Osaki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6088 Abad, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6089 Lynch, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L6090 Champ, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6091 Paniczko, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6092 Boerner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6093 Wagner1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6094 Skendelis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6095 Stach, LLR2, PSieve, Srsieve, PrimeGrid, LLR
L6096 Biggs, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6102 Yakubchak3, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6123 Mukanos, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6129 Slade2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6159 Weinberg, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6163 Drozd, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6166 Carquillat, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6170 Liang, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6176 Shriner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6177 Mostad, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6178 Hua, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6182 Jans, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6183 Lack, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6185 Abromeit, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6187 Deram, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6189 Mohacsy, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6201 Lein, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6202 Stach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6204 Probst, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6205 McDonald3, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6207 Allen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6215 Vykouril, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6217 Keskitalo, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6220 Sandhop, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6221 Wu2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6227 Zhao1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6229 Dean1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6230 Gnann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6235 Rosick, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6236 Neujahr, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6237 Steffens, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6238 Pabsch, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6245 Perek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6248 Hui, Srsieve, CRUS, LLR
L6249 Puada, MultiSieve, PRST, LLR
L6250 Gulliver, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6252 Carlin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6255 Kim8, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6256 Sariyar, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6259 Baker2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
L6260 Cui, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR
M     Morain
MM    Morii
MP1   Durant, GIMPS, GpuOwl
O     Oakes
p3    Dohmen, OpenPFGW
p8    Caldwell, OpenPFGW
p12   Water, OpenPFGW
p16   Heuer, OpenPFGW
p21   Anderson, Robinson, OpenPFGW
p41   Luhn, OpenPFGW
p44   Broadhurst, OpenPFGW
p49   Berg, OpenPFGW
p54   Broadhurst, Water, OpenPFGW
p58   Glover, Oakes, OpenPFGW
p65   DavisK, Kuosa, OpenPFGW
p85   Marchal, Carmody, Kuosa, OpenPFGW
p137  Rodenkirch, MultiSieve, OpenPFGW
p148  Yama, Noda, Nohara, NewPGen, MatGFN, PRP, OpenPFGW
p151  Kubota, NewPGen, OpenPFGW
p155  DavisK, NewPGen, OpenPFGW
p158  Paridon, NewPGen, OpenPFGW
p168  Cami, OpenPFGW
p170  Wu_T, Primo, OpenPFGW
p189  Bohanon, LLR, OpenPFGW
p193  Irvine, Broadhurst, Primo, OpenPFGW
p235  Bedwell, OpenPFGW
p236  Cooper, NewPGen, PRP, OpenPFGW
p247  Bonath, Srsieve, CRUS, LLR, OpenPFGW
p252  Oakes, NewPGen, OpenPFGW
p255  Siemelink, Srsieve, CRUS, OpenPFGW
p259  Underbakke, GenefX64, AthGFNSieve, OpenPFGW
p268  Rodenkirch, Srsieve, CRUS, OpenPFGW
p269  Zhou, OpenPFGW
p279  Domanov1, Srsieve, Rieselprime, Prime95, OpenPFGW
p286  Batalov, Srsieve, OpenPFGW
p290  Domanov1, Fpsieve, PrimeGrid, OpenPFGW
p295  Angel, NewPGen, OpenPFGW
p296  Kaiser1, Srsieve, LLR, OpenPFGW
p301  Winskill1, Fpsieve, PrimeGrid, OpenPFGW
p302  Gasewicz, Fpsieve, PrimeGrid, OpenPFGW
p308  DavisK, Underwood, NewPGen, PrimeForm_egroup, OpenPFGW
p309  Yama, GenefX64, AthGFNSieve, PrimeGrid, OpenPFGW
p310  Hubbard, Gcwsieve, MultiSieve, PrimeGrid, OpenPFGW
p312  Doggart, Fpsieve, PrimeGrid, OpenPFGW
p314  Hubbard, GenefX64, AthGFNSieve, PrimeGrid, OpenPFGW
p332  Johnson6, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW
p334  Goetz, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW
p338  Tomecko, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW
p342  Trice, OpenPFGW
p346  Burt, Fpsieve, PrimeGrid, OpenPFGW
p350  Koen, Gcwsieve, GenWoodall, OpenPFGW
p355  Domanov1, Srsieve, CRUS, OpenPFGW
p360  Kinne, Exoo, OpenPFGW
p362  Snow, Fpsieve, PrimeGrid, OpenPFGW
p363  Batalov, OpenPFGW
p364  Batalov, NewPGen, OpenPFGW
p365  Poplin, Srsieve, CRUS, OpenPFGW
p373  Morelli, OpenPFGW
p378  Batalov, Srsieve, CRUS, LLR, OpenPFGW
p379  Batalov, CycloSv, Cyclo, EMsieve, PIES, OpenPFGW
p382  Oestlin, NewPGen, OpenPFGW
p384  Booker, OpenPFGW
p387  Zimmerman, GeneFer, AthGFNSieve, PrimeGrid, OpenPFGW
p391  Keiser, NewPGen, OpenPFGW
p394  Fukui, MultiSieve, OpenPFGW
p395  Angel, Augustin, NewPGen, OpenPFGW
p396  Ikisugi, OpenPFGW
p398  Stocker, OpenPFGW
p405  Propper, Cksieve, OpenPFGW
p406  DavisK, Luhn, Underwood, NewPGen, PrimeForm_egroup, OpenPFGW
p407  Lamprecht, Luhn, OpenPFGW
p408  Batalov, PolySieve, OpenPFGW
p409  Nielsen1, OpenPFGW
p413  Morimoto, OpenPFGW
p414  Naimi, OpenPFGW
p416  Monnin, LLR2, PrivGfnServer, OpenPFGW
p417  Tennant, LLR2, PrivGfnServer, OpenPFGW
p418  Sielemann, LLR2, PrivGfnServer, OpenPFGW
p419  Bird1, LLR2, PrivGfnServer, OpenPFGW
p421  Gahan, LLR2, PrivGfnServer, OpenPFGW
p422  Kaiser1, PolySieve, OpenPFGW
p423  Propper, Batalov, EMsieve, OpenPFGW
p425  Propper, MultiSieve, OpenPFGW
p426  Schoeler, NewPGen, OpenPFGW
p427  Niegocki, GeneFer, AthGFNSieve, PrivGfnServer, OpenPFGW
p428  Trunov, GeneFer, AthGFNSieve, PrivGfnServer, OpenPFGW
p430  Propper, Batalov, NewPGen, OpenPFGW
p431  Piesker, Srsieve, CRUS, OpenPFGW
p433  Dettweiler, LLR2, Srsieve, CRUS, OpenPFGW
p434  Doornink, MultiSieve, OpenPFGW
p435  Dettweiler, LLR2, PSieve, Srsieve, NPLB, OpenPFGW
p436  Schwieger, OpenPFGW
p437  Propper, Batalov, EMsieve, PIES, OpenPFGW
p439  Trice, MultiSieve, OpenPFGW
p440  Batalov, EMsieve, OpenPFGW
p441  Wu_T, CM, OpenPFGW
p442  Presler, MultiSieve, PrimeGrid, PRST, OpenPFGW
p443  Brochtrup, Srsieve, CRUS, OpenPFGW
p444  Kadowaki, MultiSieve, PrimeGrid, PRST, OpenPFGW
p445  Merrylees, MultiSieve, PrimeGrid, PRST, OpenPFGW
p446  Greer, MultiSieve, PrimeGrid, PRST, OpenPFGW
p447  Wallbaum, MultiSieve, PrimeGrid, PRST, OpenPFGW
p448  Little, MultiSieve, PrimeGrid, PRST, OpenPFGW
p449  Rodriguez2, OpenPFGW
PM    Mihailescu
SB10  Agafonov, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB
SB11  Sunde, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB
SB12  Szabolcs, Srsieve, SoBSieve, ProthSieve, Ksieve, PrimeGrid, LLR, SB
SB6   Sundquist, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB
SB7   Team_Prime_Rib, SoBSieve, ProthSieve, Ksieve, PRP, SB
SB8   Gordon, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB
SB9   Hassler, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB
SG    Slowinski, Gage
WD    Williams, Dubner, Cruncher
WM    Morain, Williams
x13   Renze
x16   Doumen, Beelen, Unknown
x20   Irvine, Broadhurst, Water
x23   Broadhurst, Water, Renze, OpenPFGW, Primo
x24   Jarai_Z, Farkas, Csajbok, Kasza, Jarai, Unknown
x25   Broadhurst, Water, OpenPFGW, Primo
x28   Iskra
x33   Carmody, Broadhurst, Water, Renze, OpenPFGW, Primo
x36   Irvine, Carmody, Broadhurst, Water, Renze, OpenPFGW, Primo
x38   Broadhurst, OpenPFGW, Primo
x39   Broadhurst, Dubner, Keller, OpenPFGW, Primo
x44   Zhou, Unknown
x45   Batalov, OpenPFGW, Primo, Unknown
x46   Otremba, Fpsieve, OpenPFGW, Unknown
x47   Szekeres, Magyar, Gevay, Farkas, Jarai, Unknown
x48   Asuncion, Allombert, Unknown
x49   Facq, Asuncion, Allombert, Unknown
x50   Propper, GFNSvCUDA, GeneFer, Unknown
x51   Lexut1, Srsieve, CRUS, Unknown
x52   Batalov, PolySieve, OpenPFGW, Unknown
x54   Gallot, GeneFer, Unknown
Y     Young