THE LARGEST KNOWN PRIMES (The 5,000 largest known primes) (selected smaller primes which have comments are included) Originally Compiled by Samuel Yates -- Continued by Chris Caldwell and now maintained by Reginald McLean (Sat Jun 7 13:37:35 UTC 2025) So that I can maintain this database of the 5,000 largest known primes (plus selected smaller primes with 1,000 or more digits), please send any new primes (that are large enough) to: https://t5k.org/bios/submission.php This list in a searchable form (plus information such as how to find large primes and how to prove primality) is available at the interactive web site: https://t5k.org/primes/ See the last pages for information about the provers. The letters after the rank refer to when the prime was submitted. 'a' is this month, 'b' last month... ----- ------------------------------- -------- ----- ---- -------------- rank description digits who year comment ----- ------------------------------- -------- ----- ---- -------------- 1 2^136279841-1 41024320 MP1 2024 Mersenne 52?? 2 2^82589933-1 24862048 G16 2018 Mersenne 51? 3 2^77232917-1 23249425 G15 2018 Mersenne 50? 4 2^74207281-1 22338618 G14 2016 Mersenne 49? 5 2^57885161-1 17425170 G13 2013 Mersenne 48 6 2^43112609-1 12978189 G10 2008 Mersenne 47 7 2^42643801-1 12837064 G12 2009 Mersenne 46 8 516693^2097152-516693^1048576+1 11981518 L4561 2023 Generalized unique 9 465859^2097152-465859^1048576+1 11887192 L4561 2023 Generalized unique 10 2^37156667-1 11185272 G11 2008 Mersenne 45 11 2^32582657-1 9808358 G9 2006 Mersenne 44 12 10223*2^31172165+1 9383761 SB12 2016 13 2^30402457-1 9152052 G9 2005 Mersenne 43 14 4*5^11786358+1 8238312 A2 2024 Generalized Fermat 15 2^25964951-1 7816230 G8 2005 Mersenne 42 16c 4052186*69^4052186+1 7451366 A61 2025 Generalized Cullen 17 69*2^24612729-1 7409172 A2 2024 18 2^24036583-1 7235733 G7 2004 Mersenne 41 19 107347*2^23427517-1 7052391 A2 2024 20 3843236^1048576+1 6904556 L6094 2024 Generalized Fermat 21 3*2^22103376-1 6653780 L6075 2024 22 1963736^1048576+1 6598776 L4245 2022 Generalized Fermat 23 1951734^1048576+1 6595985 L5583 2022 Generalized Fermat 24 202705*2^21320516+1 6418121 L5181 2021 25 2^20996011-1 6320430 G6 2003 Mersenne 40 26 1059094^1048576+1 6317602 L4720 2018 Generalized Fermat 27 3*2^20928756-1 6300184 L5799 2023 28 919444^1048576+1 6253210 L4286 2017 Generalized Fermat 29 81*2^20498148+1 6170560 L4965 2023 Generalized Fermat 30 7*2^20267500+1 6101127 L4965 2022 Divides GF(20267499,12) [GG] 31 4*5^8431178+1 5893142 A2 2024 Generalized Fermat 32 168451*2^19375200+1 5832522 L4676 2017 33 69*2^19374980-1 5832452 L4965 2022 34 3*2^18924988-1 5696990 L5530 2022 35 69*2^18831865-1 5668959 L4965 2021 36 2*3^11879700+1 5668058 A2 2024 37 97139*2^18397548-1 5538219 L4965 2023 38 7*2^18233956+1 5488969 L4965 2020 Divides Fermat F(18233954) 39 3*2^18196595-1 5477722 L5461 2022 40 4*3^11279466+1 5381674 A2 2024 Generalized Fermat 41 3*2^17748034-1 5342692 L5404 2021 42 123447^1048576-123447^524288+1 5338805 L4561 2017 Generalized unique 43 3622*5^7558139-1 5282917 L4965 2022 44 7*6^6772401+1 5269954 L4965 2019 45 2*3^10852677+1 5178044 L4965 2023 Divides phi 46 8508301*2^17016603-1 5122515 L4784 2018 Woodall 47 8*10^5112847-1 5112848 A19 2024 Near-repdigit 48 13*2^16828072+1 5065756 A2 2023 49 3*2^16819291-1 5063112 L5230 2021 50 5287180*3^10574360-1 5045259 A20 2024 Generalized Woodall 51 3*2^16408818+1 4939547 L5171 2020 Divides GF(16408814,3), GF(16408817,5) 52 2329989*2^16309923-1 4909783 A20 2024 Generalized Woodall 53 69*2^15866556-1 4776312 L4965 2021 54 2036*3^10009192+1 4775602 A2 2024 55 2525532*73^2525532+1 4705888 L5402 2021 Generalized Cullen 56 1419499*2^15614489-1 4700436 A20 2024 Generalized Woodall 57 11*2^15502315+1 4666663 L4965 2023 Divides GF(15502313,10) [GG] 58 (10^2332974+1)^2-2 4665949 p405 2024 59 37*2^15474010+1 4658143 L4965 2022 60 93839*2^15337656-1 4617100 L4965 2022 61 2^15317227+2^7658614+1 4610945 L5123 2020 Gaussian Mersenne norm 41?, generalized unique 62 13*2^15294536+1 4604116 A2 2023 63 6*5^6546983+1 4576146 L4965 2020 64 4788920*3^9577840-1 4569798 A20 2024 Generalized Woodall 65e 31*2^15145093-1 4559129 A2 2025 66 69*2^14977631-1 4508719 L4965 2021 67 192971*2^14773498-1 4447272 L4965 2021 68 4*3^9214845+1 4396600 A2 2024 69 9145334*3^9145334+1 4363441 A6 2023 Generalized Cullen 70 4*5^6181673-1 4320805 L4965 2022 71 396101*2^14259638-1 4292585 A20 2024 Generalized Woodall 72 6962*31^2863120-1 4269952 L5410 2020 73 37*2^14166940+1 4264676 L4965 2022 74 99739*2^14019102+1 4220176 L5008 2019 75 69*2^13832885-1 4164116 L4965 2022 76 404849*2^13764867+1 4143644 L4976 2021 Generalized Cullen 77 25*2^13719266+1 4129912 L4965 2022 Generalized Fermat 78 81*2^13708272+1 4126603 L4965 2022 Generalized Fermat 79 2740879*2^13704395-1 4125441 L4976 2019 Generalized Woodall 80 479216*3^8625889-1 4115601 L4976 2019 Generalized Woodall 81b 13*2^13584543-1 4089357 A2 2025 82e 31*2^13514933-1 4068402 A2 2025 83 143332^786432-143332^393216+1 4055114 L4506 2017 Generalized unique 84 81*2^13470584+1 4055052 L4965 2022 Generalized Fermat 85 2^13466917-1 4053946 G5 2001 Mersenne 39 86 5778486*5^5778486+1 4038996 A6 2024 Generalized Cullen 87 9*2^13334487+1 4014082 L4965 2020 Divides GF(13334485,3) 88 206039*2^13104952-1 3944989 L4965 2021 89 2805222*5^5610444+1 3921539 L4972 2019 Generalized Cullen 90 5128*22^2919993+1 3919869 L5811 2024 91 19249*2^13018586+1 3918990 SB10 2007 92 2293*2^12918431-1 3888839 L4965 2021 93 81*2^12804541+1 3854553 L4965 2022 94c 67612*5^5501582+1 3845446 A60 2025 95 4*5^5380542+1 3760839 L4965 2023 Generalized Fermat 96e 13520762^524288+1 3738699 L6221 2025 Generalized Fermat 97d 13427472^524288+1 3737122 L5775 2025 Generalized Fermat 98 9*2^12406887+1 3734847 L4965 2020 Divides GF(12406885,3) 99f 12900356^524288+1 3728004 L5639 2025 Generalized Fermat 100f 12693488^524288+1 3724323 L6096 2025 Generalized Fermat 101 11937916^524288+1 3710349 L6080 2024 Generalized Fermat 102 7*2^12286041-1 3698468 L4965 2023 103 10913140^524288+1 3689913 L6043 2024 Generalized Fermat 104 69*2^12231580-1 3682075 L4965 2021 105 27*2^12184319+1 3667847 L4965 2021 106 9332124^524288+1 3654278 L5025 2024 Generalized Fermat 107 8630170^524288+1 3636472 L5543 2024 Generalized Fermat 108 863282*5^5179692-1 3620456 A20 2024 Generalized Woodall 109 670490*12^3352450-1 3617907 A20 2024 Generalized Woodall 110 4*3^7578378+1 3615806 A2 2024 Generalized Fermat 111 11*2^11993994-1 3610554 A2 2024 112 3761*2^11978874-1 3606004 L4965 2022 113 95*2^11954552-1 3598681 A29 2024 114 259072*5^5136295-1 3590122 A45 2024 115 3*2^11895718-1 3580969 L4159 2015 116 37*2^11855148+1 3568757 L4965 2022 117 6339004^524288+1 3566218 L1372 2023 Generalized Fermat 118 763795*6^4582771+1 3566095 A6 2023 Generalized Cullen 119 5897794^524288+1 3549792 x50 2022 Generalized Fermat 120 3*2^11731850-1 3531640 L4103 2015 121 69*2^11718455-1 3527609 L4965 2020 122 8629*2^11708579-1 3524638 A2 2024 123 41*2^11676439+1 3514960 L4965 2022 124 4896418^524288+1 3507424 L4245 2022 Generalized Fermat 125 81*2^11616017+1 3496772 L4965 2022 126 69*2^11604348-1 3493259 L4965 2020 127 4450871*6^4450871+1 3463458 L5765 2023 Generalized Cullen 128 9*2^11500843+1 3462100 L4965 2020 Divides GF(11500840,12) 129 3*2^11484018-1 3457035 L3993 2014 130 193997*2^11452891+1 3447670 L4398 2018 131 29914*5^4930904+1 3446559 A41 2024 132 3638450^524288+1 3439810 L4591 2020 Generalized Fermat 133 9221*2^11392194-1 3429397 L5267 2021 134 9*2^11366286+1 3421594 L4965 2020 Generalized Fermat 135 5*2^11355764-1 3418427 L4965 2021 136 732050*6^4392301+1 3417881 L5765 2023 Generalized Cullen 137 3214654^524288+1 3411613 L4309 2019 Generalized Fermat 138 632760!-1 3395992 A43 2024 Factorial 139 146561*2^11280802-1 3395865 L5181 2020 140 51208*5^4857576+1 3395305 A30 2024 141 2985036^524288+1 3394739 L4752 2019 Generalized Fermat 142f 4591*2^11270837-1 3392864 A2 2025 143 6929*2^11255424-1 3388225 L4965 2022 144 2877652^524288+1 3386397 L4250 2019 Generalized Fermat 145 2788032^524288+1 3379193 L4584 2019 Generalized Fermat 146 2733014^524288+1 3374655 L4929 2019 Generalized Fermat 147 9*2^11158963+1 3359184 L4965 2020 Divides GF(11158962,5) 148 9271*2^11134335-1 3351773 L4965 2021 149 136804*5^4777253-1 3339162 A23 2024 150 2312092^524288+1 3336572 L4720 2018 Generalized Fermat 151 987324*48^1974648-1 3319866 A20 2024 Generalized Woodall 152 2061748^524288+1 3310478 L4783 2018 Generalized Fermat 153 1880370^524288+1 3289511 L4201 2018 Generalized Fermat 154 27*2^10902757-1 3282059 L4965 2022 155 3*2^10829346+1 3259959 L3770 2014 Divides GF(10829343,3), GF(10829345,5) 156 11*2^10803449+1 3252164 L4965 2022 Divides GF(10803448,6) 157 11*2^10797109+1 3250255 L4965 2022 158 7*2^10612737-1 3194754 L4965 2022 159 7351117#+1 3191401 p448 2024 Primorial 160 37*2^10599476+1 3190762 L4965 2022 Divides GF(10599475,10) 161 5*2^10495620-1 3159498 L4965 2021 162 3^6608603-3^3304302+1 3153105 L5123 2023 Generalized unique 163 5*2^10349000-1 3115361 L4965 2021 164 844833^524288-844833^262144+1 3107335 L4506 2017 Generalized unique 165 52922*5^4399812-1 3075342 A1 2023 166 712012^524288-712012^262144+1 3068389 L4506 2017 Generalized unique 167 177742*5^4386703-1 3066180 L5807 2023 168 4*3^6402015+1 3054539 A2 2024 169 874208*54^1748416-1 3028951 L4976 2019 Generalized Woodall 170 475856^524288+1 2976633 L3230 2012 Generalized Fermat 171 2*3^6236772+1 2975697 L4965 2022 172 15*2^9830108+1 2959159 A2 2023 173 9*2^9778263+1 2943552 L4965 2020 174 198*558^1061348+1 2915138 A28 2024 175 1806676*41^1806676+1 2913785 L4668 2018 Generalized Cullen 176 356926^524288+1 2911151 L3209 2012 Generalized Fermat 177 341112^524288+1 2900832 L3184 2012 Generalized Fermat 178 213988*5^4138363-1 2892597 L5621 2022 179 43*2^9596983-1 2888982 L4965 2022 180 121*2^9584444+1 2885208 L5183 2020 Generalized Fermat 181 15*2^9482269-1 2854449 A2 2024 182 6533299#-1 2835864 p447 2024 Primorial 183 11*2^9381365+1 2824074 L4965 2020 Divides GF(9381364,6) 184 15*2^9312889+1 2803461 L4965 2023 185b 97*2^9305542+1 2801250 A2 2025 186b 93*2^9235048+1 2780029 A2 2025 187 49*2^9187790+1 2765803 L4965 2022 Generalized Fermat 188 6369619#+1 2765105 p445 2024 Primorial 189 27653*2^9167433+1 2759677 SB8 2005 190 6354977#-1 2758832 p446 2024 Primorial 191 90527*2^9162167+1 2758093 L1460 2010 192 6795*2^9144320-1 2752719 L4965 2021 193 31*2^9088085-1 2735788 A2 2024 194 75*2^9079482+1 2733199 L4965 2023 195 1323365*116^1323365+1 2732038 L4718 2018 Generalized Cullen 196 57*2^9075622-1 2732037 L4965 2022 197 10^2718281-5*10^1631138-5*10^1087142-1 2718281 p423 2024 Palindrome 198 63838*5^3887851-1 2717497 L5558 2022 199 13*2^8989858+1 2706219 L4965 2020 200 4159*2^8938471-1 2690752 L4965 2022 201 273809*2^8932416-1 2688931 L1056 2017 202 93*2^8898285+1 2678653 A2 2024 203 2*3^5570081+1 2657605 L4965 2020 Divides Phi(3^5570081,2) [g427] 204 25*2^8788628+1 2645643 L5161 2021 Generalized Fermat 205 2038*366^1028507-1 2636562 L2054 2016 206 64598*5^3769854-1 2635020 L5427 2022 207 63*2^8741225+1 2631373 A2 2024 208 8*785^900325+1 2606325 L4786 2022 209 17*2^8636199+1 2599757 L5161 2021 Divides GF(8636198,10) 210 75898^524288+1 2558647 p334 2011 Generalized Fermat 211 25*2^8456828+1 2545761 L5237 2021 Divides GF(8456827,12), generalized Fermat 212 39*2^8413422+1 2532694 L5232 2021 213 31*2^8348000+1 2513000 L5229 2021 214 27*2^8342438-1 2511326 L3483 2021 215 3687*2^8261084-1 2486838 L4965 2021 216 101*2^8152967+1 2454290 A2 2023 Divides GF(8152966,12) 217 273662*5^3493296-1 2441715 L5444 2021 218 81*2^8109236+1 2441126 L4965 2022 Generalized Fermat 219 11*2^8103463+1 2439387 L4965 2020 Divides GF(8103462,12) 220 102818*5^3440382-1 2404729 L5427 2021 221 11*2^7971110-1 2399545 L2484 2019 222 27*2^7963247+1 2397178 L5161 2021 Divides Fermat F(7963245) 223 3177*2^7954621-1 2394584 L4965 2021 224 39*2^7946769+1 2392218 L5226 2021 Divides GF(7946767,12) 225 7*6^3072198+1 2390636 L4965 2019 226 3765*2^7904593-1 2379524 L4965 2021 227 29*2^7899985+1 2378134 L5161 2021 Divides GF(7899984,6) 228 5113*2^7895471-1 2376778 L4965 2022 229 861*2^7895451-1 2376771 L4965 2021 230 75*2^7886683+1 2374131 A2 2023 231 2661*2^7861390-1 2366518 A2 2024 232 99*2^7830910+1 2357341 A2 2024 233 28433*2^7830457+1 2357207 SB7 2004 234 2589*2^7803339-1 2349043 L4965 2022 235 59*2^7792307+1 2345720 A2 2024 236 101*2^7784453+1 2343356 A2 2024 237 95*2^7778585+1 2341590 A2 2024 238 8401*2^7767655-1 2338302 L4965 2023 239 9693*2^7767343-1 2338208 A2 2023 240 5*2^7755002-1 2334489 L4965 2021 241 2945*2^7753232-1 2333959 L4965 2022 242 2*836^798431+1 2333181 L4294 2024 243 63*2^7743186+1 2330934 A2 2024 244 2545*2^7732265-1 2327648 L4965 2021 245 5539*2^7730709-1 2327180 L4965 2021 246 4817*2^7719584-1 2323831 L4965 2021 247 183*558^842752+1 2314734 A28 2024 248 1341174*53^1341174+1 2312561 L4668 2017 Generalized Cullen 249 9467*2^7680034-1 2311925 L4965 2022 250 45*2^7661004+1 2306194 L5200 2020 251 15*2^7619838+1 2293801 L5192 2020 252 3597*2^7580693-1 2282020 L4965 2021 253 5256037#+1 2281955 p444 2024 Primorial 254 3129*2^7545557-1 2271443 L4965 2023 255 7401*2^7523295-1 2264742 L4965 2021 256 45*2^7513661+1 2261839 L5179 2020 257 558640^393216-558640^196608+1 2259865 L4506 2017 Generalized unique 258b 2739*2^7483537-1 2252773 A2 2025 259 9*2^7479919-1 2251681 L3345 2023 260 1875*2^7474308-1 2249995 L4965 2022 261 69*2^7452023+1 2243285 L4965 2023 Divides GF(7452020,3) [GG] 262 1281979*2^7447178+1 2241831 A8 2023 263b 9107*2^7417464-1 2232884 A2 2025 264 4*5^3189669-1 2229484 L4965 2022 265 29*2^7374577+1 2219971 L5169 2020 Divides GF(7374576,3) 266 2653*2^7368343-1 2218096 A2 2024 267 21555*2^7364128-1 2216828 A11 2024 268 3197*2^7359542-1 2215447 L4965 2022 269 109838*5^3168862-1 2214945 L5129 2020 270 95*2^7354869+1 2214039 A2 2023 271 101*2^7345194-1 2211126 L1884 2019 272 85*2^7333444+1 2207589 A2 2023 273 15*2^7300254+1 2197597 L5167 2020 274 422429!+1 2193027 p425 2022 Factorial 275 1759*2^7284439-1 2192838 L4965 2021 276 1909683*14^1909683+1 2188748 L5765 2023 Generalized Cullen 277 737*2^7269322-1 2188287 L4665 2017 278 6909*2^7258896-1 2185150 A2 2024 279 93*2^7241494+1 2179909 A2 2023 280 118568*5^3112069+1 2175248 L690 2020 281 4215*2^7221386-1 2173858 A2 2024 282 40*257^901632+1 2172875 A11 2024 283c 1685*2^7213108-1 2171366 A2 2025 284 580633*2^7208783-1 2170066 A11 2024 285 6039*2^7207973-1 2169820 L4965 2021 286 502573*2^7181987-1 2162000 L3964 2014 287 402539*2^7173024-1 2159301 L3961 2014 288 3343*2^7166019-1 2157191 L1884 2016 289c 4137*2^7132569-1 2147121 A2 2025 290 161041*2^7107964+1 2139716 L4034 2015 291 294*213^918952-1 2139672 L5811 2023 292 27*2^7046834+1 2121310 L3483 2018 293 1759*2^7046791-1 2121299 L4965 2021 294 327*2^7044001-1 2120459 L4965 2021 295 5*2^7037188-1 2118406 L4965 2021 296 3*2^7033641+1 2117338 L2233 2011 Divides GF(7033639,3) 297 625783*2^7031319-1 2116644 A11 2024 298 33661*2^7031232+1 2116617 SB11 2007 299 237804^393216-237804^196608+1 2114016 L4506 2017 Generalized unique 300 207494*5^3017502-1 2109149 L5083 2020 301 15*2^6993631-1 2105294 L4965 2021 302 8943501*2^6972593-1 2098967 L466 2022 303 6020095*2^6972593-1 2098967 L466 2022 304 2^6972593-1 2098960 G4 1999 Mersenne 38 305 273*2^6963847-1 2096330 L4965 2022 306 6219*2^6958945-1 2094855 L4965 2021 307 51*2^6945567+1 2090826 L4965 2020 Divides GF(6945564,12) [p286] 308a 8*10^2084563-1 2084564 A2 2025 Near-repdigit 309 3323*2^6921196-1 2083492 A2 2024 310 238694*5^2979422-1 2082532 L5081 2020 311 4*72^1119849-1 2079933 L4444 2016 312 33*2^6894190-1 2075360 L4965 2021 313 4778027#-1 2073926 p442 2024 Primorial 314 2345*2^6882320-1 2071789 L4965 2022 315 57*2^6857990+1 2064463 A2 2023 316 146264*5^2953282-1 2064261 L1056 2020 317 69*2^6838971-1 2058738 L5037 2020 318 35816*5^2945294-1 2058677 L5076 2020 319 127*2^6836153-1 2057890 L1862 2018 320b 105*2^6835099+1 2057572 L5517 2025 321 19*2^6833086+1 2056966 L5166 2020 322 65*2^6810465+1 2050157 A2 2023 323 40597*2^6808509-1 2049571 L3749 2013 324 283*2^6804731-1 2048431 L2484 2020 325b 64074894^262144+1 2046477 L5696 2025 Generalized Fermat 326b 64010198^262144+1 2046362 L5361 2025 Generalized Fermat 327b 63833640^262144+1 2046047 L6006 2025 Generalized Fermat 328b 8*10^2045966-1 2045967 A2 2025 Near-repdigit 329b 63784742^262144+1 2045960 L4387 2025 Generalized Fermat 330b 63558122^262144+1 2045555 L6255 2025 Generalized Fermat 331b 63448958^262144+1 2045359 L5019 2025 Generalized Fermat 332b 63286690^262144+1 2045068 L4387 2025 Generalized Fermat 333b 62767176^262144+1 2044129 L5639 2025 Generalized Fermat 334b 62747994^262144+1 2044095 L5639 2025 Generalized Fermat 335 1861709*2^6789999+1 2044000 L5191 2020 336 5781*2^6789459-1 2043835 L4965 2021 337b 62311952^262144+1 2043301 L5156 2025 Generalized Fermat 338b 62199610^262144+1 2043095 L5697 2025 Generalized Fermat 339b 62152830^262144+1 2043010 L5639 2025 Generalized Fermat 340b 62136706^262144+1 2042980 L5639 2025 Generalized Fermat 341 8435*2^6786180-1 2042848 L4965 2021 342c 61238184^262144+1 2041322 L5526 2025 Generalized Fermat 343b 119*2^6777781+1 2040318 L5517 2025 344d 59145944^262144+1 2037364 L4591 2025 Generalized Fermat 345d 58936230^262144+1 2036960 L5465 2025 Generalized Fermat 346d 58870004^262144+1 2036832 L6238 2025 Generalized Fermat 347d 58846688^262144+1 2036787 L4591 2025 Generalized Fermat 348d 58333324^262144+1 2035789 L4591 2025 Generalized Fermat 349d 58288282^262144+1 2035701 L4526 2025 Generalized Fermat 350d 57643582^262144+1 2034435 L4772 2025 Generalized Fermat 351d 57594478^262144+1 2034338 L5464 2025 Generalized Fermat 352d 57478518^262144+1 2034108 L6085 2025 Generalized Fermat 353d 57429230^262144+1 2034011 L5639 2025 Generalized Fermat 354 51*2^6753404+1 2032979 L4965 2020 355 93*2^6750726+1 2032173 A2 2023 356d 56303352^262144+1 2031757 L4920 2025 Generalized Fermat 357d 56295176^262144+1 2031740 L5378 2025 Generalized Fermat 358d 55952434^262144+1 2031045 L5586 2025 Generalized Fermat 359d 55892864^262144+1 2030923 L5948 2025 Generalized Fermat 360 69*2^6745775+1 2030683 L4965 2023 361d 55702322^262144+1 2030535 L4772 2025 Generalized Fermat 362d 55695224^262144+1 2030520 L4387 2025 Generalized Fermat 363d 55169618^262144+1 2029441 L6236 2025 Generalized Fermat 364d 55007338^262144+1 2029105 L4201 2025 Generalized Fermat 365d 54852328^262144+1 2028784 L5375 2025 Generalized Fermat 366d 54528918^262144+1 2028111 L5375 2025 Generalized Fermat 367d 54044092^262144+1 2027094 L5069 2025 Generalized Fermat 368d 53903472^262144+1 2026797 L5543 2025 Generalized Fermat 369d 53750036^262144+1 2026473 L4309 2025 Generalized Fermat 370d 53616962^262144+1 2026191 L4889 2025 Generalized Fermat 371d 53311612^262144+1 2025540 L6235 2025 Generalized Fermat 372d 53008094^262144+1 2024890 L6036 2025 Generalized Fermat 373d 52648144^262144+1 2024115 L5088 2025 Generalized Fermat 374d 52599274^262144+1 2024009 L4776 2025 Generalized Fermat 375d 52592976^262144+1 2023995 L5543 2025 Generalized Fermat 376b 117*2^6719464+1 2022763 L5995 2025 377d 51992174^262144+1 2022687 L5639 2025 Generalized Fermat 378d 51852794^262144+1 2022382 L4387 2025 Generalized Fermat 379d 51714136^262144+1 2022077 L4591 2025 Generalized Fermat 380d 51283286^262144+1 2021124 L4884 2025 Generalized Fermat 381d 51125138^262144+1 2020773 L5543 2025 Generalized Fermat 382 9995*2^6711008-1 2020219 L4965 2021 383d 50454356^262144+1 2019269 L5543 2025 Generalized Fermat 384d 50449664^262144+1 2019259 L5586 2025 Generalized Fermat 385d 50366208^262144+1 2019070 L5275 2025 Generalized Fermat 386e 50121532^262144+1 2018516 L4904 2025 Generalized Fermat 387e 49536902^262144+1 2017180 L5639 2025 Generalized Fermat 388e 49235348^262144+1 2016485 L5543 2025 Generalized Fermat 389e 49209090^262144+1 2016424 L5275 2025 Generalized Fermat 390e 48055302^262144+1 2013723 L5069 2025 Generalized Fermat 391e 47707672^262144+1 2012896 L4939 2025 Generalized Fermat 392 39*2^6684941+1 2012370 L5162 2020 393e 47351862^262144+1 2012044 L6204 2025 Generalized Fermat 394e 47281922^262144+1 2011876 L5974 2025 Generalized Fermat 395e 47255958^262144+1 2011813 L5948 2025 Generalized Fermat 396 6679881*2^6679881+1 2010852 L917 2009 Cullen 397e 46831458^262144+1 2010786 L4456 2025 Generalized Fermat 398e 46378776^262144+1 2009680 L6178 2025 Generalized Fermat 399f 45073202^262144+1 2006429 L6129 2025 Generalized Fermat 400f 45007104^262144+1 2006262 L5639 2025 Generalized Fermat 401f 44819108^262144+1 2005786 L5632 2025 Generalized Fermat 402f 44666524^262144+1 2005397 L5775 2025 Generalized Fermat 403 37*2^6660841-1 2005115 L3933 2014 404 44144624^262144+1 2004059 L5974 2024 Generalized Fermat 405 44030166^262144+1 2003764 L5974 2024 Generalized Fermat 406 43330794^262144+1 2001941 L5588 2024 Generalized Fermat 407 39*2^6648997+1 2001550 L5161 2020 408 42781592^262144+1 2000489 L5460 2024 Generalized Fermat 409 10^2000007-10^1127194-10^872812-1 2000007 p423 2024 Palindrome 410 10^2000005-10^1051046-10^948958-1 2000005 p423 2024 Palindrome 411 304207*2^6643565-1 1999918 L3547 2013 412 42474318^262144+1 1999668 L5416 2024 Generalized Fermat 413 69*2^6639971-1 1998833 L5037 2020 414 42006214^262144+1 1998406 L5512 2024 Generalized Fermat 415 6471*2^6631137-1 1996175 L4965 2021 416 40460760^262144+1 1994139 L5460 2024 Generalized Fermat 417 39896728^262144+1 1992541 L6047 2024 Generalized Fermat 418 39164812^262144+1 1990433 L6038 2024 Generalized Fermat 419b 8*10^1990324-1 1990325 A2 2025 Near-repdigit 420 38786786^262144+1 1989328 L6035 2024 Generalized Fermat 421 38786700^262144+1 1989328 L4245 2024 Generalized Fermat 422 38738332^262144+1 1989186 L6033 2024 Generalized Fermat 423 9935*2^6603610-1 1987889 L4965 2023 424 38214850^262144+1 1987637 L5412 2024 Generalized Fermat 425 38108804^262144+1 1987321 L4764 2024 Generalized Fermat 426 37986650^262144+1 1986955 L6027 2024 Generalized Fermat 427 37787006^262144+1 1986355 L4622 2024 Generalized Fermat 428 37700936^262144+1 1986096 L5416 2024 Generalized Fermat 429 37689944^262144+1 1986063 L5416 2024 Generalized Fermat 430 37349040^262144+1 1985028 L5543 2024 Generalized Fermat 431 37047448^262144+1 1984105 L5746 2024 Generalized Fermat 432 36778106^262144+1 1983274 L5998 2024 Generalized Fermat 433 36748386^262144+1 1983182 L5998 2024 Generalized Fermat 434 36717890^262144+1 1983088 L4760 2024 Generalized Fermat 435 36210400^262144+1 1981503 L6006 2024 Generalized Fermat 436 35196086^262144+1 1978269 L5543 2024 Generalized Fermat 437 34443124^262144+1 1975807 L5639 2024 Generalized Fermat 438 33798406^262144+1 1973655 L4656 2024 Generalized Fermat 439 33491530^262144+1 1972617 L5030 2024 Generalized Fermat 440 33061466^262144+1 1971146 L5275 2024 Generalized Fermat 441 32497152^262144+1 1969186 L5586 2024 Generalized Fermat 442 32171198^262144+1 1968038 L4892 2024 Generalized Fermat 443 32067848^262144+1 1967672 L4684 2024 Generalized Fermat 444 31371484^262144+1 1965172 L5847 2024 Generalized Fermat 445 30941436^262144+1 1963601 L4362 2024 Generalized Fermat 446 554051*2^6517658-1 1962017 L5811 2023 447c 115*2^6515714+1 1961428 L5161 2025 448 29645358^262144+1 1958729 L5024 2023 Generalized Fermat 449 29614286^262144+1 1958610 L5870 2023 Generalized Fermat 450 1319*2^6506224-1 1958572 L4965 2021 451 3163*2^6504943-1 1958187 L4965 2023 452 29445800^262144+1 1957960 L4726 2023 Generalized Fermat 453 322498*5^2800819-1 1957694 L4954 2019 454 29353924^262144+1 1957604 L4387 2023 Generalized Fermat 455 99*2^6502814+1 1957545 A2 2023 456 29333122^262144+1 1957524 L5869 2023 Generalized Fermat 457 88444*5^2799269-1 1956611 L3523 2019 458 29097000^262144+1 1956604 L5375 2023 Generalized Fermat 459 28342134^262144+1 1953611 L5864 2023 Generalized Fermat 460 28259150^262144+1 1953277 L4898 2023 Generalized Fermat 461 28004468^262144+1 1952246 L5586 2023 Generalized Fermat 462 27789002^262144+1 1951367 L5860 2023 Generalized Fermat 463 13*2^6481780+1 1951212 L4965 2020 464 27615064^262144+1 1950652 L4201 2023 Generalized Fermat 465 21*2^6468257-1 1947141 L4965 2021 466 26640150^262144+1 1946560 L5839 2023 Generalized Fermat 467 26128000^262144+1 1944350 L5821 2023 Generalized Fermat 468 25875054^262144+1 1943243 L5070 2023 Generalized Fermat 469 25690360^262144+1 1942427 L5809 2023 Generalized Fermat 470 25635940^262144+1 1942186 L4307 2023 Generalized Fermat 471 25461468^262144+1 1941408 L4210 2023 Generalized Fermat 472 25333402^262144+1 1940834 L5802 2023 Generalized Fermat 473 24678636^262144+1 1937853 L5586 2023 Generalized Fermat 474 138514*5^2771922+1 1937496 L4937 2019 475 24429706^262144+1 1936699 L4670 2023 Generalized Fermat 476 33*2^6432160-1 1936275 L4965 2022 477 15*2^6429089-1 1935350 L4965 2021 478 23591460^262144+1 1932724 L5720 2023 Generalized Fermat 479 23479122^262144+1 1932181 L5773 2023 Generalized Fermat 480 398023*2^6418059-1 1932034 L3659 2013 481 22984886^262144+1 1929758 L4928 2023 Generalized Fermat 482 3^4043119+3^2021560+1 1929059 L5123 2023 Generalized unique 483 22790808^262144+1 1928793 L5047 2023 Generalized Fermat 484c 141*2^6406088+1 1928427 L5783 2025 Divides GF(6406084,6) 485 22480000^262144+1 1927230 L4307 2023 Generalized Fermat 486 22479752^262144+1 1927229 L5159 2023 Generalized Fermat 487 22470828^262144+1 1927183 L4201 2023 Generalized Fermat 488 55*2^6395254+1 1925166 A2 2023 489 20866766^262144+1 1918752 L4245 2023 Generalized Fermat 490 4*3^4020126+1 1918089 A2 2024 Generalized Fermat 491 20710506^262144+1 1917896 L5676 2023 Generalized Fermat 492 20543682^262144+1 1916975 L5663 2023 Generalized Fermat 493 20105956^262144+1 1914523 L5005 2023 Generalized Fermat 494 631*2^6359347-1 1914357 L4965 2021 495 4965*2^6356707-1 1913564 L4965 2022 496 19859450^262144+1 1913119 L5025 2023 Generalized Fermat 497 19527922^262144+1 1911202 L4745 2023 Generalized Fermat 498 19322744^262144+1 1910000 L4775 2023 Generalized Fermat 499 1995*2^6333396-1 1906546 L4965 2021 500 1582137*2^6328550+1 1905090 L801 2009 Cullen 501 18395930^262144+1 1904404 x50 2022 Generalized Fermat 502 17191822^262144+1 1896697 x50 2022 Generalized Fermat 503 87*2^6293522+1 1894541 A2 2023 504 16769618^262144+1 1893866 L4677 2022 Generalized Fermat 505d 141*2^6286573+1 1892450 L5178 2025 506 16048460^262144+1 1888862 L5127 2022 Generalized Fermat 507 10^1888529-10^944264-1 1888529 p423 2021 Near-repdigit, palindrome 508 15913772^262144+1 1887902 L4387 2022 Generalized Fermat 509 15859176^262144+1 1887511 L5544 2022 Generalized Fermat 510 3303*2^6264946-1 1885941 L4965 2021 511 15417192^262144+1 1884293 L5051 2022 Generalized Fermat 512 14741470^262144+1 1879190 L4204 2022 Generalized Fermat 513 4328927#+1 1878843 p442 2024 Primorial 514d 165*2^6237224+1 1877594 L5178 2025 515 14399216^262144+1 1876516 L4745 2021 Generalized Fermat 516 1344935*2^6231985+1 1876021 L161 2023 517 14103144^262144+1 1874151 L5254 2021 Generalized Fermat 518 13911580^262144+1 1872594 L5068 2021 Generalized Fermat 519d 165*2^6213489+1 1870449 L5517 2025 520 13640376^262144+1 1870352 L4307 2021 Generalized Fermat 521 13553882^262144+1 1869628 L4307 2021 Generalized Fermat 522 8825*2^6199424-1 1866217 A2 2023 523 13039868^262144+1 1865227 L5273 2021 Generalized Fermat 524 7*6^2396573+1 1864898 L4965 2019 525 12959788^262144+1 1864525 L4591 2021 Generalized Fermat 526 69*2^6186659+1 1862372 L4965 2023 527 12582496^262144+1 1861162 L5202 2021 Generalized Fermat 528 12529818^262144+1 1860684 L4871 2020 Generalized Fermat 529e 141*2^6175704+1 1859075 L5969 2025 530 12304152^262144+1 1858615 L4591 2020 Generalized Fermat 531 12189878^262144+1 1857553 L4905 2020 Generalized Fermat 532 39*2^6164630+1 1855741 L4087 2020 Divides GF(6164629,5) 533e 119*2^6150335+1 1851438 L5178 2025 534 11081688^262144+1 1846702 L5051 2020 Generalized Fermat 535 10979776^262144+1 1845650 L5088 2020 Generalized Fermat 536 10829576^262144+1 1844082 L4677 2020 Generalized Fermat 537 194368*5^2638045-1 1843920 L690 2018 538 10793312^262144+1 1843700 L4905 2020 Generalized Fermat 539 10627360^262144+1 1841936 L4956 2020 Generalized Fermat 540 10578478^262144+1 1841411 L4307 2020 Generalized Fermat 541 66916*5^2628609-1 1837324 L690 2018 542 521921*2^6101122-1 1836627 L5811 2023 543 3*2^6090515-1 1833429 L1353 2010 544 9812766^262144+1 1832857 L4245 2020 Generalized Fermat 545 9750938^262144+1 1832137 L4309 2020 Generalized Fermat 546 8349*2^6082397-1 1830988 L4965 2021 547 9450844^262144+1 1828578 L5020 2020 Generalized Fermat 548 71*2^6070943+1 1827538 L4965 2023 549 32*470^683151+1 1825448 L4064 2021 550 9125820^262144+1 1824594 L5002 2019 Generalized Fermat 551 8883864^262144+1 1821535 L4715 2019 Generalized Fermat 552 21*2^6048861+1 1820890 L5106 2020 Divides GF(6048860,5) 553 9999*2^6037057-1 1817340 L4965 2021 554 8521794^262144+1 1816798 L4289 2019 Generalized Fermat 555 6285*2^6027986-1 1814609 A2 2024 556 33*2^6019138-1 1811943 L4965 2022 557 67*2^6018626+1 1811789 L4965 2023 558 122*123^865890+1 1809631 L4294 2024 559b 6*10^1807300-1 1807301 A2 2025 Near-repdigit 560 1583*2^5989282-1 1802957 L4036 2015 561e 55*2^5982526+1 1800922 L5554 2025 Divides GF(5982524,10) 562 101806*15^1527091-1 1796004 L5765 2023 Generalized Woodall 563e 91*2^5960816+1 1794387 L5969 2025 564e 163*2^5945098+1 1789656 L5554 2025 565e 189*2^5932506+1 1785865 L5995 2025 566 6291332^262144+1 1782250 L4864 2018 Generalized Fermat 567 6287774^262144+1 1782186 L4726 2018 Generalized Fermat 568d 32*402^683113-1 1778983 A11 2025 569 327926*5^2542838-1 1777374 L4807 2018 570 81556*5^2539960+1 1775361 L4809 2018 571e 179*2^5894939+1 1774556 L5261 2025 572 5828034^262144+1 1773542 L4720 2018 Generalized Fermat 573 993*10^1768283-1 1768286 L4879 2019 Near-repdigit 574e 135*2^5854694+1 1762441 L5997 2025 575 9*10^1762063-1 1762064 L4879 2020 Near-repdigit 576 93606^354294+93606^177147+1 1761304 p437 2023 Generalized unique 577 5205422^262144+1 1760679 L4201 2018 Generalized Fermat 578 5152128^262144+1 1759508 L4720 2018 Generalized Fermat 579f 195*2^5841059+1 1758337 L5178 2025 580f 183*2^5814122+1 1750228 L5612 2025 581f 205*2^5805562+1 1747651 L5261 2025 582f 99*2^5798449+1 1745510 L5517 2025 Divides Fermat F(5798447) 583 4489246^262144+1 1743828 L4591 2018 Generalized Fermat 584 2240501*6^2240501+1 1743456 L5765 2023 Generalized Cullen 585f 57*2^5785428+1 1741590 L5302 2025 586 2*3^3648969+1 1741001 L5043 2020 Divides Phi(3^3648964,2) [g427] 587 7*2^5775996+1 1738749 L3325 2012 588f 101*2^5774879+1 1738414 L5537 2025 589 4246258^262144+1 1737493 L4720 2018 Generalized Fermat 590b 13*2^5769387-1 1736760 L1862 2025 591f 57*2^5759943+1 1733918 L5517 2025 592 3933508^262144+1 1728783 L4309 2018 Generalized Fermat 593 3853792^262144+1 1726452 L4715 2018 Generalized Fermat 594 3673932^262144+1 1721010 L4649 2017 Generalized Fermat 595 (10^859669-1)^2-2 1719338 p405 2022 Near-repdigit 596 3596074^262144+1 1718572 L4689 2017 Generalized Fermat 597 3547726^262144+1 1717031 L4201 2017 Generalized Fermat 598 8*10^1715905-1 1715906 L4879 2020 Near-repdigit 599 1243*2^5686715-1 1711875 L1828 2016 600 65*2^5671355+1 1707250 L5294 2024 601 25*2^5658915-1 1703505 L1884 2021 602 1486287*14^1486287+1 1703482 L5765 2023 Generalized Cullen 603 41*2^5651731+1 1701343 L1204 2020 604 3060772^262144+1 1700222 L4649 2017 Generalized Fermat 605 9*2^5642513+1 1698567 L3432 2013 606 165*2^5633373+1 1695817 L5178 2024 607 10*3^3550446+1 1693995 L4965 2020 608 2622*11^1621920-1 1689060 L2054 2015 609 141*2^5600116+1 1685806 L6089 2024 610 81*2^5600028+1 1685779 L4965 2022 Generalized Fermat 611 2676404^262144+1 1684945 L4591 2017 Generalized Fermat 612 301562*5^2408646-1 1683577 L4675 2017 613 2611294^262144+1 1682141 L4250 2017 Generalized Fermat 614 55599^354294+55599^177147+1 1681149 p437 2023 Generalized unique 615 171362*5^2400996-1 1678230 L4669 2017 616 2514168^262144+1 1677825 L4564 2017 Generalized Fermat 617 31*2^5560820+1 1673976 L1204 2020 Divides GF(5560819,6) 618 163*2^5550632+1 1670909 L5517 2024 619 205*2^5532904+1 1665573 L5517 2024 620 191*2^5531015+1 1665004 L5517 2024 621 13*2^5523860+1 1662849 L1204 2020 Divides Fermat F(5523858) 622 89*2^5519481+1 1661532 L5178 2024 623 252191*2^5497878-1 1655032 L3183 2012 624 2042774^262144+1 1654187 L4499 2016 Generalized Fermat 625b 8*10^1652593-1 1652594 A2 2025 Near-repdigit 626 247*2^5477512+1 1648898 L5373 2024 627 129*2^5453363+1 1641628 L6083 2024 628 1828858^262144+1 1641593 L4200 2016 Generalized Fermat 629 258317*2^5450519+1 1640776 g414 2008 630 7*6^2104746+1 1637812 L4965 2019 631 91*2^5435752+1 1636327 L5214 2024 632 159*2^5432226+1 1635266 L6082 2024 633 193*2^5431414+1 1635021 L5214 2024 634 5*2^5429494-1 1634442 L3345 2017 635 77*2^5422903+1 1632459 A2 2024 Divides GF(5422902,12) 636 165*2^5416628+1 1630570 L5537 2024 637 147*2^5410159+1 1628623 L5517 2024 638 285*2^5408709+1 1628187 L5178 2024 639 43*2^5408183-1 1628027 L1884 2018 640 8*815^559138-1 1627740 A26 2024 641 1615588^262144+1 1627477 L4200 2016 Generalized Fermat 642 245*2^5404089+1 1626796 L5282 2024 643 2*296598^296598-1 1623035 L4965 2022 644 127*2^5391378+1 1622969 L5178 2024 645 1349*2^5385004-1 1621051 L1828 2017 646 1488256^262144+1 1618131 L4249 2016 Generalized Fermat 647 153*2^5369765+1 1616463 L5969 2024 648 1415198^262144+1 1612400 L4308 2016 Generalized Fermat 649 84*730^560037+1 1603569 A12 2024 650 93*2^5323466+1 1602525 L5537 2024 651 237*2^5315983+1 1600273 L6064 2024 652 45*2^5308037+1 1597881 L4761 2019 653 5468*70^864479-1 1595053 L5410 2022 654 131*2^5298475+1 1595003 L5517 2024 655 237*2^5291999+1 1593053 L5532 2024 656 221*2^5284643+1 1590839 L5517 2024 657 92*10^1585996-1 1585998 L4789 2023 Near-repdigit 658b 9*10^1585829-1 1585830 A2 2025 Near-repdigit 659 1082083^262144-1082083^131072+1 1581846 L4506 2017 Generalized unique 660 247*2^5254234+1 1581685 L5923 2024 661 273*2^5242597+1 1578182 L5192 2024 662 7*2^5229669-1 1574289 L4965 2021 663 180062*5^2249192-1 1572123 L4435 2016 664 124125*6^2018254+1 1570512 L4001 2019 665 27*2^5213635+1 1569462 L3760 2015 666 227*2^5213195+1 1569331 L5517 2024 667 9992*10^1567410-1 1567414 L4879 2020 Near-repdigit 668 27*252^652196+1 1566186 A21 2024 669 149*2^5196375+1 1564267 L5174 2024 670 277*2^5185268+1 1560924 L5888 2024 671 308084!+1 1557176 p425 2022 Factorial 672 843575^262144-843575^131072+1 1553498 L4506 2017 Generalized unique 673 25*2^5152151-1 1550954 L1884 2020 674 125*2^5149981+1 1550301 L6042 2024 675 147*2^5146964+1 1549393 L5559 2024 676 53546*5^2216664-1 1549387 L4398 2016 677 773620^262144+1 1543643 L3118 2012 Generalized Fermat 678 39*2^5119458+1 1541113 L1204 2019 679 607*26^1089034+1 1540957 L5410 2021 680 81*2^5115131+1 1539810 L4965 2022 Divides GF(5115128,12) [GG] 681 223*2^5105835-1 1537012 L2484 2019 682 99*10^1536527-1 1536529 L4879 2019 Near-repdigit 683 81*2^5100331+1 1535355 L4965 2022 Divides GF(5100327,6) [GG] 684 992*10^1533933-1 1533936 L4879 2019 Near-repdigit 685 51*2^5085142-1 1530782 L760 2014 686 3*2^5082306+1 1529928 L780 2009 Divides GF(5082303,3), GF(5082305,5) 687 676754^262144+1 1528413 L2975 2012 Generalized Fermat 688 296024*5^2185270-1 1527444 L671 2016 689 181*2^5057960+1 1522600 L5178 2024 690 5359*2^5054502+1 1521561 SB6 2003 691 175*2^5049344+1 1520007 L5178 2024 692 183*2^5042357+1 1517903 L5178 2024 693 1405486*12^1405486-1 1516781 L5765 2023 Generalized Woodall 694 53*2^5019181+1 1510926 L4965 2023 695 131*2^5013361+1 1509175 L5178 2024 696 13*2^4998362+1 1504659 L3917 2014 697 525094^262144+1 1499526 p338 2012 Generalized Fermat 698 92158*5^2145024+1 1499313 L4348 2016 699 499238*10^1497714-1 1497720 L4976 2019 Generalized Woodall 700 357*2^4972628+1 1496913 L5783 2024 701 77072*5^2139921+1 1495746 L4340 2016 702 175*2^4965756+1 1494844 L5888 2024 703 221*2^4960867+1 1493373 L5178 2024 704 375*2^4950021+1 1490108 L5178 2024 705 2*3^3123036+1 1490068 L5043 2020 706 75*2^4940218+1 1487156 L5517 2024 Divides GF(4940214,12) 707 95*2^4929067+1 1483799 L5172 2024 708 161*2^4928111+1 1483512 L5961 2024 709 51*2^4923905+1 1482245 L4965 2023 710 289*2^4911870+1 1478623 L5178 2024 Generalized Fermat 711 519397*2^4908893-1 1477730 L5410 2022 712 306398*5^2112410-1 1476517 L4274 2016 713 183*2^4894125+1 1473281 L5961 2024 Divides GF(4894123,3), GF(4894124,5) 714 39*684^519468-1 1472723 L5410 2023 715 195*2^4887935+1 1471418 L5261 2024 716 281*2^4886723+1 1471053 L5971 2024 717 281*2^4879761+1 1468957 L5961 2024 718 96*789^506568+1 1467569 A14 2024 719 243*2^4872108+1 1466654 L5178 2024 720 213*2^4865126+1 1464552 L5803 2024 721 265711*2^4858008+1 1462412 g414 2008 722 154222*5^2091432+1 1461854 L3523 2015 723 1271*2^4850526-1 1460157 L1828 2012 724 333*2^4846958-1 1459083 L5546 2022 725 357*2^4843507+1 1458044 L5178 2024 726 156*532^534754-1 1457695 L5410 2023 727 362978^262144-362978^131072+1 1457490 p379 2015 Generalized unique 728 361658^262144+1 1457075 p332 2011 Generalized Fermat 729 231*2^4836124+1 1455821 L5517 2024 730 7*10^1454508+1 1454509 p439 2024 731 303*2^4829593+1 1453855 L5706 2024 732 100186*5^2079747-1 1453686 L4197 2015 733 375*2^4824253+1 1452248 L5625 2024 734 288465!+1 1449771 p3 2022 Factorial 735 15*2^4800315+1 1445040 L1754 2019 Divides GF(4800313,3), GF(4800310,5) 736 235*2^4799708+1 1444859 L5971 2024 737 347*2^4798851+1 1444601 L5554 2024 738 239*2^4795541+1 1443605 L5995 2024 739 2^4792057-2^2396029+1 1442553 L3839 2014 Gaussian Mersenne norm 40, generalized unique 740 92*10^1439761-1 1439763 L4789 2020 Near-repdigit 741 269*2^4777025+1 1438031 L5683 2024 742 653*10^1435026-1 1435029 p355 2014 743 197*2^4765318-1 1434506 L5175 2021 744 1401*2^4759435-1 1432736 L4965 2023 745 2169*2^4754343-1 1431204 L4965 2023 746 188*468^535963+1 1431156 L4832 2019 747 1809*2^4752792-1 1430737 L4965 2022 748 61*2^4749928+1 1429873 L5285 2024 749 2427*2^4749044-1 1429609 L4965 2022 750 303*2^4748019-1 1429299 L5545 2023 751 2259*2^4746735-1 1428913 L4965 2022 752 309*2^4745713-1 1428605 L5545 2023 753 183*2^4740056+1 1426902 L5945 2024 754 2223*2^4729304-1 1423666 L4965 2022 755 1851*2^4727663-1 1423172 L4965 2022 756 1725*2^4727375-1 1423085 L4965 2022 757 1611*2^4724014-1 1422074 L4965 2022 758 1383*2^4719270-1 1420645 L4965 2022 759 1749*2^4717431-1 1420092 L4965 2022 760 321*2^4715725+1 1419578 L5178 2024 761 371*2^4715211+1 1419423 L5527 2024 762 2325*2^4713991-1 1419057 L4965 2022 763 3267113#-1 1418398 p301 2021 Primorial 764 291*2^4708553+1 1417419 L5308 2024 765 100*406^543228+1 1417027 L5410 2020 Generalized Fermat 766 2337*2^4705660-1 1416549 L4965 2022 767 1229*2^4703492-1 1415896 L1828 2018 768 303*2^4694937+1 1413320 L5977 2024 769 3719*30^956044-1 1412197 L5410 2023 770 6*894^478421-1 1411983 L4294 2023 771 263*2^4688269+1 1411313 L5904 2024 772 155*2^4687127+1 1410969 L5969 2024 773 144052*5^2018290+1 1410730 L4146 2015 774 195*2^4685711-1 1410542 L5175 2021 775 9*2^4683555-1 1409892 L1828 2012 776 31*2^4673544+1 1406879 L4990 2019 777 34*993^469245+1 1406305 L4806 2018 778 197*2^4666979+1 1404903 L5233 2024 779 79*2^4658115-1 1402235 L1884 2018 780 39*2^4657951+1 1402185 L1823 2019 781 4*650^498101-1 1401116 L4294 2021 782 11*2^4643238-1 1397755 L2484 2014 783 884411*38^884411+1 1397184 L5765 2023 Generalized Cullen 784 68*995^465908-1 1396712 L4001 2017 785 7*6^1793775+1 1395830 L4965 2019 786 269*2^4636583+1 1395753 L5509 2024 787 117*2^4632990+1 1394672 L5960 2024 788 213*2^4625484+1 1392412 L5956 2024 789e 2*914^469757+1 1390926 A11 2025 790 1425*2^4618342+1 1390263 L1134 2024 791 4*7^1640811+1 1386647 A2 2024 792 192098^262144-192098^131072+1 1385044 p379 2015 Generalized unique 793 339*2^4592225+1 1382401 L5302 2024 794 6*10^1380098+1 1380099 L5009 2023 795 27*2^4583717-1 1379838 L2992 2014 796 221*2^4578577+1 1378292 L5710 2024 797 359*2^4578161+1 1378167 L5894 2024 798 3^2888387-3^1444194+1 1378111 L5123 2023 Generalized unique 799 1198433*14^1198433+1 1373564 L5765 2023 Generalized Cullen 800 67*2^4561350+1 1373105 L5614 2024 801 121*2^4553899-1 1370863 L3023 2012 802 231*2^4552115+1 1370326 L5302 2024 803 223*2^4549924+1 1369666 L5904 2024 804 9473*2^4543680-1 1367788 L5037 2022 805 27*2^4542344-1 1367384 L1204 2014 806 29*2^4532463+1 1364409 L4988 2019 807 4*797^468702+1 1359920 L4548 2017 Generalized Fermat 808 145310^262144+1 1353265 p314 2011 Generalized Fermat 809 2*3^2834778-1 1352534 A2 2024 810 479*2^4492481+1 1352375 L5882 2024 811 373*2^4487274+1 1350807 L5320 2024 812 527*2^4486247+1 1350498 L5178 2024 813 25*2^4481024+1 1348925 L4364 2019 Generalized Fermat 814 83*2^4479409+1 1348439 L5178 2024 815 417*2^4473466+1 1346651 L5178 2024 816 81*536^493229+1 1346106 p431 2023 817 303*2^4471002-1 1345909 L5545 2022 818 1425*2^4469783+1 1345542 L1134 2023 819 2*1283^432757+1 1345108 L4879 2019 Divides Phi(1283^432757,2) 820 1-V(-2,-2,3074821)-2^3074821 1342125 p437 2024 821 447*2^4457132+1 1341734 L5875 2024 822 36772*6^1723287-1 1340983 L1301 2014 823 583854*14^1167708-1 1338349 L4976 2019 Generalized Woodall 824 20*634^476756-1 1335915 L4975 2023 825 297*2^4432947+1 1334453 L5178 2023 826 85*2^4432870+1 1334429 L4965 2023 827 151*2^4424321-1 1331856 L1884 2016 828 231*2^4422227+1 1331226 L5192 2023 829 131*2^4421071+1 1330878 L5178 2023 830 225*2^4419349+1 1330359 L5866 2023 831 1485*2^4416137+1 1329393 L1134 2024 832 469*2^4414802+1 1328991 L5830 2023 833 549*2^4411029+1 1327855 L5862 2023 834 445*2^4410256+1 1327622 L5537 2023 835 259*2^4395550+1 1323195 L5858 2023 836 219*2^4394846+1 1322983 L5517 2023 837 165*2^4379097+1 1318242 L5852 2023 838 183*2^4379002+1 1318214 L5476 2023 839 1455*2^4376470+1 1317452 L1134 2023 840 165*2^4375458+1 1317147 L5851 2023 841 195*2^4373994-1 1316706 L5175 2020 842 381*2^4373129+1 1316446 L5421 2023 843f 2008551*2^4371904+1 1316081 g431 2025 844 (10^657559-1)^2-2 1315118 p405 2022 Near-repdigit 845 49*2^4365175-1 1314051 L1959 2017 846 49*2^4360869-1 1312755 L1959 2017 847 253*2^4358512+1 1312046 L875 2023 848 219*2^4354805+1 1310930 L5848 2023 849 249*2^4351621+1 1309971 L5260 2023 850 159*2^4348734+1 1309102 L5421 2023 851 115*2^4347620+1 1308767 L5178 2023 852 533*2^4338237+1 1305943 L5260 2023 853 141*2^4337804+1 1305812 L5178 2023 854 363*2^4334518+1 1304823 L5261 2023 855 299*2^4333939+1 1304649 L5517 2023 856 13*2^4333087-1 1304391 L1862 2018 857 353159*2^4331116-1 1303802 L2408 2011 858 195*2^4330189+1 1303520 L5178 2023 859 145*2^4327756+1 1302787 L5517 2023 860c 31*980^433853-1 1297754 A11 2025 861 9959*2^4308760-1 1297071 L5037 2022 862 195*2^4304861+1 1295895 L5178 2023 863 23*2^4300741+1 1294654 L4147 2019 864 682156*79^682156+1 1294484 L4472 2016 Generalized Cullen 865 141941*2^4299438-1 1294265 L689 2011 866 87*2^4297718+1 1293744 L4965 2023 867 22*905^437285-1 1292900 L5342 2024 868 435*2^4292968+1 1292315 L5783 2023 869 993149*20^993149+1 1292123 L5765 2023 Generalized Cullen 870 415*2^4280864+1 1288672 L5818 2023 871 79*2^4279006+1 1288112 L4965 2023 872 205*2^4270310+1 1285494 L5517 2023 873 483*2^4270112+1 1285435 L5178 2023 874 123*2^4266441+1 1284329 L5178 2023 875 612749*2^4254500-1 1280738 L5410 2022 876c 3883403*2^4254462-1 1280728 L5327 2025 877 223*2^4252660+1 1280181 L5178 2023 878 1644731*6^1644731+1 1279856 L5765 2023 Generalized Cullen 879 38*380^495986-1 1279539 L5410 2023 880 2*1151^417747+1 1278756 L4879 2019 Divides Phi(1151^417747,2) 881 15*2^4246384+1 1278291 L3432 2013 Divides GF(4246381,6) 882 3*2^4235414-1 1274988 L606 2008 883 2*1259^411259+1 1274914 L4879 2020 Divides Phi(1259^411259,2) 884 93*2^4232892+1 1274230 L4965 2023 885 131*2^4227493+1 1272605 L5226 2023 886 45*436^481613+1 1271213 L5410 2020 887 109208*5^1816285+1 1269534 L3523 2014 888 435*2^4216447+1 1269280 L5178 2023 889 1091*2^4215518-1 1269001 L1828 2018 890 191*2^4203426-1 1265360 L2484 2012 891 269*2^4198809+1 1263970 L5226 2023 892 545*2^4198333+1 1263827 L5804 2023 893 53*2^4197093+1 1263453 L5563 2023 894 1259*2^4196028-1 1263134 L1828 2016 895 329*2^4193199+1 1262282 L5226 2023 896 141*2^4192911+1 1262195 L5226 2023 Divides Fermat F(4192909) 897 325918*5^1803339-1 1260486 L3567 2014 898e 1160*745^438053-1 1258160 L4189 2025 899f 16723*820^431579+1 1257546 A11 2025 900 345*2^4173969+1 1256493 L5226 2023 901 161*2^4164267+1 1253572 L5178 2023 902 135*2^4162529+1 1253049 L5178 2023 Divides GF(4162525,10) 903 177*2^4162494+1 1253038 L5796 2023 904 237*2^4153348+1 1250285 L5178 2023 905 69*2^4151165+1 1249628 L4965 2023 906 133778*5^1785689+1 1248149 L3903 2014 907 201*2^4146003+1 1248074 L5161 2023 908 329*2^4136019+1 1245069 L5178 2023 909 81*2^4131975+1 1243851 L4965 2022 910 459*2^4129577+1 1243130 L5226 2023 911 551*2^4126303+1 1242144 L5226 2023 912 363*2^4119017+1 1239951 L5226 2023 913 105*2^4113039+1 1238151 L5178 2023 914 204*532^454080-1 1237785 L5410 2023 915 41*684^436354+1 1237090 L4444 2023 916 17*2^4107544-1 1236496 L4113 2015 917 261*2^4106385+1 1236148 L5178 2023 918 24032*5^1768249+1 1235958 L3925 2014 919 172*159^561319-1 1235689 L4001 2017 920 10^1234567-20342924302*10^617278-1 1234567 p423 2021 Palindrome 921 10^1234567-1927633367291*10^617277-1 1234567 p423 2023 Palindrome 922 10^1234567-3626840486263*10^617277-1 1234567 p423 2021 Palindrome 923 10^1234567-4708229228074*10^617277-1 1234567 p423 2021 Palindrome 924 67*2^4100746+1 1234450 L5178 2023 925 191*2^4099097+1 1233954 L5563 2023 926 325*2^4097700+1 1233534 L5226 2023 927 519*2^4095491+1 1232869 L5226 2023 928 111*2^4091044+1 1231530 L5783 2023 Divides GF(4091041,3) 929 1182072*11^1182072-1 1231008 L5765 2023 Generalized Woodall 930 64*425^467857-1 1229712 p268 2021 931 8*558^447047+1 1227876 A28 2024 932 163*778^424575+1 1227440 A11 2024 933 381*2^4069617+1 1225080 L5226 2023 934b 9*10^1224889-1 1224890 A2 2025 Near-repdigit 935 97*2^4066717-1 1224206 L2484 2019 936 95*2^4063895+1 1223357 L5226 2023 937 79*2^4062818+1 1223032 L5178 2023 938 1031*2^4054974-1 1220672 L1828 2017 939 309*2^4054114+1 1220413 L5178 2023 940 2022202116^131072+1 1219734 L4704 2022 Generalized Fermat 941 37*2^4046360+1 1218078 L2086 2019 942 141*2^4043116+1 1217102 L5517 2023 943d 172*360^474814+1 1213771 A28 2025 944 39653*430^460397-1 1212446 L4187 2016 945 1777034894^131072+1 1212377 L4704 2022 Generalized Fermat 946 141*2^4024411+1 1211471 L5226 2023 947 515*2^4021165+1 1210494 L5174 2023 948 73*2^4016912+1 1209213 L5226 2023 949 40734^262144+1 1208473 p309 2011 Generalized Fermat 950 235*2^4013398+1 1208156 L5178 2023 951 9*2^4005979-1 1205921 L1828 2012 952 417*2^4003224+1 1205094 L5764 2023 953 12*68^656921+1 1203815 L4001 2016 954 67*688^423893+1 1202836 L4001 2017 955 221*2^3992723+1 1201932 L5178 2023 956 213*2^3990702+1 1201324 L5216 2023 957 1993191*2^3986382-1 1200027 L3532 2015 Generalized Woodall 958b 1429787556^131072+1 1200000 x54 2025 Generalized Fermat 959 163*2^3984604+1 1199488 L5756 2023 960 725*2^3983355+1 1199113 L5706 2023 961 (146^276995+1)^2-2 1199030 p405 2022 962 455*2^3981067+1 1198424 L5724 2023 963 138172*5^1714207-1 1198185 L3904 2014 964 50*383^463313+1 1196832 L2012 2021 965 339*2^3974295+1 1196385 L5178 2023 966 699*2^3974045+1 1196310 L5750 2023 967 1202113^196608-1202113^98304+1 1195366 L4506 2016 Generalized unique 968 29*2^3964697+1 1193495 L1204 2019 969 599*2^3963655+1 1193182 L5226 2023 970 683*2^3962937+1 1192966 L5226 2023 971 39*2^3961129+1 1192421 L1486 2019 972 165*2^3960664+1 1192281 L5178 2023 973 79*2^3957238+1 1191250 L5745 2023 974 687*2^3955918+1 1190853 L5554 2023 Divides GF(3955915,6) 975 163*2^3954818+1 1190522 L5178 2023 976 431*2^3953647+1 1190169 L5554 2023 977c 466542*355^466542-1 1189795 L6249 2025 Generalized Woodall 978 1110815^196608-1110815^98304+1 1188622 L4506 2016 Generalized unique 979 341*2^3938565+1 1185629 L5554 2023 980 503*2^3936845+1 1185112 L5706 2023 981 717*2^3934760+1 1184484 L5285 2023 982 493*2^3929192+1 1182808 L5161 2023 983 273*2^3929128+1 1182788 L5554 2023 984 609*2^3928682+1 1182654 L5178 2023 985 609*2^3928441+1 1182582 L5527 2023 986 281*2^3926467+1 1181987 L5174 2023 987 153*2^3922478+1 1180786 L5554 2023 988 69*2^3920863+1 1180300 L5554 2023 989 273*2^3919321+1 1179836 L5706 2023 990 531*2^3918985+1 1179735 L5706 2023 991 1000032472^131072+1 1179650 L4704 2022 Generalized Fermat 992 555*2^3916875+1 1179100 L5302 2023 993 571*2^3910616+1 1177216 L5178 2023 994 421*2^3905144+1 1175569 L5600 2023 995 P1174253 1174253 p414 2022 996 567*2^3897588+1 1173294 L5600 2023 997 417*2^3895404+1 1172637 L5600 2023 998 539*2^3894953+1 1172501 L5285 2023 999 645*2^3893849+1 1172169 L5600 2023 1000 818764*3^2456293-1 1171956 L4965 2023 Generalized Woodall 1001 22478*5^1675150-1 1170884 L3903 2014 1002 1199*2^3889576-1 1170883 L1828 2018 1003 298989*2^3886857+1 1170067 L2777 2014 Generalized Cullen 1004 93*10^1170023-1 1170025 L4789 2022 Near-repdigit 1005 711*2^3886480+1 1169950 L5320 2023 1006 375*2^3884634+1 1169394 L5600 2023 1007e 445583*2^3883406-1 1169028 L5327 2025 1008 94*872^397354+1 1168428 L5410 2019 1009 269*2^3877485+1 1167242 L5649 2023 1010 163*2^3874556+1 1166360 L5646 2023 Divides GF(3874552,5) 1011 1365*2^3872811+1 1165836 L1134 2023 1012 313*2^3869536+1 1164849 L5600 2023 1013 159*2^3860863+1 1162238 L5226 2023 1014 445*2^3860780+1 1162214 L5640 2023 1015 397*2^3859450+1 1161813 L5226 2023 1016 685*2^3856790+1 1161013 L5226 2023 1017 27*2^3855094-1 1160501 L3033 2012 1018 537*2^3853860+1 1160131 L5636 2022 1019 164*978^387920-1 1160015 L4700 2018 1020 175*2^3850344+1 1159072 L5226 2022 1021 685*2^3847268+1 1158146 L5226 2022 1022 655*2^3846352+1 1157871 L5282 2022 1023 583*2^3846196+1 1157824 L5226 2022 1024 615*2^3844151+1 1157208 L5226 2022 1025 14772*241^485468-1 1156398 L5410 2022 1026 525*2^3840963+1 1156248 L5613 2022 1027 313*2^3837304+1 1155147 L5298 2022 1028 49*2^3837090+1 1155081 L4979 2019 Generalized Fermat 1029 431*2^3835247+1 1154528 L5161 2022 1030 97*2^3833722+1 1154068 L5226 2022 1031 2*839^394257+1 1152714 L4879 2019 Divides Phi(839^394257,2) 1032 125*392^444161+1 1151839 L4832 2022 1033 255*2^3824348+1 1151246 L5226 2022 1034 30*514^424652-1 1151218 L4001 2017 1035 569*2^3823191+1 1150898 L5226 2022 1036 24518^262144+1 1150678 g413 2008 Generalized Fermat 1037 563*2^3819237+1 1149708 L5178 2022 1038 345*2^3817949+1 1149320 L5373 2022 1039 700219^196608-700219^98304+1 1149220 L4506 2016 Generalized unique 1040 241*2^3815727-1 1148651 L2484 2019 1041 351*2^3815467+1 1148573 L5226 2022 1042b 9*10^1148275-1 1148276 A2 2025 Near-repdigit 1043 109*980^383669-1 1147643 L4001 2018 1044 427*2^3811610+1 1147412 L5614 2022 1045 569*2^3810475+1 1147071 L5610 2022 1046 213*2^3807864+1 1146284 L5609 2022 1047 87*2^3806438+1 1145854 L5607 2022 1048 369*2^3805321+1 1145519 L5541 2022 1049 123547*2^3804809-1 1145367 L2371 2011 1050 2564*75^610753+1 1145203 L3610 2014 1051 539*2^3801705+1 1144430 L5161 2022 1052 159*2^3801463+1 1144357 L5197 2022 1053 235*2^3801284+1 1144303 L5608 2022 1054 660955^196608-660955^98304+1 1144293 L4506 2016 Generalized unique 1055 519*2^3800625+1 1144105 L5315 2022 1056 281*2^3798465+1 1143455 L5178 2022 1057 166*443^432000+1 1143249 L5410 2020 1058 85*2^3797698+1 1143223 L5161 2022 1059 326834*5^1634978-1 1142807 L3523 2014 1060 459*2^3795969+1 1142704 L5161 2022 1061 105*298^461505-1 1141866 L5841 2023 1062 447*2^3780151+1 1137942 L5596 2022 1063 345*2^3779921+1 1137873 L5557 2022 1064 477*2^3779871+1 1137858 L5197 2022 1065 251*2^3774587+1 1136267 L5592 2022 1066 439*2^3773958+1 1136078 L5557 2022 1067 43*182^502611-1 1135939 L4064 2020 1068 415267*2^3771929-1 1135470 L2373 2011 1069 11*2^3771821+1 1135433 p286 2013 1070 427*2^3768104+1 1134315 L5192 2022 1071 1455*2^3768024-1 1134292 L1134 2022 1072 711*2^3767492+1 1134131 L5161 2022 1073 265*2^3765189-1 1133438 L2484 2018 1074 297*2^3765140+1 1133423 L5197 2022 1075 381*2^3764189+1 1133137 L5589 2022 1076 115*2^3763650+1 1132974 L5554 2022 1077 411*2^3759067+1 1131595 L5589 2022 1078 405*2^3757192+1 1131031 L5590 2022 1079f 1981*2^3754984+1 1130367 A24 2025 1080 938237*2^3752950-1 1129757 L521 2007 Woodall 1081b 21*2^3745951-1 1127645 L4881 2025 1082 399866798^131072+1 1127471 L4964 2019 Generalized Fermat 1083 701*2^3744713+1 1127274 L5554 2022 1084 207394*5^1612573-1 1127146 L3869 2014 1085 684*10^1127118+1 1127121 L4036 2017 1086 535386^196608-535386^98304+1 1126302 L4506 2016 Generalized unique 1087 104944*5^1610735-1 1125861 L3849 2014 1088 23451*2^3739388+1 1125673 L591 2015 1089 78*622^402915-1 1125662 L5645 2023 1090 615*2^3738023+1 1125260 L5161 2022 1091 347*2^3737875+1 1125216 L5178 2022 1092 163*2^3735726+1 1124568 L5477 2022 Divides GF(3735725,6) 1093 375*2^3733510+1 1123902 L5584 2022 1094 25*2^3733144+1 1123790 L2125 2019 Generalized Fermat 1095 629*2^3731479+1 1123290 L5283 2022 1096 113*2^3728113+1 1122276 L5161 2022 1097 303*2^3725438+1 1121472 L5161 2022 1098 187*2^3723972+1 1121030 L5178 2022 1099 2*1103^368361+1 1120767 L4879 2019 Divides Phi(1103^368361,2) 1100 105*2^3720512+1 1119988 L5493 2022 1101 447*2^3719024+1 1119541 L5493 2022 1102 177*2^3717746+1 1119156 L5279 2022 1103 2*131^528469+1 1118913 L4879 2019 Divides Phi(131^528469,2) 1104 123*2^3716758+1 1118858 L5563 2022 1105 313*2^3716716+1 1118846 L5237 2022 1106a 338188646^131072+1 1117934 L4387 2025 Generalized Fermat 1107a 337982668^131072+1 1117900 L4387 2025 Generalized Fermat 1108a 337667556^131072+1 1117847 L6260 2025 Generalized Fermat 1109b 337377976^131072+1 1117798 L6259 2025 Generalized Fermat 1110b 337239448^131072+1 1117774 L4387 2025 Generalized Fermat 1111b 336909928^131072+1 1117719 L6256 2025 Generalized Fermat 1112 367*2^3712952+1 1117713 L5264 2022 1113b 336776604^131072+1 1117696 L6080 2025 Generalized Fermat 1114b 336659214^131072+1 1117676 L5467 2025 Generalized Fermat 1115b 336511772^131072+1 1117651 L4387 2025 Generalized Fermat 1116b 336225072^131072+1 1117603 L4387 2025 Generalized Fermat 1117b 336163680^131072+1 1117593 L4387 2025 Generalized Fermat 1118b 336061324^131072+1 1117575 L4387 2025 Generalized Fermat 1119b 335827642^131072+1 1117536 L4201 2025 Generalized Fermat 1120b 335774748^131072+1 1117527 L5697 2025 Generalized Fermat 1121b 335651494^131072+1 1117506 L4387 2025 Generalized Fermat 1122b 335493020^131072+1 1117479 L4387 2025 Generalized Fermat 1123b 335369868^131072+1 1117458 L4387 2025 Generalized Fermat 1124b 334704486^131072+1 1117345 L4387 2025 Generalized Fermat 1125b 333992848^131072+1 1117224 L5639 2025 Generalized Fermat 1126b 333867048^131072+1 1117202 L4387 2025 Generalized Fermat 1127b 333848570^131072+1 1117199 L4387 2025 Generalized Fermat 1128b 333782588^131072+1 1117188 L4387 2025 Generalized Fermat 1129b 333605722^131072+1 1117158 L6237 2025 Generalized Fermat 1130b 333589186^131072+1 1117155 L4387 2025 Generalized Fermat 1131b 333291568^131072+1 1117104 L5697 2025 Generalized Fermat 1132b 332896652^131072+1 1117037 L4387 2025 Generalized Fermat 1133b 332642368^131072+1 1116993 L5639 2025 Generalized Fermat 1134b 332518718^131072+1 1116972 L5639 2025 Generalized Fermat 1135b 332328704^131072+1 1116939 L5767 2025 Generalized Fermat 1136b 332234952^131072+1 1116923 L4387 2025 Generalized Fermat 1137b 331873856^131072+1 1116861 L5639 2025 Generalized Fermat 1138b 331689568^131072+1 1116830 L4201 2025 Generalized Fermat 1139b 331213936^131072+1 1116748 L5416 2025 Generalized Fermat 1140b 331012838^131072+1 1116714 L4899 2025 Generalized Fermat 1141b 330733978^131072+1 1116666 L6036 2025 Generalized Fermat 1142b 330629260^131072+1 1116648 L5606 2025 Generalized Fermat 1143 53*2^3709297+1 1116612 L5197 2022 1144b 329898286^131072+1 1116522 L6252 2025 Generalized Fermat 1145b 329482500^131072+1 1116450 L4387 2025 Generalized Fermat 1146c 329433542^131072+1 1116441 L4201 2025 Generalized Fermat 1147c 329320574^131072+1 1116422 L5696 2025 Generalized Fermat 1148c 329310030^131072+1 1116420 L4201 2025 Generalized Fermat 1149c 329136932^131072+1 1116390 L4892 2025 Generalized Fermat 1150c 328941060^131072+1 1116356 L5974 2025 Generalized Fermat 1151c 328110906^131072+1 1116212 L4387 2025 Generalized Fermat 1152c 328048726^131072+1 1116202 L6250 2025 Generalized Fermat 1153c 328036906^131072+1 1116200 L4201 2025 Generalized Fermat 1154c 327703514^131072+1 1116142 L5974 2025 Generalized Fermat 1155c 327549800^131072+1 1116115 L6129 2025 Generalized Fermat 1156c 327476480^131072+1 1116102 L4201 2025 Generalized Fermat 1157c 327239720^131072+1 1116061 L4984 2025 Generalized Fermat 1158c 326302488^131072+1 1115898 L5722 2025 Generalized Fermat 1159c 326104126^131072+1 1115863 L4684 2025 Generalized Fermat 1160c 325957720^131072+1 1115838 L5186 2025 Generalized Fermat 1161c 325927678^131072+1 1115832 L6245 2025 Generalized Fermat 1162c 325913944^131072+1 1115830 L4387 2025 Generalized Fermat 1163c 325084378^131072+1 1115685 L4201 2025 Generalized Fermat 1164c 325043708^131072+1 1115678 L4201 2025 Generalized Fermat 1165c 324844530^131072+1 1115643 L4939 2025 Generalized Fermat 1166c 324830528^131072+1 1115640 L4599 2025 Generalized Fermat 1167c 324563740^131072+1 1115594 L5639 2025 Generalized Fermat 1168c 324342882^131072+1 1115555 L4201 2025 Generalized Fermat 1169c 323718292^131072+1 1115445 L4201 2025 Generalized Fermat 1170c 323626506^131072+1 1115429 L4201 2025 Generalized Fermat 1171d 323033558^131072+1 1115325 L6073 2025 Generalized Fermat 1172d 322955442^131072+1 1115311 L5767 2025 Generalized Fermat 1173d 322525546^131072+1 1115235 L4201 2025 Generalized Fermat 1174d 322451080^131072+1 1115222 L5452 2025 Generalized Fermat 1175d 322434876^131072+1 1115219 L4201 2025 Generalized Fermat 1176d 322396080^131072+1 1115212 L6237 2025 Generalized Fermat 1177d 322011364^131072+1 1115144 L4201 2025 Generalized Fermat 1178d 321847328^131072+1 1115115 L4387 2025 Generalized Fermat 1179d 321745654^131072+1 1115097 L4201 2025 Generalized Fermat 1180d 321738090^131072+1 1115096 L4760 2025 Generalized Fermat 1181d 321725062^131072+1 1115094 L6090 2025 Generalized Fermat 1182d 321586916^131072+1 1115069 L4201 2025 Generalized Fermat 1183 2^3704053+2^1852027+1 1115032 L3839 2014 Gaussian Mersenne norm 39, generalized unique 1184d 321054002^131072+1 1114975 L6092 2025 Generalized Fermat 1185d 320959460^131072+1 1114958 L4774 2025 Generalized Fermat 1186d 320925816^131072+1 1114952 L6229 2025 Generalized Fermat 1187d 320693846^131072+1 1114911 L6230 2025 Generalized Fermat 1188d 320244692^131072+1 1114831 L6227 2025 Generalized Fermat 1189d 319727682^131072+1 1114739 L4477 2025 Generalized Fermat 1190d 319569620^131072+1 1114711 L5156 2025 Generalized Fermat 1191d 319473204^131072+1 1114694 L6085 2025 Generalized Fermat 1192d 319461008^131072+1 1114692 L4760 2025 Generalized Fermat 1193d 317844906^131072+1 1114403 L5069 2025 Generalized Fermat 1194d 317488260^131072+1 1114339 L5069 2025 Generalized Fermat 1195 395*2^3701693+1 1114324 L5536 2022 1196e 317365236^131072+1 1114317 L6036 2025 Generalized Fermat 1197d 317303160^131072+1 1114306 L5707 2025 Generalized Fermat 1198e 317185514^131072+1 1114285 L4201 2025 Generalized Fermat 1199e 317005818^131072+1 1114252 L5069 2025 Generalized Fermat 1200e 316699096^131072+1 1114197 L5234 2025 Generalized Fermat 1201e 316650634^131072+1 1114189 L5698 2025 Generalized Fermat 1202e 316586358^131072+1 1114177 L4747 2025 Generalized Fermat 1203e 316525620^131072+1 1114166 L4835 2025 Generalized Fermat 1204e 316291718^131072+1 1114124 L4835 2025 Generalized Fermat 1205e 315974676^131072+1 1114067 L5069 2025 Generalized Fermat 1206e 315889316^131072+1 1114052 L5234 2025 Generalized Fermat 1207e 315747878^131072+1 1114026 L5989 2025 Generalized Fermat 1208d 315608702^131072+1 1114001 L5577 2025 Generalized Fermat 1209e 315329034^131072+1 1113950 L5378 2025 Generalized Fermat 1210e 315314084^131072+1 1113948 L5718 2025 Generalized Fermat 1211e 315134738^131072+1 1113915 L5697 2025 Generalized Fermat 1212e 314548296^131072+1 1113809 L4774 2025 Generalized Fermat 1213e 314518672^131072+1 1113804 L5720 2025 Generalized Fermat 1214 589*2^3699954+1 1113800 L5576 2022 1215e 314283852^131072+1 1113761 L6220 2025 Generalized Fermat 1216 314187728^131072+1 1113744 L4704 2019 Generalized Fermat 1217e 313957156^131072+1 1113702 L4201 2025 Generalized Fermat 1218d 313807832^131072+1 1113675 L4309 2025 Generalized Fermat 1219e 313698494^131072+1 1113655 L4791 2025 Generalized Fermat 1220e 313043470^131072+1 1113536 L4870 2025 Generalized Fermat 1221e 312959344^131072+1 1113521 L5989 2025 Generalized Fermat 1222e 312907040^131072+1 1113512 L4835 2025 Generalized Fermat 1223e 312372774^131072+1 1113414 L5732 2025 Generalized Fermat 1224e 312306760^131072+1 1113402 L5782 2025 Generalized Fermat 1225 119*2^3698412-1 1113336 L2484 2018 1226e 311769070^131072+1 1113304 L5378 2025 Generalized Fermat 1227e 311345600^131072+1 1113227 L4201 2025 Generalized Fermat 1228e 311340274^131072+1 1113226 L5234 2025 Generalized Fermat 1229e 311041040^131072+1 1113171 L5974 2025 Generalized Fermat 1230e 310877094^131072+1 1113141 L5378 2025 Generalized Fermat 1231e 310324620^131072+1 1113040 L5069 2025 Generalized Fermat 1232e 310092052^131072+1 1112997 L4201 2025 Generalized Fermat 1233e 310040910^131072+1 1112988 L5989 2025 Generalized Fermat 1234e 310039364^131072+1 1112987 L5452 2025 Generalized Fermat 1235e 309765652^131072+1 1112937 L5069 2025 Generalized Fermat 1236e 309739652^131072+1 1112932 L4201 2025 Generalized Fermat 1237e 309664690^131072+1 1112919 L4904 2025 Generalized Fermat 1238e 309512820^131072+1 1112891 L4672 2025 Generalized Fermat 1239e 309489574^131072+1 1112886 L4285 2025 Generalized Fermat 1240e 309442124^131072+1 1112878 L4763 2025 Generalized Fermat 1241e 309322056^131072+1 1112856 L5763 2025 Generalized Fermat 1242e 309290162^131072+1 1112850 L4984 2025 Generalized Fermat 1243e 309274552^131072+1 1112847 L4870 2025 Generalized Fermat 1244e 309198216^131072+1 1112833 L6220 2025 Generalized Fermat 1245e 309023380^131072+1 1112801 L5586 2025 Generalized Fermat 1246e 308604278^131072+1 1112723 L5814 2025 Generalized Fermat 1247e 308406372^131072+1 1112687 L5069 2025 Generalized Fermat 1248e 308191838^131072+1 1112647 L4411 2025 Generalized Fermat 1249e 308154186^131072+1 1112640 L4672 2025 Generalized Fermat 1250e 308065536^131072+1 1112624 L5617 2025 Generalized Fermat 1251e 307819786^131072+1 1112579 L4733 2025 Generalized Fermat 1252e 307711366^131072+1 1112558 L5375 2025 Generalized Fermat 1253e 307525070^131072+1 1112524 L5234 2025 Generalized Fermat 1254e 307305996^131072+1 1112483 L5871 2025 Generalized Fermat 1255e 307211976^131072+1 1112466 L5234 2025 Generalized Fermat 1256e 306999614^131072+1 1112427 L6215 2025 Generalized Fermat 1257e 306293130^131072+1 1112295 L4252 2025 Generalized Fermat 1258e 306021044^131072+1 1112245 L5029 2025 Generalized Fermat 1259e 305985812^131072+1 1112238 L4672 2025 Generalized Fermat 1260e 305909498^131072+1 1112224 L5869 2025 Generalized Fermat 1261e 305710338^131072+1 1112187 L5155 2025 Generalized Fermat 1262e 305485026^131072+1 1112145 L6217 2025 Generalized Fermat 1263e 305470708^131072+1 1112142 L4245 2025 Generalized Fermat 1264e 305377046^131072+1 1112125 L4775 2025 Generalized Fermat 1265e 305014830^131072+1 1112057 L5041 2025 Generalized Fermat 1266e 304591806^131072+1 1111978 L5069 2025 Generalized Fermat 1267 391*2^3693728+1 1111926 L5493 2022 1268e 303660042^131072+1 1111804 L5548 2025 Generalized Fermat 1269e 303569754^131072+1 1111787 L5041 2025 Generalized Fermat 1270e 303297636^131072+1 1111736 L5069 2025 Generalized Fermat 1271e 303057534^131072+1 1111691 L5797 2025 Generalized Fermat 1272e 302824086^131072+1 1111647 L4252 2025 Generalized Fermat 1273e 302491876^131072+1 1111585 L5273 2025 Generalized Fermat 1274e 302240442^131072+1 1111537 L5375 2025 Generalized Fermat 1275e 302186970^131072+1 1111527 L5030 2025 Generalized Fermat 1276e 302150100^131072+1 1111520 L5586 2025 Generalized Fermat 1277e 301715144^131072+1 1111438 L5234 2025 Generalized Fermat 1278e 301702734^131072+1 1111436 L6205 2025 Generalized Fermat 1279e 301006780^131072+1 1111304 L5375 2025 Generalized Fermat 1280e 300951448^131072+1 1111294 L6092 2025 Generalized Fermat 1281e 300789064^131072+1 1111263 L5041 2025 Generalized Fermat 1282e 300359914^131072+1 1111182 L6207 2025 Generalized Fermat 1283 1089049*2^3691010+1 1111111 A51 2024 1284e 299617962^131072+1 1111041 L6170 2025 Generalized Fermat 1285e 299465954^131072+1 1111012 L5378 2025 Generalized Fermat 1286e 299453316^131072+1 1111010 L6207 2025 Generalized Fermat 1287e 299319324^131072+1 1110984 L5378 2025 Generalized Fermat 1288e 298464340^131072+1 1110822 L5019 2025 Generalized Fermat 1289e 298459970^131072+1 1110821 L4477 2025 Generalized Fermat 1290e 297844594^131072+1 1110703 L5029 2025 Generalized Fermat 1291e 297797756^131072+1 1110694 L6096 2025 Generalized Fermat 1292e 297561734^131072+1 1110649 L5070 2025 Generalized Fermat 1293e 297347764^131072+1 1110608 L4201 2025 Generalized Fermat 1294e 297200042^131072+1 1110580 L5143 2025 Generalized Fermat 1295e 296855808^131072+1 1110514 L6205 2025 Generalized Fermat 1296e 296366230^131072+1 1110420 L6019 2025 Generalized Fermat 1297e 296322752^131072+1 1110412 L5462 2025 Generalized Fermat 1298e 296139756^131072+1 1110377 L5696 2025 Generalized Fermat 1299e 296013472^131072+1 1110352 L5156 2025 Generalized Fermat 1300e 295817758^131072+1 1110315 L5974 2025 Generalized Fermat 1301 485*2^3688111+1 1110235 L5237 2022 1302e 295265516^131072+1 1110208 L5391 2025 Generalized Fermat 1303e 295158064^131072+1 1110188 L4201 2025 Generalized Fermat 1304e 295116084^131072+1 1110179 L6202 2025 Generalized Fermat 1305e 295038452^131072+1 1110164 L6201 2025 Generalized Fermat 1306e 294901286^131072+1 1110138 L5880 2025 Generalized Fermat 1307e 294581562^131072+1 1110076 L4933 2025 Generalized Fermat 1308e 294287308^131072+1 1110019 L5029 2025 Generalized Fermat 1309e 294282868^131072+1 1110018 L5069 2025 Generalized Fermat 1310e 293950920^131072+1 1109954 L5019 2025 Generalized Fermat 1311e 293846126^131072+1 1109934 L4387 2025 Generalized Fermat 1312e 293634610^131072+1 1109893 L4659 2025 Generalized Fermat 1313e 293593596^131072+1 1109885 L5457 2025 Generalized Fermat 1314e 293229954^131072+1 1109814 L5069 2025 Generalized Fermat 1315 341*2^3686613+1 1109784 L5573 2022 1316 87*2^3686558+1 1109767 L5573 2022 1317e 292906440^131072+1 1109752 L5069 2025 Generalized Fermat 1318e 292462072^131072+1 1109665 L5586 2025 Generalized Fermat 1319e 291939158^131072+1 1109563 L5586 2025 Generalized Fermat 1320e 291644784^131072+1 1109506 L4201 2025 Generalized Fermat 1321e 291616626^131072+1 1109500 L5676 2025 Generalized Fermat 1322e 291515852^131072+1 1109481 L5697 2025 Generalized Fermat 1323e 291463322^131072+1 1109470 L5025 2025 Generalized Fermat 1324e 291165334^131072+1 1109412 L5637 2025 Generalized Fermat 1325e 290922092^131072+1 1109365 L5069 2025 Generalized Fermat 1326e 290470932^131072+1 1109276 L5069 2025 Generalized Fermat 1327e 290470146^131072+1 1109276 L5069 2025 Generalized Fermat 1328e 290289574^131072+1 1109241 L5586 2025 Generalized Fermat 1329e 290289300^131072+1 1109241 L5491 2025 Generalized Fermat 1330e 290203860^131072+1 1109224 L4835 2025 Generalized Fermat 1331e 290075834^131072+1 1109199 L5234 2025 Generalized Fermat 1332e 289805958^131072+1 1109146 L5234 2025 Generalized Fermat 1333e 289390778^131072+1 1109064 L5639 2025 Generalized Fermat 1334e 289176522^131072+1 1109022 L5041 2025 Generalized Fermat 1335e 288601570^131072+1 1108909 L6189 2025 Generalized Fermat 1336e 288168976^131072+1 1108823 L6187 2025 Generalized Fermat 1337e 287625360^131072+1 1108716 L4747 2025 Generalized Fermat 1338 675*2^3682616+1 1108581 L5231 2022 1339e 286460772^131072+1 1108485 L5069 2025 Generalized Fermat 1340e 286434328^131072+1 1108480 L4904 2025 Generalized Fermat 1341 569*2^3682167+1 1108446 L5488 2022 1342e 285803202^131072+1 1108354 L5473 2025 Generalized Fermat 1343e 285447574^131072+1 1108283 L5586 2025 Generalized Fermat 1344e 285446536^131072+1 1108283 L5687 2025 Generalized Fermat 1345e 284918308^131072+1 1108178 L4201 2025 Generalized Fermat 1346e 284831742^131072+1 1108160 L6085 2025 Generalized Fermat 1347e 284805838^131072+1 1108155 L5025 2025 Generalized Fermat 1348e 284753240^131072+1 1108145 L6185 2025 Generalized Fermat 1349e 284745724^131072+1 1108143 L5869 2025 Generalized Fermat 1350e 284001924^131072+1 1107994 L5416 2025 Generalized Fermat 1351e 283824490^131072+1 1107959 L5470 2025 Generalized Fermat 1352e 283699626^131072+1 1107934 L5234 2025 Generalized Fermat 1353e 283216606^131072+1 1107837 L5711 2025 Generalized Fermat 1354e 282839136^131072+1 1107761 L4756 2025 Generalized Fermat 1355e 281755198^131072+1 1107542 L5234 2025 Generalized Fermat 1356e 281635050^131072+1 1107518 L5697 2025 Generalized Fermat 1357 330286*5^1584399-1 1107453 L3523 2014 1358e 281238556^131072+1 1107438 L5041 2025 Generalized Fermat 1359e 281131678^131072+1 1107416 L4584 2025 Generalized Fermat 1360 34*951^371834-1 1107391 L5410 2019 1361e 280984376^131072+1 1107386 L5844 2025 Generalized Fermat 1362e 280877312^131072+1 1107364 L6178 2025 Generalized Fermat 1363e 280515348^131072+1 1107291 L5029 2025 Generalized Fermat 1364e 280391126^131072+1 1107266 L5011 2025 Generalized Fermat 1365e 280207586^131072+1 1107229 L5322 2025 Generalized Fermat 1366e 279991058^131072+1 1107185 L5526 2025 Generalized Fermat 1367e 279987304^131072+1 1107184 L5974 2025 Generalized Fermat 1368e 279919024^131072+1 1107170 L4672 2025 Generalized Fermat 1369 45*2^3677787+1 1107126 L1204 2019 1370e 279594222^131072+1 1107104 L5814 2025 Generalized Fermat 1371e 279533226^131072+1 1107091 L6176 2025 Generalized Fermat 1372e 279393398^131072+1 1107063 L5637 2025 Generalized Fermat 1373e 279257150^131072+1 1107035 L6177 2025 Generalized Fermat 1374e 278715552^131072+1 1106925 L6129 2025 Generalized Fermat 1375e 278620322^131072+1 1106905 L5069 2025 Generalized Fermat 1376e 278619282^131072+1 1106905 L5378 2025 Generalized Fermat 1377e 278524906^131072+1 1106886 L4249 2025 Generalized Fermat 1378e 278507178^131072+1 1106882 L5682 2025 Generalized Fermat 1379e 278237250^131072+1 1106827 L6182 2025 Generalized Fermat 1380e 278204564^131072+1 1106820 L5948 2025 Generalized Fermat 1381e 278190840^131072+1 1106817 L6183 2025 Generalized Fermat 1382e 277919980^131072+1 1106762 L5974 2025 Generalized Fermat 1383 625*2^3676300+1 1106680 L5302 2022 Generalized Fermat 1384e 277256590^131072+1 1106626 L6170 2025 Generalized Fermat 1385e 277085600^131072+1 1106591 L5974 2025 Generalized Fermat 1386e 276836574^131072+1 1106540 L4760 2025 Generalized Fermat 1387e 276775868^131072+1 1106527 L5549 2025 Generalized Fermat 1388e 276740330^131072+1 1106520 L6166 2025 Generalized Fermat 1389e 276607388^131072+1 1106492 L5782 2025 Generalized Fermat 1390e 276446036^131072+1 1106459 L5011 2025 Generalized Fermat 1391e 276329786^131072+1 1106435 L5718 2025 Generalized Fermat 1392 13*2^3675223-1 1106354 L1862 2016 1393e 275170262^131072+1 1106196 L5378 2025 Generalized Fermat 1394e 274919976^131072+1 1106144 L5378 2025 Generalized Fermat 1395e 274816000^131072+1 1106123 L6163 2025 Generalized Fermat 1396e 274753140^131072+1 1106110 L5974 2025 Generalized Fermat 1397e 274535798^131072+1 1106065 L5816 2025 Generalized Fermat 1398e 274280236^131072+1 1106012 L5070 2025 Generalized Fermat 1399e 273579644^131072+1 1105866 L6129 2025 Generalized Fermat 1400e 273503630^131072+1 1105850 L4309 2025 Generalized Fermat 1401e 273438512^131072+1 1105837 L5718 2025 Generalized Fermat 1402e 273327598^131072+1 1105813 L5512 2025 Generalized Fermat 1403e 273306974^131072+1 1105809 L4892 2025 Generalized Fermat 1404e 273272188^131072+1 1105802 L5543 2025 Generalized Fermat 1405e 273237906^131072+1 1105795 L6159 2025 Generalized Fermat 1406e 273140040^131072+1 1105774 L4210 2025 Generalized Fermat 1407e 273036074^131072+1 1105753 L5069 2025 Generalized Fermat 1408e 272998912^131072+1 1105745 L4245 2025 Generalized Fermat 1409e 272788310^131072+1 1105701 L4720 2025 Generalized Fermat 1410e 272041540^131072+1 1105545 L5069 2025 Generalized Fermat 1411 271643232^131072+1 1105462 L4704 2019 Generalized Fermat 1412e 271370312^131072+1 1105404 L4591 2025 Generalized Fermat 1413e 271135152^131072+1 1105355 L5718 2025 Generalized Fermat 1414e 270979532^131072+1 1105322 L5639 2025 Generalized Fermat 1415e 270832760^131072+1 1105292 L5027 2025 Generalized Fermat 1416e 270822160^131072+1 1105289 L4726 2025 Generalized Fermat 1417e 270789102^131072+1 1105282 L5051 2025 Generalized Fermat 1418e 270682284^131072+1 1105260 L6129 2025 Generalized Fermat 1419e 270581690^131072+1 1105239 L4870 2025 Generalized Fermat 1420e 270284868^131072+1 1105176 L5027 2025 Generalized Fermat 1421 463*2^3671262+1 1105163 L5524 2022 1422e 269993492^131072+1 1105115 L6129 2025 Generalized Fermat 1423 735*2^3670991+1 1105082 L5575 2022 1424e 269812742^131072+1 1105077 L6129 2025 Generalized Fermat 1425e 268685690^131072+1 1104838 L4898 2025 Generalized Fermat 1426 475*2^3670046+1 1104797 L5524 2022 1427e 267783532^131072+1 1104647 L5974 2025 Generalized Fermat 1428e 267768162^131072+1 1104644 L5974 2025 Generalized Fermat 1429f 267416848^131072+1 1104569 L5707 2025 Generalized Fermat 1430f 267414744^131072+1 1104569 L5771 2025 Generalized Fermat 1431f 266639610^131072+1 1104403 L5069 2025 Generalized Fermat 1432f 266330322^131072+1 1104337 L5707 2025 Generalized Fermat 1433f 266249522^131072+1 1104320 L5069 2025 Generalized Fermat 1434 15*2^3668194-1 1104238 L3665 2013 1435f 265866252^131072+1 1104238 L4591 2025 Generalized Fermat 1436f 265837862^131072+1 1104232 L5069 2025 Generalized Fermat 1437f 265643056^131072+1 1104190 L5069 2025 Generalized Fermat 1438f 265621592^131072+1 1104186 L4201 2025 Generalized Fermat 1439f 265478490^131072+1 1104155 L5069 2025 Generalized Fermat 1440f 264860372^131072+1 1104022 L5639 2025 Generalized Fermat 1441e 264624458^131072+1 1103971 L5416 2025 Generalized Fermat 1442f 264541844^131072+1 1103954 L5332 2025 Generalized Fermat 1443f 264360218^131072+1 1103915 L4875 2025 Generalized Fermat 1444f 264269230^131072+1 1103895 L5526 2025 Generalized Fermat 1445f 263861882^131072+1 1103807 L5639 2025 Generalized Fermat 1446f 263506158^131072+1 1103730 L6102 2025 Generalized Fermat 1447f 262824942^131072+1 1103583 L5586 2025 Generalized Fermat 1448f 262754910^131072+1 1103568 L4774 2025 Generalized Fermat 1449f 262470710^131072+1 1103506 L5974 2025 Generalized Fermat 1450 273*2^3665736+1 1103499 L5192 2022 1451f 262298138^131072+1 1103469 L5864 2025 Generalized Fermat 1452f 262041482^131072+1 1103413 L5457 2025 Generalized Fermat 1453f 262005898^131072+1 1103405 L4774 2025 Generalized Fermat 1454f 261858724^131072+1 1103373 L5639 2025 Generalized Fermat 1455f 261114224^131072+1 1103211 L4939 2025 Generalized Fermat 1456 13*2^3664703-1 1103187 L1862 2016 1457 1486*165^497431+1 1103049 A11 2024 1458 260265300^131072+1 1103026 L5586 2024 Generalized Fermat 1459 260050122^131072+1 1102979 L5586 2024 Generalized Fermat 1460 259881684^131072+1 1102942 L4245 2024 Generalized Fermat 1461 259576262^131072+1 1102875 L4672 2024 Generalized Fermat 1462 406515^196608-406515^98304+1 1102790 L4506 2016 Generalized unique 1463 259130312^131072+1 1102777 L5156 2024 Generalized Fermat 1464 259042144^131072+1 1102758 L5457 2024 Generalized Fermat 1465 609*2^3662931+1 1102655 L5573 2022 1466 258337266^131072+1 1102603 L5457 2024 Generalized Fermat 1467 258336436^131072+1 1102602 L5586 2024 Generalized Fermat 1468 258197916^131072+1 1102572 L5473 2024 Generalized Fermat 1469 258109576^131072+1 1102552 L4672 2024 Generalized Fermat 1470 257401382^131072+1 1102396 L5586 2024 Generalized Fermat 1471 257047620^131072+1 1102318 L4892 2024 Generalized Fermat 1472 256963326^131072+1 1102299 L6093 2024 Generalized Fermat 1473 256943534^131072+1 1102295 L4892 2024 Generalized Fermat 1474 256089378^131072+1 1102105 L4892 2024 Generalized Fermat 1475 255856074^131072+1 1102053 L4747 2024 Generalized Fermat 1476 255812078^131072+1 1102044 L6091 2024 Generalized Fermat 1477 255666546^131072+1 1102011 L6092 2024 Generalized Fermat 1478 255648100^131072+1 1102007 L4245 2024 Generalized Fermat 1479 255555468^131072+1 1101986 L5639 2024 Generalized Fermat 1480 255339392^131072+1 1101938 L5707 2024 Generalized Fermat 1481 255189240^131072+1 1101905 L5782 2024 Generalized Fermat 1482 254954350^131072+1 1101852 L5467 2024 Generalized Fermat 1483 254731916^131072+1 1101803 L6090 2024 Generalized Fermat 1484 254713668^131072+1 1101799 L5782 2024 Generalized Fermat 1485 254450722^131072+1 1101740 L5620 2024 Generalized Fermat 1486 254193678^131072+1 1101682 L5634 2024 Generalized Fermat 1487 253875014^131072+1 1101611 L5707 2024 Generalized Fermat 1488 253866454^131072+1 1101609 L5457 2024 Generalized Fermat 1489 253210808^131072+1 1101462 L4968 2024 Generalized Fermat 1490 252934920^131072+1 1101400 L6036 2024 Generalized Fermat 1491 252637312^131072+1 1101333 L5526 2024 Generalized Fermat 1492 252545864^131072+1 1101312 L5467 2024 Generalized Fermat 1493 252369374^131072+1 1101272 L5452 2024 Generalized Fermat 1494 252171992^131072+1 1101228 L5639 2024 Generalized Fermat 1495 251361006^131072+1 1101044 L5127 2024 Generalized Fermat 1496 251085988^131072+1 1100982 L4201 2024 Generalized Fermat 1497 250775680^131072+1 1100912 L6073 2024 Generalized Fermat 1498 249754922^131072+1 1100679 L4898 2024 Generalized Fermat 1499 249751100^131072+1 1100679 L6088 2024 Generalized Fermat 1500 249735514^131072+1 1100675 L4201 2024 Generalized Fermat 1501 249634320^131072+1 1100652 L6087 2024 Generalized Fermat 1502 118*892^373012+1 1100524 L5071 2020 1503 248934378^131072+1 1100492 L5974 2024 Generalized Fermat 1504 248857694^131072+1 1100475 L6086 2024 Generalized Fermat 1505 248820272^131072+1 1100466 L5768 2024 Generalized Fermat 1506 248632632^131072+1 1100423 L5416 2024 Generalized Fermat 1507 248621940^131072+1 1100421 L5051 2024 Generalized Fermat 1508 248617468^131072+1 1100420 L5416 2024 Generalized Fermat 1509 33300*430^417849-1 1100397 L4393 2016 1510 247389350^131072+1 1100138 L6085 2024 Generalized Fermat 1511 247342010^131072+1 1100127 L6073 2024 Generalized Fermat 1512 247145256^131072+1 1100082 L4939 2024 Generalized Fermat 1513 246980946^131072+1 1100044 L4249 2024 Generalized Fermat 1514 246952054^131072+1 1100037 L6084 2024 Generalized Fermat 1515 246943520^131072+1 1100035 L5746 2024 Generalized Fermat 1516 (2^2976221-1)*(10^204068-1172064)+1 1100000 p449 2024 1517 246677978^131072+1 1099974 L5512 2024 Generalized Fermat 1518 246634478^131072+1 1099964 L5117 2024 Generalized Fermat 1519 246394910^131072+1 1099908 L6038 2024 Generalized Fermat 1520 246207020^131072+1 1099865 L5606 2024 Generalized Fermat 1521 246012578^131072+1 1099820 L5606 2024 Generalized Fermat 1522 245507802^131072+1 1099703 L5606 2024 Generalized Fermat 1523 245461196^131072+1 1099692 L6078 2024 Generalized Fermat 1524 655*2^3653008+1 1099668 L5574 2022 1525 244873604^131072+1 1099556 L6076 2024 Generalized Fermat 1526 244660242^131072+1 1099506 L6038 2024 Generalized Fermat 1527 244342390^131072+1 1099432 L5416 2024 Generalized Fermat 1528 244202408^131072+1 1099400 L4371 2024 Generalized Fermat 1529 291*268^452750-1 1099341 L5410 2022 1530 243786926^131072+1 1099303 L6073 2024 Generalized Fermat 1531 243427990^131072+1 1099219 L4892 2024 Generalized Fermat 1532 242973858^131072+1 1099113 L6072 2024 Generalized Fermat 1533 242950108^131072+1 1099107 L4387 2024 Generalized Fermat 1534 242933064^131072+1 1099103 L5782 2024 Generalized Fermat 1535 242926826^131072+1 1099102 L5826 2024 Generalized Fermat 1536 242855212^131072+1 1099085 L4591 2024 Generalized Fermat 1537 242494358^131072+1 1099000 L5416 2024 Generalized Fermat 1538 242295536^131072+1 1098953 L5205 2024 Generalized Fermat 1539 242161196^131072+1 1098922 L6070 2024 Generalized Fermat 1540 241765100^131072+1 1098829 L6067 2024 Generalized Fermat 1541 241550882^131072+1 1098778 L6065 2024 Generalized Fermat 1542 241438172^131072+1 1098752 L4591 2024 Generalized Fermat 1543 241338084^131072+1 1098728 L4591 2024 Generalized Fermat 1544 241249426^131072+1 1098707 L5526 2024 Generalized Fermat 1545 33*2^3649810+1 1098704 L4958 2019 1546 241151312^131072+1 1098684 L4387 2024 Generalized Fermat 1547 241000970^131072+1 1098648 L5707 2024 Generalized Fermat 1548 240966866^131072+1 1098640 L4559 2024 Generalized Fermat 1549 240965802^131072+1 1098640 L6058 2024 Generalized Fermat 1550 240910640^131072+1 1098627 L5101 2024 Generalized Fermat 1551 240856112^131072+1 1098614 L4875 2024 Generalized Fermat 1552 240307734^131072+1 1098484 L4249 2024 Generalized Fermat 1553 240190808^131072+1 1098457 L5056 2024 Generalized Fermat 1554 239927858^131072+1 1098394 L4477 2024 Generalized Fermat 1555 239545562^131072+1 1098304 L4591 2024 Generalized Fermat 1556 239520486^131072+1 1098298 L5634 2024 Generalized Fermat 1557a 262614*5^1571158-1 1098198 A11 2025 1558 238968056^131072+1 1098166 L4477 2024 Generalized Fermat 1559 238871106^131072+1 1098143 L6058 2024 Generalized Fermat 1560 238852190^131072+1 1098139 L5526 2024 Generalized Fermat 1561 238698190^131072+1 1098102 L5077 2024 Generalized Fermat 1562 238653710^131072+1 1098091 L6057 2024 Generalized Fermat 1563 238627390^131072+1 1098085 L5871 2024 Generalized Fermat 1564 238438430^131072+1 1098040 L5707 2024 Generalized Fermat 1565 238381768^131072+1 1098026 L5707 2024 Generalized Fermat 1566 238193230^131072+1 1097981 L4201 2024 Generalized Fermat 1567 238168282^131072+1 1097975 L4201 2024 Generalized Fermat 1568 238109742^131072+1 1097961 L4559 2024 Generalized Fermat 1569 237601644^131072+1 1097840 L5782 2024 Generalized Fermat 1570 237260908^131072+1 1097758 L4201 2024 Generalized Fermat 1571 237185928^131072+1 1097740 L5755 2024 Generalized Fermat 1572 237108488^131072+1 1097722 L5639 2024 Generalized Fermat 1573 236924362^131072+1 1097677 L5639 2024 Generalized Fermat 1574 236602468^131072+1 1097600 L6038 2024 Generalized Fermat 1575 236500052^131072+1 1097575 L5198 2024 Generalized Fermat 1576 236417078^131072+1 1097555 L5588 2024 Generalized Fermat 1577 236278180^131072+1 1097522 L5416 2024 Generalized Fermat 1578 236240868^131072+1 1097513 L6038 2024 Generalized Fermat 1579 235947986^131072+1 1097442 L4201 2024 Generalized Fermat 1580 235577802^131072+1 1097353 L5077 2024 Generalized Fermat 1581 235566676^131072+1 1097350 L5416 2024 Generalized Fermat 1582 235108160^131072+1 1097239 L4898 2024 Generalized Fermat 1583 234962380^131072+1 1097204 L4201 2024 Generalized Fermat 1584 234806100^131072+1 1097166 L5088 2024 Generalized Fermat 1585 234661134^131072+1 1097131 L5416 2024 Generalized Fermat 1586 234566344^131072+1 1097108 L5974 2024 Generalized Fermat 1587 234523400^131072+1 1097098 L4201 2024 Generalized Fermat 1588 234385314^131072+1 1097064 L4285 2024 Generalized Fermat 1589 234307964^131072+1 1097045 L4559 2024 Generalized Fermat 1590 234291722^131072+1 1097041 L4999 2024 Generalized Fermat 1591 233937376^131072+1 1096955 L6044 2024 Generalized Fermat 1592 233903532^131072+1 1096947 L4559 2024 Generalized Fermat 1593 233559012^131072+1 1096863 L5416 2024 Generalized Fermat 1594 233447012^131072+1 1096836 L4477 2024 Generalized Fermat 1595 233349574^131072+1 1096812 L5432 2024 Generalized Fermat 1596 233034976^131072+1 1096735 L5101 2024 Generalized Fermat 1597 232796676^131072+1 1096677 L6040 2024 Generalized Fermat 1598 232485778^131072+1 1096601 L4477 2024 Generalized Fermat 1599 232050760^131072+1 1096494 L5782 2024 Generalized Fermat 1600 295*2^3642206+1 1096416 L5161 2022 1601 231583998^131072+1 1096380 L4477 2024 Generalized Fermat 1602 231295516^131072+1 1096309 L5634 2024 Generalized Fermat 1603 230663736^131072+1 1096153 L4774 2024 Generalized Fermat 1604 230655072^131072+1 1096151 L5526 2024 Generalized Fermat 1605 230396424^131072+1 1096087 L4928 2024 Generalized Fermat 1606 230275166^131072+1 1096057 L6011 2024 Generalized Fermat 1607 230267830^131072+1 1096055 L6036 2024 Generalized Fermat 1608 989*2^3640585+1 1095929 L5115 2020 1609 567*2^3639287+1 1095538 L4959 2019 1610 227669832^131072+1 1095409 L5707 2024 Generalized Fermat 1611 227406222^131072+1 1095343 L4371 2024 Generalized Fermat 1612 227239620^131072+1 1095302 L4559 2024 Generalized Fermat 1613 227135580^131072+1 1095276 L5974 2024 Generalized Fermat 1614 227009830^131072+1 1095244 L4359 2024 Generalized Fermat 1615 226881840^131072+1 1095212 L5784 2024 Generalized Fermat 1616 226782570^131072+1 1095187 L6026 2024 Generalized Fermat 1617 226710488^131072+1 1095169 L5588 2024 Generalized Fermat 1618 226639300^131072+1 1095151 L5634 2024 Generalized Fermat 1619 226453444^131072+1 1095104 L4559 2024 Generalized Fermat 1620 226341130^131072+1 1095076 L4341 2024 Generalized Fermat 1621 226249042^131072+1 1095053 L5370 2024 Generalized Fermat 1622 226100602^131072+1 1095016 L4429 2024 Generalized Fermat 1623 225580118^131072+1 1094884 L5056 2024 Generalized Fermat 1624 225124888^131072+1 1094769 L4591 2024 Generalized Fermat 1625 224635814^131072+1 1094646 L4875 2024 Generalized Fermat 1626 224347630^131072+1 1094572 L5512 2024 Generalized Fermat 1627 224330804^131072+1 1094568 L6019 2024 Generalized Fermat 1628 224249932^131072+1 1094548 L4371 2024 Generalized Fermat 1629 224072278^131072+1 1094503 L5974 2024 Generalized Fermat 1630 639*2^3635707+1 1094460 L1823 2019 1631 223490796^131072+1 1094355 L5332 2024 Generalized Fermat 1632 223074802^131072+1 1094249 L5416 2024 Generalized Fermat 1633 223010262^131072+1 1094232 L6015 2024 Generalized Fermat 1634 222996490^131072+1 1094229 L5731 2024 Generalized Fermat 1635 222888506^131072+1 1094201 L5974 2024 Generalized Fermat 1636 222593516^131072+1 1094126 L6011 2024 Generalized Fermat 1637 222486400^131072+1 1094098 L5332 2024 Generalized Fermat 1638 221636362^131072+1 1093880 L4904 2024 Generalized Fermat 1639 221528336^131072+1 1093853 L5721 2024 Generalized Fermat 1640 221330854^131072+1 1093802 L6010 2024 Generalized Fermat 1641 221325712^131072+1 1093801 L4201 2024 Generalized Fermat 1642 221174400^131072+1 1093762 L4201 2024 Generalized Fermat 1643 221008432^131072+1 1093719 L5974 2024 Generalized Fermat 1644 220956326^131072+1 1093705 L5731 2024 Generalized Fermat 1645 220838206^131072+1 1093675 L5974 2024 Generalized Fermat 1646 220325976^131072+1 1093543 L5690 2024 Generalized Fermat 1647 220317996^131072+1 1093541 L5989 2024 Generalized Fermat 1648 220288248^131072+1 1093533 L5721 2024 Generalized Fermat 1649 219984494^131072+1 1093455 L6005 2024 Generalized Fermat 1650 219556482^131072+1 1093344 L5721 2024 Generalized Fermat 1651 219525472^131072+1 1093336 L4898 2024 Generalized Fermat 1652 219447698^131072+1 1093315 L4933 2024 Generalized Fermat 1653 219430370^131072+1 1093311 L4774 2024 Generalized Fermat 1654 219331584^131072+1 1093285 L5746 2024 Generalized Fermat 1655 753*2^3631472+1 1093185 L1823 2019 1656 2*205731^205731-1 1093111 L4965 2022 1657 218012734^131072+1 1092942 L4928 2024 Generalized Fermat 1658 217820568^131072+1 1092892 L5690 2024 Generalized Fermat 1659 217559364^131072+1 1092823 L4898 2024 Generalized Fermat 1660 217458668^131072+1 1092797 L5989 2024 Generalized Fermat 1661 217423702^131072+1 1092788 L5998 2024 Generalized Fermat 1662 217176690^131072+1 1092723 L5637 2024 Generalized Fermat 1663 217170570^131072+1 1092722 L4371 2024 Generalized Fermat 1664 65531*2^3629342-1 1092546 L2269 2011 1665 1121*2^3629201+1 1092502 L4761 2019 1666 216307766^131072+1 1092495 L4387 2024 Generalized Fermat 1667 216084296^131072+1 1092436 L4201 2024 Generalized Fermat 1668 215*2^3628962-1 1092429 L2484 2018 1669 216039994^131072+1 1092425 L5880 2024 Generalized Fermat 1670 216027436^131072+1 1092421 L5277 2024 Generalized Fermat 1671 216018002^131072+1 1092419 L5586 2024 Generalized Fermat 1672 215949788^131072+1 1092401 L4537 2024 Generalized Fermat 1673 215945398^131072+1 1092400 L4245 2024 Generalized Fermat 1674 215783788^131072+1 1092357 L5711 2024 Generalized Fermat 1675 215717854^131072+1 1092340 L4245 2024 Generalized Fermat 1676 215462154^131072+1 1092272 L4387 2024 Generalized Fermat 1677 215237318^131072+1 1092213 L5693 2024 Generalized Fermat 1678 215004526^131072+1 1092151 L4928 2024 Generalized Fermat 1679 113*2^3628034-1 1092150 L2484 2014 1680 214992758^131072+1 1092148 L5974 2024 Generalized Fermat 1681f 1009*2^3627911-1 1092114 A46 2025 1682 214814516^131072+1 1092101 L5746 2024 Generalized Fermat 1683 1175*2^3627541+1 1092002 L4840 2019 1684 214403112^131072+1 1091992 L4905 2024 Generalized Fermat 1685 214321816^131072+1 1091970 L5989 2024 Generalized Fermat 1686 214134178^131072+1 1091920 L5297 2024 Generalized Fermat 1687 214059556^131072+1 1091900 L4362 2024 Generalized Fermat 1688 2*431^414457+1 1091878 L4879 2019 Divides Phi(431^414457,2) 1689 213879170^131072+1 1091852 L5986 2024 Generalized Fermat 1690 19116*24^791057-1 1091831 A44 2024 1691 213736552^131072+1 1091814 L4289 2024 Generalized Fermat 1692 213656000^131072+1 1091793 L4892 2024 Generalized Fermat 1693 213580840^131072+1 1091773 L4201 2024 Generalized Fermat 1694 213425082^131072+1 1091731 L4892 2024 Generalized Fermat 1695 213162592^131072+1 1091661 L4549 2024 Generalized Fermat 1696 213151104^131072+1 1091658 L4763 2024 Generalized Fermat 1697 212912634^131072+1 1091595 L5639 2024 Generalized Fermat 1698 212894100^131072+1 1091590 L5470 2024 Generalized Fermat 1699 212865234^131072+1 1091582 L5782 2024 Generalized Fermat 1700 212862096^131072+1 1091581 L4870 2024 Generalized Fermat 1701 212838152^131072+1 1091575 L5718 2024 Generalized Fermat 1702 212497738^131072+1 1091483 L5051 2024 Generalized Fermat 1703 212121206^131072+1 1091383 L4774 2024 Generalized Fermat 1704 211719438^131072+1 1091275 L4775 2024 Generalized Fermat 1705 211448294^131072+1 1091202 L5929 2024 Generalized Fermat 1706 211407740^131072+1 1091191 L4341 2024 Generalized Fermat 1707 211326826^131072+1 1091169 L5143 2024 Generalized Fermat 1708 210908700^131072+1 1091056 L5639 2024 Generalized Fermat 1709 210564358^131072+1 1090963 L5639 2024 Generalized Fermat 1710 210434680^131072+1 1090928 L4380 2024 Generalized Fermat 1711 210397166^131072+1 1090918 L4870 2024 Generalized Fermat 1712 210160342^131072+1 1090854 L5974 2024 Generalized Fermat 1713 210088618^131072+1 1090834 L5041 2024 Generalized Fermat 1714 209917216^131072+1 1090788 L5755 2024 Generalized Fermat 1715 209839940^131072+1 1090767 L5639 2024 Generalized Fermat 1716 209637998^131072+1 1090712 L4544 2024 Generalized Fermat 1717 951*2^3623185+1 1090691 L1823 2019 1718 209494470^131072+1 1090673 L5869 2024 Generalized Fermat 1719 209385420^131072+1 1090644 L5720 2024 Generalized Fermat 1720 209108558^131072+1 1090568 L5460 2024 Generalized Fermat 1721 209101202^131072+1 1090566 L5011 2024 Generalized Fermat 1722 208565926^131072+1 1090420 L5016 2024 Generalized Fermat 1723 208497360^131072+1 1090402 L5234 2024 Generalized Fermat 1724 208392300^131072+1 1090373 L5030 2024 Generalized Fermat 1725 208374066^131072+1 1090368 L5869 2024 Generalized Fermat 1726 208352366^131072+1 1090362 L5044 2024 Generalized Fermat 1727 208236434^131072+1 1090330 L5984 2024 Generalized Fermat 1728 208003690^131072+1 1090267 L5639 2024 Generalized Fermat 1729 207985150^131072+1 1090262 L5791 2024 Generalized Fermat 1730 207753480^131072+1 1090198 L5974 2024 Generalized Fermat 1731 207514736^131072+1 1090133 L4477 2024 Generalized Fermat 1732 207445740^131072+1 1090114 L5273 2024 Generalized Fermat 1733 29*920^367810-1 1090113 L4064 2015 1734 207296788^131072+1 1090073 L5234 2024 Generalized Fermat 1735 207264358^131072+1 1090064 L5758 2024 Generalized Fermat 1736 207213640^131072+1 1090050 L5077 2024 Generalized Fermat 1737 206709064^131072+1 1089911 L5639 2024 Generalized Fermat 1738 206640054^131072+1 1089892 L5288 2024 Generalized Fermat 1739 206594738^131072+1 1089880 L5707 2024 Generalized Fermat 1740 206585726^131072+1 1089877 L5667 2024 Generalized Fermat 1741 206473754^131072+1 1089846 L5855 2024 Generalized Fermat 1742 206230080^131072+1 1089779 L5143 2024 Generalized Fermat 1743 206021166^131072+1 1089722 L5639 2024 Generalized Fermat 1744 205990406^131072+1 1089713 L4755 2024 Generalized Fermat 1745 205963322^131072+1 1089706 L5844 2024 Generalized Fermat 1746 205339678^131072+1 1089533 L4905 2024 Generalized Fermat 1747 205160722^131072+1 1089483 L5639 2024 Generalized Fermat 1748 205150506^131072+1 1089480 L5543 2024 Generalized Fermat 1749 205010004^131072+1 1089441 L5025 2024 Generalized Fermat 1750 14641*2^3618876+1 1089395 L181 2018 Generalized Fermat 1751 204695540^131072+1 1089354 L4905 2024 Generalized Fermat 1752 485*2^3618563+1 1089299 L3924 2019 1753 204382086^131072+1 1089267 L4477 2024 Generalized Fermat 1754 204079052^131072+1 1089182 L4763 2024 Generalized Fermat 1755 204016062^131072+1 1089165 L5712 2024 Generalized Fermat 1756 203275588^131072+1 1088958 L5041 2024 Generalized Fermat 1757 203250558^131072+1 1088951 L4210 2024 Generalized Fermat 1758 203238918^131072+1 1088948 L5586 2024 Generalized Fermat 1759 202515696^131072+1 1088745 L4549 2024 Generalized Fermat 1760 202391964^131072+1 1088710 L4835 2024 Generalized Fermat 1761 202251688^131072+1 1088670 L5288 2024 Generalized Fermat 1762 202114688^131072+1 1088632 L5711 2024 Generalized Fermat 1763 202045732^131072+1 1088612 L4537 2024 Generalized Fermat 1764 201593074^131072+1 1088485 L5027 2024 Generalized Fermat 1765 201536524^131072+1 1088469 L5769 2024 Generalized Fermat 1766 201389466^131072+1 1088427 L4537 2024 Generalized Fermat 1767 201249512^131072+1 1088388 L5234 2024 Generalized Fermat 1768 201239624^131072+1 1088385 L5732 2024 Generalized Fermat 1769 200519642^131072+1 1088181 L5712 2024 Generalized Fermat 1770 200459670^131072+1 1088164 L5948 2024 Generalized Fermat 1771 200433382^131072+1 1088156 L5948 2024 Generalized Fermat 1772 200280100^131072+1 1088113 L4892 2024 Generalized Fermat 1773 200053318^131072+1 1088048 L5586 2024 Generalized Fermat 1774 199971120^131072+1 1088025 L5030 2024 Generalized Fermat 1775 95*2^3614033+1 1087935 L1474 2019 1776 199502780^131072+1 1087891 L5878 2024 Generalized Fermat 1777 198402358^131072+1 1087577 L5606 2024 Generalized Fermat 1778 198320982^131072+1 1087553 L5938 2024 Generalized Fermat 1779 198319118^131072+1 1087553 L4737 2024 Generalized Fermat 1780 1005*2^3612300+1 1087414 L1823 2019 1781 197752702^131072+1 1087390 L5355 2024 Generalized Fermat 1782 197607368^131072+1 1087348 L5041 2024 Generalized Fermat 1783 197352408^131072+1 1087275 L4861 2024 Generalized Fermat 1784 861*2^3611815+1 1087268 L1745 2019 1785 197230100^131072+1 1087239 L4753 2024 Generalized Fermat 1786 197212998^131072+1 1087234 L6123 2024 Generalized Fermat 1787 197197506^131072+1 1087230 L4753 2024 Generalized Fermat 1788 197018872^131072+1 1087178 L4884 2024 Generalized Fermat 1789 1087*2^3611476+1 1087166 L4834 2019 1790 196722548^131072+1 1087093 L5782 2024 Generalized Fermat 1791 196703802^131072+1 1087087 L4742 2024 Generalized Fermat 1792 196687752^131072+1 1087082 L5051 2024 Generalized Fermat 1793 195950620^131072+1 1086869 L5929 2024 Generalized Fermat 1794 195834796^131072+1 1086835 L5070 2024 Generalized Fermat 1795 195048992^131072+1 1086606 L5143 2024 Generalized Fermat 1796 194911702^131072+1 1086566 L5948 2024 Generalized Fermat 1797 194819864^131072+1 1086539 L5690 2024 Generalized Fermat 1798 485767*2^3609357-1 1086531 L622 2008 1799 194730404^131072+1 1086513 L5782 2024 Generalized Fermat 1800 194644872^131072+1 1086488 L4720 2024 Generalized Fermat 1801 194584114^131072+1 1086470 L4201 2024 Generalized Fermat 1802 194263106^131072+1 1086376 L4892 2024 Generalized Fermat 1803 194202254^131072+1 1086359 L4835 2024 Generalized Fermat 1804 194159546^131072+1 1086346 L4387 2024 Generalized Fermat 1805 193935716^131072+1 1086280 L4835 2024 Generalized Fermat 1806 193247784^131072+1 1086078 L5234 2024 Generalized Fermat 1807 192866222^131072+1 1085966 L5913 2024 Generalized Fermat 1808 192651588^131072+1 1085902 L5880 2024 Generalized Fermat 1809 192606308^131072+1 1085889 L4476 2024 Generalized Fermat 1810 675*2^3606447+1 1085652 L3278 2019 1811 191678526^131072+1 1085614 L5234 2024 Generalized Fermat 1812 669*2^3606266+1 1085598 L1675 2019 1813 191567332^131072+1 1085581 L4309 2024 Generalized Fermat 1814 65077*2^3605944+1 1085503 L4685 2020 1815 191194450^131072+1 1085470 L4245 2024 Generalized Fermat 1816 1365*2^3605491+1 1085365 L1134 2022 1817 190810274^131072+1 1085356 L5460 2024 Generalized Fermat 1818 190309640^131072+1 1085206 L5880 2024 Generalized Fermat 1819 190187176^131072+1 1085169 L5470 2024 Generalized Fermat 1820 190144032^131072+1 1085156 L4341 2024 Generalized Fermat 1821 851*2^3604395+1 1085034 L2125 2019 1822 189411830^131072+1 1084937 L5578 2024 Generalized Fermat 1823 189240324^131072+1 1084885 L4892 2024 Generalized Fermat 1824 188766416^131072+1 1084743 L5639 2024 Generalized Fermat 1825 188655374^131072+1 1084709 L5842 2024 Generalized Fermat 1826 188646712^131072+1 1084706 L4905 2024 Generalized Fermat 1827 187961358^131072+1 1084499 L5881 2024 Generalized Fermat 1828 1143*2^3602429+1 1084443 L4754 2019 1829 187731580^131072+1 1084430 L5847 2024 Generalized Fermat 1830 187643362^131072+1 1084403 L5707 2024 Generalized Fermat 1831 187584550^131072+1 1084385 L5526 2024 Generalized Fermat 1832 187330820^131072+1 1084308 L5879 2024 Generalized Fermat 1833 1183*2^3601898+1 1084283 L1823 2019 1834 187231212^131072+1 1084278 L4550 2024 Generalized Fermat 1835 187184006^131072+1 1084263 L5051 2024 Generalized Fermat 1836 187007398^131072+1 1084210 L5604 2024 Generalized Fermat 1837 185411044^131072+1 1083722 L5044 2023 Generalized Fermat 1838 185248324^131072+1 1083672 L4371 2023 Generalized Fermat 1839 185110536^131072+1 1083629 L4559 2023 Generalized Fermat 1840 185015722^131072+1 1083600 L5723 2023 Generalized Fermat 1841 184855564^131072+1 1083551 L5748 2023 Generalized Fermat 1842 184835362^131072+1 1083545 L5416 2024 Generalized Fermat 1843 184814078^131072+1 1083538 L4559 2023 Generalized Fermat 1844 184653266^131072+1 1083488 L5606 2023 Generalized Fermat 1845 184523024^131072+1 1083448 L4550 2023 Generalized Fermat 1846 184317182^131072+1 1083385 L5863 2023 Generalized Fermat 1847 184310672^131072+1 1083383 L5863 2023 Generalized Fermat 1848 184119204^131072+1 1083324 L5863 2023 Generalized Fermat 1849 183839694^131072+1 1083237 L5865 2023 Generalized Fermat 1850 183591732^131072+1 1083160 L5586 2023 Generalized Fermat 1851 183392536^131072+1 1083098 L5044 2023 Generalized Fermat 1852 183383118^131072+1 1083096 L4371 2023 Generalized Fermat 1853 183157240^131072+1 1083025 L5853 2023 Generalized Fermat 1854 182252536^131072+1 1082744 L5854 2023 Generalized Fermat 1855 182166824^131072+1 1082717 L5854 2023 Generalized Fermat 1856 181969816^131072+1 1082655 L4591 2023 Generalized Fermat 1857 181913260^131072+1 1082637 L5853 2023 Generalized Fermat 1858 189*2^3596375+1 1082620 L3760 2016 1859 181302244^131072+1 1082446 L4550 2023 Generalized Fermat 1860 180680920^131072+1 1082251 L5639 2023 Generalized Fermat 1861 180455838^131072+1 1082180 L5847 2023 Generalized Fermat 1862 180111908^131072+1 1082071 L5844 2023 Generalized Fermat 1863 180084608^131072+1 1082062 L5056 2023 Generalized Fermat 1864 180045220^131072+1 1082050 L4550 2023 Generalized Fermat 1865 180002474^131072+1 1082036 L5361 2023 Generalized Fermat 1866 179913814^131072+1 1082008 L4875 2023 Generalized Fermat 1867 1089*2^3593267+1 1081685 L3035 2019 1868 178743858^131072+1 1081637 L5051 2023 Generalized Fermat 1869 178437884^131072+1 1081539 L4591 2023 Generalized Fermat 1870 178435022^131072+1 1081538 L5639 2023 Generalized Fermat 1871 178311240^131072+1 1081499 L5369 2023 Generalized Fermat 1872 178086108^131072+1 1081427 L4939 2023 Generalized Fermat 1873 178045832^131072+1 1081414 L5836 2023 Generalized Fermat 1874 177796222^131072+1 1081334 L5834 2023 Generalized Fermat 1875 177775606^131072+1 1081328 L5794 2023 Generalized Fermat 1876 177648552^131072+1 1081287 L5782 2023 Generalized Fermat 1877 177398652^131072+1 1081207 L4559 2023 Generalized Fermat 1878 177319028^131072+1 1081181 L5526 2023 Generalized Fermat 1879 177296064^131072+1 1081174 L5831 2023 Generalized Fermat 1880 177129922^131072+1 1081121 L4559 2023 Generalized Fermat 1881 176799404^131072+1 1081014 L4775 2023 Generalized Fermat 1882 176207346^131072+1 1080823 L5805 2023 Generalized Fermat 1883 176085282^131072+1 1080784 L5805 2023 Generalized Fermat 1884 175482140^131072+1 1080589 L5639 2023 Generalized Fermat 1885 175271418^131072+1 1080520 L5051 2023 Generalized Fermat 1886 19581121*2^3589357-1 1080512 p49 2022 1887 175200596^131072+1 1080497 L5817 2023 Generalized Fermat 1888 1101*2^3589103+1 1080431 L1823 2019 1889 174728608^131072+1 1080344 L5416 2023 Generalized Fermat 1890 174697724^131072+1 1080334 L4747 2023 Generalized Fermat 1891 174534362^131072+1 1080280 L5814 2023 Generalized Fermat 1892 174142738^131072+1 1080152 L4249 2023 Generalized Fermat 1893 174103532^131072+1 1080140 L4249 2023 Generalized Fermat 1894 173962482^131072+1 1080093 L4249 2023 Generalized Fermat 1895 35*2^3587843+1 1080050 L1979 2014 Divides GF(3587841,5) 1896 173717408^131072+1 1080013 L5634 2023 Generalized Fermat 1897 173561300^131072+1 1079962 L4249 2023 Generalized Fermat 1898 173343810^131072+1 1079891 L4249 2023 Generalized Fermat 1899 172026454^131072+1 1079456 L4737 2023 Generalized Fermat 1900 172004036^131072+1 1079449 L5512 2023 Generalized Fermat 1901 275*2^3585539+1 1079358 L3803 2016 1902 171677924^131072+1 1079341 L5512 2023 Generalized Fermat 1903 171610156^131072+1 1079319 L4249 2023 Generalized Fermat 1904 171518672^131072+1 1079288 L5586 2023 Generalized Fermat 1905 171128300^131072+1 1079158 L4249 2023 Generalized Fermat 1906 170982934^131072+1 1079110 L4201 2023 Generalized Fermat 1907 170626040^131072+1 1078991 L5748 2023 Generalized Fermat 1908 169929578^131072+1 1078758 L5748 2023 Generalized Fermat 1909 169369502^131072+1 1078570 L4410 2023 Generalized Fermat 1910 169299904^131072+1 1078547 L4559 2023 Generalized Fermat 1911 169059224^131072+1 1078466 L5746 2023 Generalized Fermat 1912 168885632^131072+1 1078408 L5793 2023 Generalized Fermat 1913 168602250^131072+1 1078312 L5782 2023 Generalized Fermat 1914 168576546^131072+1 1078303 L5639 2023 Generalized Fermat 1915 167845698^131072+1 1078056 L5735 2023 Generalized Fermat 1916 167604930^131072+1 1077974 L4859 2023 Generalized Fermat 1917 2*59^608685+1 1077892 g427 2014 Divides Phi(59^608685,2) 1918 167206862^131072+1 1077839 L5641 2023 Generalized Fermat 1919 166964502^131072+1 1077756 L5627 2023 Generalized Fermat 1920 651*2^3579843+1 1077643 L3035 2018 1921 166609122^131072+1 1077635 L5782 2023 Generalized Fermat 1922 166397330^131072+1 1077563 L5578 2023 Generalized Fermat 1923 166393356^131072+1 1077561 L5782 2023 Generalized Fermat 1924 166288612^131072+1 1077525 L4672 2023 Generalized Fermat 1925 166277052^131072+1 1077521 L5755 2023 Generalized Fermat 1926 166052226^131072+1 1077444 L4670 2023 Generalized Fermat 1927 165430644^131072+1 1077231 L4672 2023 Generalized Fermat 1928 165427494^131072+1 1077230 L4249 2023 Generalized Fermat 1929 583*2^3578402+1 1077210 L3035 2018 1930 165361824^131072+1 1077207 L5586 2023 Generalized Fermat 1931 165258594^131072+1 1077172 L4884 2023 Generalized Fermat 1932 165036358^131072+1 1077095 L5156 2023 Generalized Fermat 1933 164922680^131072+1 1077056 L4249 2023 Generalized Fermat 1934 164800594^131072+1 1077014 L5775 2023 Generalized Fermat 1935 164660428^131072+1 1076965 L4249 2023 Generalized Fermat 1936 309*2^3577339+1 1076889 L4406 2016 1937 164440734^131072+1 1076889 L5485 2023 Generalized Fermat 1938 163871194^131072+1 1076692 L5772 2023 Generalized Fermat 1939 163838506^131072+1 1076680 L5758 2023 Generalized Fermat 1940 163821336^131072+1 1076674 L5544 2023 Generalized Fermat 1941 163820256^131072+1 1076674 L5452 2023 Generalized Fermat 1942 163666380^131072+1 1076621 L5030 2023 Generalized Fermat 1943 163585288^131072+1 1076592 L4928 2023 Generalized Fermat 1944 163359994^131072+1 1076514 L5769 2023 Generalized Fermat 1945 163214942^131072+1 1076463 L4933 2023 Generalized Fermat 1946 163193584^131072+1 1076456 L5595 2023 Generalized Fermat 1947 163152818^131072+1 1076442 L5639 2023 Generalized Fermat 1948 163044252^131072+1 1076404 L5775 2023 Generalized Fermat 1949 162950466^131072+1 1076371 L5694 2023 Generalized Fermat 1950 162874590^131072+1 1076345 L5586 2023 Generalized Fermat 1951 162850104^131072+1 1076336 L5769 2023 Generalized Fermat 1952 162817576^131072+1 1076325 L5772 2023 Generalized Fermat 1953 1185*2^3574583+1 1076060 L4851 2018 1954 251*2^3574535+1 1076045 L3035 2016 1955 1485*2^3574333+1 1075985 L1134 2022 1956 161706626^131072+1 1075935 L4870 2023 Generalized Fermat 1957 161619620^131072+1 1075904 L5586 2023 Generalized Fermat 1958 161588716^131072+1 1075893 L4928 2023 Generalized Fermat 1959 161571504^131072+1 1075887 L5030 2023 Generalized Fermat 1960 161569668^131072+1 1075887 L5639 2023 Generalized Fermat 1961 160998114^131072+1 1075685 L5586 2023 Generalized Fermat 1962 160607310^131072+1 1075547 L5763 2023 Generalized Fermat 1963 160325616^131072+1 1075447 L5586 2023 Generalized Fermat 1964 160228242^131072+1 1075412 L5632 2023 Generalized Fermat 1965 160146172^131072+1 1075383 L4773 2023 Generalized Fermat 1966 159800918^131072+1 1075260 L5586 2023 Generalized Fermat 1967 159794566^131072+1 1075258 L4249 2023 Generalized Fermat 1968 159784836^131072+1 1075254 L5639 2023 Generalized Fermat 1969 159784822^131072+1 1075254 L5637 2023 Generalized Fermat 1970 1019*2^3571635+1 1075173 L1823 2018 1971 159509138^131072+1 1075156 L5637 2023 Generalized Fermat 1972 119*2^3571416-1 1075106 L2484 2018 1973 159214418^131072+1 1075051 L5755 2023 Generalized Fermat 1974 158831096^131072+1 1074914 L5022 2023 Generalized Fermat 1975 35*2^3570777+1 1074913 L2891 2014 1976 158696888^131072+1 1074865 L5030 2023 Generalized Fermat 1977 158472238^131072+1 1074785 L5586 2023 Generalized Fermat 1978 33*2^3570132+1 1074719 L2552 2014 1979 157923226^131072+1 1074587 L4249 2023 Generalized Fermat 1980 157541220^131072+1 1074449 L5416 2023 Generalized Fermat 1981 5*2^3569154-1 1074424 L503 2009 1982 157374268^131072+1 1074389 L5578 2023 Generalized Fermat 1983 81*492^399095-1 1074352 L4001 2015 1984 156978838^131072+1 1074246 L5332 2023 Generalized Fermat 1985 156789840^131072+1 1074177 L4747 2023 Generalized Fermat 1986 156756400^131072+1 1074165 L4249 2023 Generalized Fermat 1987 22934*5^1536762-1 1074155 L3789 2014 1988 156625064^131072+1 1074117 L5694 2023 Generalized Fermat 1989 156519708^131072+1 1074079 L5746 2023 Generalized Fermat 1990 156468140^131072+1 1074060 L4249 2023 Generalized Fermat 1991 156203340^131072+1 1073964 L5578 2023 Generalized Fermat 1992 156171526^131072+1 1073952 L5698 2023 Generalized Fermat 1993 155778562^131072+1 1073809 L4309 2023 Generalized Fermat 1994 155650426^131072+1 1073762 L5668 2023 Generalized Fermat 1995 155536474^131072+1 1073720 L4249 2023 Generalized Fermat 1996 155339878^131072+1 1073648 L5206 2023 Generalized Fermat 1997 155305266^131072+1 1073636 L5549 2023 Generalized Fermat 1998 155006218^131072+1 1073526 L4742 2023 Generalized Fermat 1999 154553092^131072+1 1073359 L4920 2023 Generalized Fermat 2000 154492166^131072+1 1073337 L4326 2023 Generalized Fermat 2001 154478286^131072+1 1073332 L4544 2023 Generalized Fermat 2002 154368914^131072+1 1073291 L5738 2023 Generalized Fermat 2003 153966766^131072+1 1073143 L5732 2023 Generalized Fermat 2004 3437687*2^3564664-1 1073078 L5327 2024 2005 265*2^3564373-1 1072986 L2484 2018 2006 153485148^131072+1 1072965 L5736 2023 Generalized Fermat 2007 153432848^131072+1 1072945 L5030 2023 Generalized Fermat 2008 153413432^131072+1 1072938 L4835 2023 Generalized Fermat 2009 771*2^3564109+1 1072907 L2125 2018 2010 17665*820^368211+1 1072903 A11 2024 2011 381*2^3563676+1 1072776 L4190 2016 2012 152966530^131072+1 1072772 L5070 2023 Generalized Fermat 2013 555*2^3563328+1 1072672 L4850 2018 2014 152542626^131072+1 1072614 L5460 2023 Generalized Fermat 2015 151999396^131072+1 1072411 L5586 2023 Generalized Fermat 2016 151609814^131072+1 1072265 L5663 2023 Generalized Fermat 2017 151218242^131072+1 1072118 L5588 2023 Generalized Fermat 2018 151108236^131072+1 1072076 L4672 2023 Generalized Fermat 2019 151044622^131072+1 1072052 L5544 2023 Generalized Fermat 2020 151030068^131072+1 1072047 L4774 2023 Generalized Fermat 2021 150908454^131072+1 1072001 L4758 2023 Generalized Fermat 2022 150863054^131072+1 1071984 L5720 2023 Generalized Fermat 2023 1183*2^3560584+1 1071846 L1823 2018 2024 150014492^131072+1 1071663 L4476 2023 Generalized Fermat 2025 149972788^131072+1 1071647 L4559 2023 Generalized Fermat 2026 415*2^3559614+1 1071554 L3035 2016 2027 149665588^131072+1 1071530 L4892 2023 Generalized Fermat 2028 149142686^131072+1 1071331 L4684 2023 Generalized Fermat 2029 149057554^131072+1 1071298 L4933 2023 Generalized Fermat 2030 148598024^131072+1 1071123 L4476 2023 Generalized Fermat 2031 1103*2^3558177-503*2^1092022-1 1071122 p423 2022 Arithmetic progression (3,d=1103*2^3558176-503*2^1092022) 2032 1103*2^3558176-1 1071121 L1828 2018 2033 148592576^131072+1 1071121 L4476 2023 Generalized Fermat 2034 148425726^131072+1 1071057 L4289 2023 Generalized Fermat 2035 148154288^131072+1 1070952 L5714 2023 Generalized Fermat 2036 148093952^131072+1 1070929 L4720 2023 Generalized Fermat 2037 148070542^131072+1 1070920 L5155 2023 Generalized Fermat 2038 147988292^131072+1 1070889 L5155 2023 Generalized Fermat 2039 147816036^131072+1 1070822 L5634 2023 Generalized Fermat 2040 1379*2^3557072-1 1070789 L1828 2018 2041 147539992^131072+1 1070716 L4917 2023 Generalized Fermat 2042 147433824^131072+1 1070675 L4753 2023 Generalized Fermat 2043 147310498^131072+1 1070627 L5403 2023 Generalized Fermat 2044 147265916^131072+1 1070610 L5543 2023 Generalized Fermat 2045 146994540^131072+1 1070505 L5634 2023 Generalized Fermat 2046 146520528^131072+1 1070321 L6123 2023 Generalized Fermat 2047 146465338^131072+1 1070300 L5704 2023 Generalized Fermat 2048 146031082^131072+1 1070131 L4697 2023 Generalized Fermat 2049 145949782^131072+1 1070099 L5029 2023 Generalized Fermat 2050 145728478^131072+1 1070013 L5543 2023 Generalized Fermat 2051 145245346^131072+1 1069824 L5586 2023 Generalized Fermat 2052 145137270^131072+1 1069781 L4742 2023 Generalized Fermat 2053 145132288^131072+1 1069779 L4774 2023 Generalized Fermat 2054 144926960^131072+1 1069699 L5036 2023 Generalized Fermat 2055 144810806^131072+1 1069653 L5543 2023 Generalized Fermat 2056 681*2^3553141+1 1069605 L3035 2018 2057 144602744^131072+1 1069571 L5543 2023 Generalized Fermat 2058 143844356^131072+1 1069272 L5693 2023 Generalized Fermat 2059 599*2^3551793+1 1069200 L3824 2018 2060 143421820^131072+1 1069104 L4904 2023 Generalized Fermat 2061 621*2^3551472+1 1069103 L4687 2018 2062 143416574^131072+1 1069102 L4591 2023 Generalized Fermat 2063 143126384^131072+1 1068987 L5288 2023 Generalized Fermat 2064 142589776^131072+1 1068773 L4201 2023 Generalized Fermat 2065 773*2^3550373+1 1068772 L1808 2018 2066 142527792^131072+1 1068748 L4387 2023 Generalized Fermat 2067 142207386^131072+1 1068620 L5694 2023 Generalized Fermat 2068 142195844^131072+1 1068616 L5548 2023 Generalized Fermat 2069 141636602^131072+1 1068391 L5639 2023 Generalized Fermat 2070 141554190^131072+1 1068358 L4956 2023 Generalized Fermat 2071 1199*2^3548380-1 1068172 L1828 2018 2072 140928044^131072+1 1068106 L4870 2023 Generalized Fermat 2073 191*2^3548117+1 1068092 L4203 2015 2074 140859866^131072+1 1068078 L5011 2023 Generalized Fermat 2075 140824516^131072+1 1068064 L4760 2023 Generalized Fermat 2076 140649396^131072+1 1067993 L5578 2023 Generalized Fermat 2077 867*2^3547711+1 1067971 L4155 2018 2078 140473436^131072+1 1067922 L4210 2023 Generalized Fermat 2079 140237690^131072+1 1067826 L5051 2023 Generalized Fermat 2080 139941370^131072+1 1067706 L5671 2023 Generalized Fermat 2081 3^2237561+3^1118781+1 1067588 L3839 2014 Generalized unique 2082 139352402^131072+1 1067466 L5663 2023 Generalized Fermat 2083 351*2^3545752+1 1067381 L4082 2016 2084 138896860^131072+1 1067279 L4745 2023 Generalized Fermat 2085 138894074^131072+1 1067278 L5041 2023 Generalized Fermat 2086 138830036^131072+1 1067252 L5662 2023 Generalized Fermat 2087 138626864^131072+1 1067169 L5663 2023 Generalized Fermat 2088 138527284^131072+1 1067128 L5663 2023 Generalized Fermat 2089 93*2^3544744+1 1067077 L1728 2014 2090b 26279*24^773017+1 1066932 A11 2025 2091 138000006^131072+1 1066911 L5051 2023 Generalized Fermat 2092 137900696^131072+1 1066870 L4249 2023 Generalized Fermat 2093 137878102^131072+1 1066860 L5051 2023 Generalized Fermat 2094 1159*2^3543702+1 1066764 L1823 2018 2095 137521726^131072+1 1066713 L4672 2023 Generalized Fermat 2096 137486564^131072+1 1066699 L5586 2023 Generalized Fermat 2097 136227118^131072+1 1066175 L5416 2023 Generalized Fermat 2098 136192168^131072+1 1066160 L5556 2023 Generalized Fermat 2099 136124076^131072+1 1066132 L5041 2023 Generalized Fermat 2100 136122686^131072+1 1066131 L5375 2023 Generalized Fermat 2101 2*3^2234430-1 1066095 A2 2023 2102 178658*5^1525224-1 1066092 L3789 2014 2103 135744154^131072+1 1065973 L5068 2023 Generalized Fermat 2104 135695350^131072+1 1065952 L4249 2023 Generalized Fermat 2105 135623220^131072+1 1065922 L5657 2023 Generalized Fermat 2106 135513092^131072+1 1065876 L5656 2023 Generalized Fermat 2107 135497678^131072+1 1065869 L4387 2023 Generalized Fermat 2108 135458028^131072+1 1065852 L5051 2023 Generalized Fermat 2109 135332960^131072+1 1065800 L5655 2023 Generalized Fermat 2110 135135930^131072+1 1065717 L4387 2023 Generalized Fermat 2111 1085*2^3539671+1 1065551 L3035 2018 2112 134706086^131072+1 1065536 L5378 2023 Generalized Fermat 2113 134459616^131072+1 1065431 L5658 2023 Generalized Fermat 2114 134447516^131072+1 1065426 L4387 2023 Generalized Fermat 2115 134322272^131072+1 1065373 L4387 2023 Generalized Fermat 2116 134206304^131072+1 1065324 L4684 2023 Generalized Fermat 2117 134176868^131072+1 1065311 L5375 2023 Generalized Fermat 2118 133954018^131072+1 1065217 L5088 2023 Generalized Fermat 2119 133676500^131072+1 1065099 L4387 2023 Generalized Fermat 2120 133569020^131072+1 1065053 L5277 2023 Generalized Fermat 2121 133345154^131072+1 1064958 L4210 2023 Generalized Fermat 2122 133180238^131072+1 1064887 L5586 2023 Generalized Fermat 2123 133096042^131072+1 1064851 L4755 2023 Generalized Fermat 2124 465*2^3536871+1 1064707 L4459 2016 2125 1019*2^3536312-1 1064539 L1828 2012 2126 131820886^131072+1 1064303 L5069 2023 Generalized Fermat 2127 131412078^131072+1 1064126 L5653 2023 Generalized Fermat 2128 131370186^131072+1 1064108 L5036 2023 Generalized Fermat 2129 131309874^131072+1 1064082 L5069 2023 Generalized Fermat 2130 131112524^131072+1 1063996 L4245 2023 Generalized Fermat 2131 1179*2^3534450+1 1063979 L3035 2018 2132 130907540^131072+1 1063907 L4526 2023 Generalized Fermat 2133 130593462^131072+1 1063771 L4559 2023 Generalized Fermat 2134 447*2^3533656+1 1063740 L4457 2016 2135 130518578^131072+1 1063738 L5029 2023 Generalized Fermat 2136 1059*2^3533550+1 1063708 L1823 2018 2137 130198372^131072+1 1063598 L5416 2023 Generalized Fermat 2138 130148002^131072+1 1063576 L4387 2023 Generalized Fermat 2139 130128232^131072+1 1063567 L5029 2023 Generalized Fermat 2140 130051980^131072+1 1063534 L5416 2023 Generalized Fermat 2141 130048816^131072+1 1063533 L4245 2023 Generalized Fermat 2142 345*2^3532957+1 1063529 L4314 2016 2143 553*2^3532758+1 1063469 L1823 2018 2144 129292212^131072+1 1063201 L4285 2023 Generalized Fermat 2145 129159632^131072+1 1063142 L5051 2023 Generalized Fermat 2146 128558886^131072+1 1062877 L5518 2023 Generalized Fermat 2147 128520182^131072+1 1062860 L4745 2023 Generalized Fermat 2148 543131*2^3529754-1 1062568 L4925 2022 2149 127720948^131072+1 1062504 L5378 2023 Generalized Fermat 2150 141*2^3529287+1 1062424 L4185 2015 2151 127093036^131072+1 1062224 L4591 2023 Generalized Fermat 2152 24950*745^369781-1 1062074 L4189 2024 2153 126611934^131072+1 1062008 L4776 2023 Generalized Fermat 2154 126423276^131072+1 1061923 L4201 2023 Generalized Fermat 2155 126334514^131072+1 1061883 L4249 2023 Generalized Fermat 2156 13*2^3527315-1 1061829 L1862 2016 2157 126199098^131072+1 1061822 L4591 2023 Generalized Fermat 2158 126189358^131072+1 1061818 L4704 2023 Generalized Fermat 2159 125966884^131072+1 1061717 L4747 2023 Generalized Fermat 2160 125714084^131072+1 1061603 L4745 2023 Generalized Fermat 2161 125141096^131072+1 1061343 L4559 2023 Generalized Fermat 2162 1393*2^3525571-1 1061306 L1828 2017 2163 125006494^131072+1 1061282 L5639 2023 Generalized Fermat 2164 124877454^131072+1 1061223 L4245 2023 Generalized Fermat 2165 124875502^131072+1 1061222 L4591 2023 Generalized Fermat 2166 124749274^131072+1 1061164 L4591 2023 Generalized Fermat 2167 124586054^131072+1 1061090 L4249 2023 Generalized Fermat 2168 124582356^131072+1 1061088 L5606 2023 Generalized Fermat 2169 124543852^131072+1 1061071 L4249 2023 Generalized Fermat 2170 124393514^131072+1 1061002 L4774 2023 Generalized Fermat 2171 124219534^131072+1 1060922 L4249 2023 Generalized Fermat 2172 124133348^131072+1 1060883 L5088 2023 Generalized Fermat 2173 124080788^131072+1 1060859 L5639 2023 Generalized Fermat 2174 1071*2^3523944+1 1060816 L1675 2018 2175 123910270^131072+1 1060780 L4249 2023 Generalized Fermat 2176 123856592^131072+1 1060756 L4201 2023 Generalized Fermat 2177 123338660^131072+1 1060517 L4905 2022 Generalized Fermat 2178 123306230^131072+1 1060502 L5638 2023 Generalized Fermat 2179 123195196^131072+1 1060451 L5029 2022 Generalized Fermat 2180 122941512^131072+1 1060333 L4559 2022 Generalized Fermat 2181 122869094^131072+1 1060300 L4939 2022 Generalized Fermat 2182 122481106^131072+1 1060120 L4704 2022 Generalized Fermat 2183 122414564^131072+1 1060089 L5627 2022 Generalized Fermat 2184 122372192^131072+1 1060069 L5099 2022 Generalized Fermat 2185 121854624^131072+1 1059828 L5051 2022 Generalized Fermat 2186 121462664^131072+1 1059645 L5632 2022 Generalized Fermat 2187 121158848^131072+1 1059502 L4774 2022 Generalized Fermat 2188 2220172*3^2220172+1 1059298 p137 2023 Generalized Cullen 2189 329*2^3518451+1 1059162 L1823 2016 2190 135*2^3518338+1 1059128 L4045 2015 2191 120106930^131072+1 1059006 L4249 2022 Generalized Fermat 2192 2*10^1059002-1 1059003 L3432 2013 Near-repdigit 2193 119744014^131072+1 1058833 L4249 2022 Generalized Fermat 2194 64*10^1058794+1 1058796 L4036 2017 Generalized Fermat 2195 119604848^131072+1 1058767 L4201 2022 Generalized Fermat 2196 119541900^131072+1 1058737 L4747 2022 Generalized Fermat 2197 119510296^131072+1 1058722 L4201 2022 Generalized Fermat 2198 119246256^131072+1 1058596 L4249 2022 Generalized Fermat 2199 119137704^131072+1 1058544 L4201 2022 Generalized Fermat 2200 118888350^131072+1 1058425 L4999 2022 Generalized Fermat 2201 599*2^3515959+1 1058412 L1823 2018 2202 118583824^131072+1 1058279 L4210 2022 Generalized Fermat 2203 118109876^131072+1 1058051 L4550 2022 Generalized Fermat 2204 117906758^131072+1 1057953 L4249 2022 Generalized Fermat 2205 117687318^131072+1 1057847 L4245 2022 Generalized Fermat 2206 117375862^131072+1 1057696 L4774 2022 Generalized Fermat 2207 117345018^131072+1 1057681 L4848 2022 Generalized Fermat 2208 117196584^131072+1 1057609 L4559 2022 Generalized Fermat 2209 117153716^131072+1 1057588 L4774 2022 Generalized Fermat 2210 117088740^131072+1 1057557 L4559 2022 Generalized Fermat 2211 116936156^131072+1 1057483 L5332 2022 Generalized Fermat 2212 116402336^131072+1 1057222 L4760 2022 Generalized Fermat 2213 7*2^3511774+1 1057151 p236 2008 Divides GF(3511773,6) 2214 116036228^131072+1 1057043 L4773 2022 Generalized Fermat 2215 116017862^131072+1 1057034 L4559 2022 Generalized Fermat 2216 115992582^131072+1 1057021 L4835 2022 Generalized Fermat 2217 115873312^131072+1 1056963 L4677 2022 Generalized Fermat 2218 1135*2^3510890+1 1056887 L1823 2018 2219 115704568^131072+1 1056880 L4559 2022 Generalized Fermat 2220 115479166^131072+1 1056769 L4774 2022 Generalized Fermat 2221 115409608^131072+1 1056735 L4774 2022 Generalized Fermat 2222 115256562^131072+1 1056659 L4559 2022 Generalized Fermat 2223 114687250^131072+1 1056377 L5007 2022 Generalized Fermat 2224 114643510^131072+1 1056356 L4659 2022 Generalized Fermat 2225 114340846^131072+1 1056205 L4559 2022 Generalized Fermat 2226 114159720^131072+1 1056115 L4787 2022 Generalized Fermat 2227 114055498^131072+1 1056063 L4387 2022 Generalized Fermat 2228 114009952^131072+1 1056040 L4387 2022 Generalized Fermat 2229 113904214^131072+1 1055987 L4559 2022 Generalized Fermat 2230 113807058^131072+1 1055939 L5157 2022 Generalized Fermat 2231 113550956^131072+1 1055810 L5578 2022 Generalized Fermat 2232 113521888^131072+1 1055796 L4387 2022 Generalized Fermat 2233 113431922^131072+1 1055751 L4559 2022 Generalized Fermat 2234 113328940^131072+1 1055699 L4787 2022 Generalized Fermat 2235 113327472^131072+1 1055698 L5467 2022 Generalized Fermat 2236 113325850^131072+1 1055698 L4559 2022 Generalized Fermat 2237 113313172^131072+1 1055691 L5005 2022 Generalized Fermat 2238 113191714^131072+1 1055630 L5056 2022 Generalized Fermat 2239 113170004^131072+1 1055619 L4584 2022 Generalized Fermat 2240 428639*2^3506452-1 1055553 L2046 2011 2241 112996304^131072+1 1055532 L5544 2022 Generalized Fermat 2242 112958834^131072+1 1055513 L5512 2022 Generalized Fermat 2243 112852910^131072+1 1055459 L5157 2022 Generalized Fermat 2244 112719374^131072+1 1055392 L4793 2022 Generalized Fermat 2245 112580428^131072+1 1055322 L5512 2022 Generalized Fermat 2246 112248096^131072+1 1055154 L5359 2022 Generalized Fermat 2247 112053266^131072+1 1055055 L5359 2022 Generalized Fermat 2248 112023072^131072+1 1055039 L5156 2022 Generalized Fermat 2249 111673524^131072+1 1054861 L5548 2022 Generalized Fermat 2250 111181588^131072+1 1054610 L4550 2022 Generalized Fermat 2251 104*383^408249+1 1054591 L2012 2021 2252 110866802^131072+1 1054449 L5547 2022 Generalized Fermat 2253 555*2^3502765+1 1054441 L1823 2018 2254 110824714^131072+1 1054427 L4201 2022 Generalized Fermat 2255 8300*171^472170+1 1054358 L5780 2023 2256 110428380^131072+1 1054223 L5543 2022 Generalized Fermat 2257 110406480^131072+1 1054212 L5051 2022 Generalized Fermat 2258 643*2^3501974+1 1054203 L1823 2018 2259 2*23^774109+1 1054127 g427 2014 Divides Phi(23^774109,2) 2260 1159*2^3501490+1 1054057 L2125 2018 2261 1001*2^3501038-1 1053921 A46 2024 2262 109678642^131072+1 1053835 L4559 2022 Generalized Fermat 2263 109654098^131072+1 1053823 L5143 2022 Generalized Fermat 2264 109142690^131072+1 1053557 L4201 2022 Generalized Fermat 2265 109082020^131072+1 1053525 L4773 2022 Generalized Fermat 2266 1189*2^3499042+1 1053320 L4724 2018 2267 108584736^131072+1 1053265 L5057 2022 Generalized Fermat 2268 108581414^131072+1 1053263 L5088 2022 Generalized Fermat 2269 108195632^131072+1 1053060 L5025 2022 Generalized Fermat 2270 108161744^131072+1 1053043 L4945 2022 Generalized Fermat 2271 108080390^131072+1 1053000 L4945 2022 Generalized Fermat 2272 107979316^131072+1 1052947 L4559 2022 Generalized Fermat 2273 107922308^131072+1 1052916 L5025 2022 Generalized Fermat 2274 609*2^3497474+1 1052848 L1823 2018 2275 9*2^3497442+1 1052836 L1780 2012 Generalized Fermat, divides GF(3497441,10) 2276 107732730^131072+1 1052816 L5518 2022 Generalized Fermat 2277 107627678^131072+1 1052761 L5025 2022 Generalized Fermat 2278 107492880^131072+1 1052689 L4550 2022 Generalized Fermat 2279 107420312^131072+1 1052651 L4550 2022 Generalized Fermat 2280 107404768^131072+1 1052643 L4267 2022 Generalized Fermat 2281 107222132^131072+1 1052546 L5019 2022 Generalized Fermat 2282 107126228^131072+1 1052495 L5025 2022 Generalized Fermat 2283 87*2^3496188+1 1052460 L1576 2014 2284 106901434^131072+1 1052375 L4760 2022 Generalized Fermat 2285 106508704^131072+1 1052166 L5505 2022 Generalized Fermat 2286 106440698^131072+1 1052130 L4245 2022 Generalized Fermat 2287 106019242^131072+1 1051904 L5025 2022 Generalized Fermat 2288 105937832^131072+1 1051860 L4745 2022 Generalized Fermat 2289 783*2^3494129+1 1051841 L3824 2018 2290 105861526^131072+1 1051819 L5500 2022 Generalized Fermat 2291 105850338^131072+1 1051813 L5504 2022 Generalized Fermat 2292 105534478^131072+1 1051643 L5025 2022 Generalized Fermat 2293 105058710^131072+1 1051386 L5499 2022 Generalized Fermat 2294 104907548^131072+1 1051304 L4245 2022 Generalized Fermat 2295 104808996^131072+1 1051250 L4591 2022 Generalized Fermat 2296 104641854^131072+1 1051159 L4245 2022 Generalized Fermat 2297 51*2^3490971+1 1050889 L1823 2014 2298 1485*2^3490746+1 1050823 L1134 2021 2299 103828182^131072+1 1050715 L5072 2022 Generalized Fermat 2300 103605376^131072+1 1050593 L5056 2022 Generalized Fermat 2301b 3609*24^761179+1 1050592 A11 2025 2302 103289324^131072+1 1050419 L5044 2022 Generalized Fermat 2303 103280694^131072+1 1050414 L4745 2022 Generalized Fermat 2304 103209792^131072+1 1050375 L5025 2022 Generalized Fermat 2305 103094212^131072+1 1050311 L4245 2022 Generalized Fermat 2306 103013294^131072+1 1050266 L4745 2022 Generalized Fermat 2307 753*2^3488818+1 1050242 L1823 2018 2308 102507732^131072+1 1049986 L4245 2022 Generalized Fermat 2309 102469684^131072+1 1049965 L4245 2022 Generalized Fermat 2310 102397132^131072+1 1049925 L4720 2022 Generalized Fermat 2311 102257714^131072+1 1049847 L4245 2022 Generalized Fermat 2312 699*2^3487253+1 1049771 L1204 2018 2313 102050324^131072+1 1049732 L5036 2022 Generalized Fermat 2314 102021074^131072+1 1049716 L4245 2022 Generalized Fermat 2315 101915106^131072+1 1049656 L6123 2022 Generalized Fermat 2316 101856256^131072+1 1049623 L4774 2022 Generalized Fermat 2317 1001*2^3486566-1 1049564 L4518 2024 2318 249*2^3486411+1 1049517 L4045 2015 2319 195*2^3486379+1 1049507 L4108 2015 2320 101607438^131072+1 1049484 L4591 2022 Generalized Fermat 2321 4687*2^3485926+1 1049372 L5302 2023 2322 2691*2^3485924+1 1049372 L5302 2023 2323 6083*2^3485877+1 1049358 L5837 2023 2324 101328382^131072+1 1049328 L4591 2022 Generalized Fermat 2325 101270816^131072+1 1049295 L4245 2022 Generalized Fermat 2326 9757*2^3485666+1 1049295 L5284 2023 2327 8859*2^3484982+1 1049089 L5833 2023 2328 100865034^131072+1 1049067 L4387 2022 Generalized Fermat 2329 59912*5^1500861+1 1049062 L3772 2014 2330 495*2^3484656+1 1048989 L3035 2016 2331 100719472^131072+1 1048985 L5270 2022 Generalized Fermat 2332 100534258^131072+1 1048880 L4245 2022 Generalized Fermat 2333 100520930^131072+1 1048872 L4201 2022 Generalized Fermat 2334 4467*2^3484204+1 1048854 L5189 2023 2335 4873*2^3484142+1 1048835 L5710 2023 2336 100441116^131072+1 1048827 L4309 2022 Generalized Fermat 2337 (3*2^1742059)^2-3*2^1742059+1 1048825 A3 2023 Generalized unique 2338 3891*2^3484099+1 1048822 L5260 2023 2339 7833*2^3484060+1 1048811 L5830 2023 2340 100382228^131072+1 1048794 L4308 2022 Generalized Fermat 2341 100369508^131072+1 1048786 L5157 2022 Generalized Fermat 2342 100324226^131072+1 1048761 L4201 2022 Generalized Fermat 2343 3097*2^3483800+1 1048732 L5829 2023 2344 5873*2^3483573+1 1048664 L5710 2023 2345 2895*2^3483455+1 1048628 L5480 2023 2346 9029*2^3483337+1 1048593 L5393 2023 2347 100010426^131072+1 1048582 L5375 2022 Generalized Fermat 2348 5531*2^3483263+1 1048571 L5825 2023 2349 323*2^3482789+1 1048427 L1204 2016 2350 3801*2^3482723+1 1048408 L5517 2023 2351 99665972^131072+1 1048386 L4201 2022 Generalized Fermat 2352 99650934^131072+1 1048377 L5375 2022 Generalized Fermat 2353 99557826^131072+1 1048324 L5466 2022 Generalized Fermat 2354 8235*2^3482277+1 1048274 L5820 2023 2355 9155*2^3482129+1 1048230 L5226 2023 2356 99351950^131072+1 1048206 L5143 2022 Generalized Fermat 2357 4325*2^3481969+1 1048181 L5434 2023 2358 99189780^131072+1 1048113 L4201 2022 Generalized Fermat 2359 1149*2^3481694+1 1048098 L1823 2018 2360 98978354^131072+1 1047992 L5465 2022 Generalized Fermat 2361 6127*2^3481244+1 1047963 L5226 2023 2362 98922946^131072+1 1047960 L5453 2022 Generalized Fermat 2363 8903*2^3481217+1 1047955 L5226 2023 2364 3595*2^3481178+1 1047943 L5214 2023 2365 3799*2^3480810+1 1047832 L5226 2023 2366 6101*2^3480801+1 1047830 L5226 2023 2367 98652282^131072+1 1047804 L4201 2022 Generalized Fermat 2368 1740349*2^3480698+1 1047801 L5765 2023 Generalized Cullen 2369 98557818^131072+1 1047750 L5464 2022 Generalized Fermat 2370 98518362^131072+1 1047727 L5460 2022 Generalized Fermat 2371 5397*2^3480379+1 1047703 L5226 2023 2372 5845*2^3479972+1 1047580 L5517 2023 2373 98240694^131072+1 1047566 L4720 2022 Generalized Fermat 2374 98200338^131072+1 1047543 L4559 2022 Generalized Fermat 2375 701*2^3479779+1 1047521 L2125 2018 2376 98137862^131072+1 1047507 L4525 2022 Generalized Fermat 2377 813*2^3479728+1 1047506 L4724 2018 2378 7125*2^3479509+1 1047441 L5812 2023 2379 1971*2^3479061+1 1047306 L5226 2023 2380 1215*2^3478543+1 1047149 L5226 2023 2381 97512766^131072+1 1047143 L5460 2022 Generalized Fermat 2382 5985*2^3478217+1 1047052 L5387 2023 2383 3093*2^3478148+1 1047031 L5261 2023 2384 2145*2^3478095+1 1047015 L5387 2023 2385 6685*2^3478086+1 1047013 L5237 2023 2386 9603*2^3478084+1 1047012 L5178 2023 2387 1315*2^3477718+1 1046901 L5316 2023 2388 97046574^131072+1 1046870 L4956 2022 Generalized Fermat 2389 197*2^3477399+1 1046804 L2125 2015 2390 8303*2^3477201+1 1046746 L5387 2023 2391 96821302^131072+1 1046738 L5453 2022 Generalized Fermat 2392 5925*2^3477009+1 1046688 L5810 2023 2393 96734274^131072+1 1046686 L5297 2022 Generalized Fermat 2394 7825*2^3476524+1 1046542 L5174 2023 2395 96475576^131072+1 1046534 L4424 2022 Generalized Fermat 2396 8197*2^3476332+1 1046485 L5174 2023 2397 8529*2^3476111+1 1046418 L5387 2023 2398 8411*2^3476055+1 1046401 L5783 2023 2399 4319*2^3475955+1 1046371 L5803 2023 2400 96111850^131072+1 1046319 L4245 2022 Generalized Fermat 2401 95940796^131072+1 1046218 L4591 2022 Generalized Fermat 2402 6423*2^3475393+1 1046202 L5174 2023 2403 2281*2^3475340+1 1046185 L5302 2023 2404 7379*2^3474983+1 1046078 L5798 2023 2405 4*5^1496566+1 1046056 L4965 2023 Generalized Fermat 2406 95635202^131072+1 1046036 L5452 2021 Generalized Fermat 2407 95596816^131072+1 1046013 L4591 2021 Generalized Fermat 2408 4737*2^3474562+1 1045952 L5302 2023 2409 2407*2^3474406+1 1045904 L5557 2023 2410 95308284^131072+1 1045841 L4584 2021 Generalized Fermat 2411 491*2^3473837+1 1045732 L4343 2016 2412 2693*2^3473721+1 1045698 L5174 2023 2413 94978760^131072+1 1045644 L4201 2021 Generalized Fermat 2414 3375*2^3473210+1 1045544 L5294 2023 2415 8835*2^3472666+1 1045381 L5178 2023 2416 5615*2^3472377+1 1045294 L5174 2023 2417 1785*2^3472229+1 1045249 L875 2023 2418 8997*2^3472036+1 1045191 L5302 2023 2419 9473*2^3471885+1 1045146 L5294 2023 2420 7897*2^3471568+1 1045050 L5294 2023 2421 93950924^131072+1 1045025 L5425 2021 Generalized Fermat 2422 93886318^131072+1 1044985 L5433 2021 Generalized Fermat 2423 1061*2^3471354-1 1044985 L1828 2017 2424 1913*2^3471177+1 1044932 L5189 2023 2425 93773904^131072+1 1044917 L4939 2021 Generalized Fermat 2426 7723*2^3471074+1 1044902 L5189 2023 2427 4195*2^3470952+1 1044865 L5294 2023 2428 93514592^131072+1 1044760 L4591 2021 Generalized Fermat 2429 5593*2^3470520+1 1044735 L5387 2023 2430 3665*2^3469955+1 1044565 L5189 2023 2431 3301*2^3469708+1 1044490 L5261 2023 2432 6387*2^3469634+1 1044468 L5192 2023 2433 93035888^131072+1 1044467 L4245 2021 Generalized Fermat 2434 8605*2^3469570+1 1044449 L5387 2023 2435 1359*2^3468725+1 1044194 L5197 2023 2436 92460588^131072+1 1044114 L5254 2021 Generalized Fermat 2437 7585*2^3468338+1 1044078 L5197 2023 2438 1781*2^3468335+1 1044077 L5387 2023 2439 6885*2^3468181+1 1044031 L5197 2023 2440 4372*30^706773-1 1043994 L4955 2023 2441 7287*2^3467938+1 1043958 L5776 2023 2442 92198216^131072+1 1043953 L4738 2021 Generalized Fermat 2443 3163*2^3467710+1 1043889 L5517 2023 2444 6099*2^3467689+1 1043883 L5197 2023 2445 6665*2^3467627+1 1043864 L5174 2023 2446 4099*2^3467462+1 1043814 L5774 2023 2447 5285*2^3467445+1 1043809 L5189 2023 2448 1001*2^3467258-1 1043752 L4518 2024 2449 91767880^131072+1 1043686 L5051 2021 Generalized Fermat 2450 91707732^131072+1 1043649 L4591 2021 Generalized Fermat 2451 5935*2^3466880+1 1043639 L5197 2023 2452 91689894^131072+1 1043638 L4591 2021 Generalized Fermat 2453 91685784^131072+1 1043635 L4591 2021 Generalized Fermat 2454 8937*2^3466822+1 1043622 L5174 2023 2455 91655310^131072+1 1043616 L4659 2021 Generalized Fermat 2456 8347*2^3466736+1 1043596 L5770 2023 2457 8863*2^3465780+1 1043308 L5766 2023 2458 3895*2^3465744+1 1043297 L5640 2023 2459 91069366^131072+1 1043251 L5277 2021 Generalized Fermat 2460 91049202^131072+1 1043239 L4591 2021 Generalized Fermat 2461 91033554^131072+1 1043229 L4591 2021 Generalized Fermat 2462 8561*2^3465371+1 1043185 L5197 2023 2463 90942952^131072+1 1043172 L4387 2021 Generalized Fermat 2464 90938686^131072+1 1043170 L4387 2021 Generalized Fermat 2465 9971*2^3465233+1 1043144 L5488 2023 2466 90857490^131072+1 1043119 L4591 2021 Generalized Fermat 2467 3801*2^3464980+1 1043067 L5197 2023 2468 3099*2^3464739+1 1042994 L5284 2023 2469 90382348^131072+1 1042820 L4267 2021 Generalized Fermat 2470 641*2^3464061+1 1042790 L1444 2018 2471 6717*2^3463735+1 1042692 L5754 2023 2472 6015*2^3463561+1 1042640 L5387 2023 2473 90006846^131072+1 1042583 L4773 2021 Generalized Fermat 2474 1667*2^3463355+1 1042577 L5226 2023 2475 2871*2^3463313+1 1042565 L5189 2023 2476 89977312^131072+1 1042565 L5070 2021 Generalized Fermat 2477 6007*2^3463048+1 1042486 L5226 2023 2478 89790434^131072+1 1042446 L5007 2021 Generalized Fermat 2479 9777*2^3462742+1 1042394 L5197 2023 2480 5215*2^3462740+1 1042393 L5174 2023 2481 8365*2^3462722+1 1042388 L5320 2023 2482 3597*2^3462056+1 1042187 L5174 2023 2483 2413*2^3461890+1 1042137 L5197 2023 2484 89285798^131072+1 1042125 L5157 2021 Generalized Fermat 2485 453*2^3461688+1 1042075 L3035 2016 2486 89113896^131072+1 1042016 L5338 2021 Generalized Fermat 2487 4401*2^3461476+1 1042012 L5197 2023 2488 9471*2^3461305+1 1041961 L5594 2023 2489 7245*2^3461070+1 1041890 L5449 2023 2490 3969*2^3460942+1 1041851 L5471 2023 Generalized Fermat 2491 4365*2^3460914+1 1041843 L5197 2023 2492 4613*2^3460861+1 1041827 L5614 2023 2493 88760062^131072+1 1041789 L4903 2021 Generalized Fermat 2494 5169*2^3460553+1 1041734 L5742 2023 2495 8395*2^3460530+1 1041728 L5284 2023 2496 5835*2^3460515+1 1041723 L5740 2023 2497 8059*2^3460246+1 1041642 L5350 2023 2498 571*2^3460216+1 1041632 L3035 2018 2499 6065*2^3460205+1 1041630 L5683 2023 2500 88243020^131072+1 1041457 L4774 2021 Generalized Fermat 2501 88166868^131072+1 1041408 L5277 2021 Generalized Fermat 2502 6237*2^3459386+1 1041383 L5509 2023 2503 88068088^131072+1 1041344 L4933 2021 Generalized Fermat 2504 4029*2^3459062+1 1041286 L5727 2023 2505 87920992^131072+1 1041249 L4249 2021 Generalized Fermat 2506 7055*2^3458909+1 1041240 L5509 2023 2507 7297*2^3458768+1 1041197 L5726 2023 2508 2421*2^3458432+1 1041096 L5725 2023 2509 7907*2^3458207+1 1041028 L5509 2023 2510 87547832^131072+1 1041006 L4591 2021 Generalized Fermat 2511 87454694^131072+1 1040946 L4672 2021 Generalized Fermat 2512 7839*2^3457846+1 1040920 L5231 2023 2513 87370574^131072+1 1040891 L5297 2021 Generalized Fermat 2514 87352356^131072+1 1040879 L4387 2021 Generalized Fermat 2515 87268788^131072+1 1040825 L4917 2021 Generalized Fermat 2516 87192538^131072+1 1040775 L4861 2021 Generalized Fermat 2517 5327*2^3457363+1 1040774 L5715 2023 2518 87116452^131072+1 1040725 L5297 2021 Generalized Fermat 2519 87039658^131072+1 1040675 L5297 2021 Generalized Fermat 2520 6059*2^3457001+1 1040665 L5197 2023 2521 8953*2^3456938+1 1040646 L5724 2023 2522 8669*2^3456759+1 1040593 L5710 2023 2523 86829162^131072+1 1040537 L5265 2021 Generalized Fermat 2524 4745*2^3456167+1 1040414 L5705 2023 2525 8213*2^3456141+1 1040407 L5703 2023 2526 86413544^131072+1 1040264 L4914 2021 Generalized Fermat 2527 86347638^131072+1 1040221 L4848 2021 Generalized Fermat 2528 86295564^131072+1 1040186 L5030 2021 Generalized Fermat 2529 1155*2^3455254+1 1040139 L4711 2017 2530 37292*5^1487989+1 1040065 L3553 2013 2531 86060696^131072+1 1040031 L5057 2021 Generalized Fermat 2532 5525*2^3454069+1 1039783 L5651 2023 2533 4235*2^3453573+1 1039633 L5650 2023 2534 6441*2^3453227+1 1039529 L5683 2023 2535 4407*2^3453195+1 1039519 L5650 2023 2536 9867*2^3453039+1 1039473 L5686 2023 2537 85115888^131072+1 1039403 L4909 2021 Generalized Fermat 2538 4857*2^3452675+1 1039363 L5600 2023 2539 8339*2^3452667+1 1039361 L5651 2023 2540 84924212^131072+1 1039275 L4309 2021 Generalized Fermat 2541 7079*2^3452367+1 1039270 L5650 2023 2542 5527*2^3452342+1 1039263 L5679 2023 2543 84817722^131072+1 1039203 L4726 2021 Generalized Fermat 2544 84765338^131072+1 1039168 L4245 2021 Generalized Fermat 2545 84757790^131072+1 1039163 L5051 2021 Generalized Fermat 2546 84723284^131072+1 1039140 L5051 2021 Generalized Fermat 2547 84715930^131072+1 1039135 L4963 2021 Generalized Fermat 2548 84679936^131072+1 1039111 L4864 2021 Generalized Fermat 2549 3719*2^3451667+1 1039059 L5294 2023 2550 6725*2^3451455+1 1038996 L5685 2023 2551 8407*2^3451334+1 1038959 L5524 2023 2552 84445014^131072+1 1038952 L4909 2021 Generalized Fermat 2553 84384358^131072+1 1038912 L4622 2021 Generalized Fermat 2554 4*10^1038890+1 1038891 L4789 2024 Generalized Fermat 2555 1623*2^3451109+1 1038891 L5308 2023 2556 8895*2^3450982+1 1038854 L5666 2023 2557 84149050^131072+1 1038753 L5033 2021 Generalized Fermat 2558 2899*2^3450542+1 1038721 L5600 2023 2559 6337*2^3449506+1 1038409 L5197 2023 2560 4381*2^3449456+1 1038394 L5392 2023 2561 2727*2^3449326+1 1038355 L5421 2023 2562 2877*2^3449311+1 1038350 L5517 2023 2563 7507*2^3448920+1 1038233 L5284 2023 2564 3629*2^3448919+1 1038232 L5192 2023 2565 83364886^131072+1 1038220 L4591 2021 Generalized Fermat 2566 83328182^131072+1 1038195 L5051 2021 Generalized Fermat 2567 1273*2^3448551-1 1038121 L1828 2012 2568 1461*2^3448423+1 1038082 L4944 2023 2569 3235*2^3448352+1 1038061 L5571 2023 2570 4755*2^3448344+1 1038059 L5524 2023 2571 5655*2^3448288+1 1038042 L5651 2023 2572 4873*2^3448176+1 1038009 L5524 2023 2573 83003850^131072+1 1037973 L4963 2021 Generalized Fermat 2574 8139*2^3447967+1 1037946 L5652 2023 2575 1065*2^3447906+1 1037927 L4664 2017 2576 1717*2^3446756+1 1037581 L5517 2023 2577 6357*2^3446434+1 1037484 L5284 2023 2578 1155*2^3446253+1 1037429 L3035 2017 2579 9075*2^3446090+1 1037381 L5648 2023 2580 82008736^131072+1 1037286 L4963 2021 Generalized Fermat 2581 82003030^131072+1 1037282 L4410 2021 Generalized Fermat 2582 1483*2^3445724+1 1037270 L5650 2023 2583 81976506^131072+1 1037264 L4249 2021 Generalized Fermat 2584 2223*2^3445682+1 1037257 L5647 2023 2585 8517*2^3445488+1 1037200 L5302 2023 2586 2391*2^3445281+1 1037137 L5596 2023 2587 6883*2^3444784+1 1036988 L5264 2023 2588 81477176^131072+1 1036916 L4245 2020 Generalized Fermat 2589 81444036^131072+1 1036893 L4245 2020 Generalized Fermat 2590 8037*2^3443920+1 1036728 L5626 2023 2591 1375*2^3443850+1 1036706 L5192 2023 2592 81096098^131072+1 1036649 L4249 2020 Generalized Fermat 2593 27288429267119080686...(1036580 other digits)...83679577406643267931 1036620 p384 2015 2594 943*2^3442990+1 1036447 L4687 2017 2595 7743*2^3442814+1 1036395 L5514 2023 2596 5511*2^3442468+1 1036290 L5514 2022 2597 80284312^131072+1 1036076 L5051 2020 Generalized Fermat 2598 6329*2^3441717+1 1036064 L5631 2022 2599 3957*2^3441568+1 1036019 L5476 2022 2600 80146408^131072+1 1035978 L5051 2020 Generalized Fermat 2601 4191*2^3441427+1 1035977 L5189 2022 2602 2459*2^3441331+1 1035948 L5514 2022 2603 4335*2^3441306+1 1035940 L5178 2022 2604 2331*2^3441249+1 1035923 L5626 2022 2605 79912550^131072+1 1035812 L5186 2020 Generalized Fermat 2606 79801426^131072+1 1035733 L4245 2020 Generalized Fermat 2607 79789806^131072+1 1035725 L4658 2020 Generalized Fermat 2608 2363*2^3440385+1 1035663 L5625 2022 2609 5265*2^3440332+1 1035647 L5421 2022 2610 6023*2^3440241+1 1035620 L5517 2022 2611 943*2^3440196+1 1035606 L1448 2017 2612 6663*2^3439901+1 1035518 L5624 2022 2613 79485098^131072+1 1035507 L5130 2020 Generalized Fermat 2614 79428414^131072+1 1035466 L4793 2020 Generalized Fermat 2615 79383608^131072+1 1035434 L4387 2020 Generalized Fermat 2616 5745*2^3439450+1 1035382 L5178 2022 2617b 5889*24^750125+1 1035335 A32 2025 2618 79201682^131072+1 1035303 L5051 2020 Generalized Fermat 2619 5109*2^3439090+1 1035273 L5594 2022 2620 543*2^3438810+1 1035188 L3035 2017 2621 625*2^3438572+1 1035117 L1355 2017 Generalized Fermat 2622 3325*2^3438506+1 1035097 L5619 2022 2623 78910032^131072+1 1035093 L5051 2020 Generalized Fermat 2624 78880690^131072+1 1035072 L5159 2020 Generalized Fermat 2625 78851276^131072+1 1035051 L4928 2020 Generalized Fermat 2626 4775*2^3438217+1 1035011 L5618 2022 2627 78714954^131072+1 1034953 L5130 2020 Generalized Fermat 2628 6963*2^3437988+1 1034942 L5616 2022 2629 74*941^348034-1 1034913 L5410 2020 2630 7423*2^3437856+1 1034902 L5192 2022 2631 6701*2^3437801+1 1034886 L5615 2022 2632 5741*2^3437773+1 1034877 L5517 2022 2633 488639*2^3437688-1 1034853 L5327 2024 2634 78439440^131072+1 1034753 L5051 2020 Generalized Fermat 2635 5601*2^3437259+1 1034722 L5612 2022 2636 7737*2^3437192+1 1034702 L5611 2022 2637 113*2^3437145+1 1034686 L4045 2015 2638 78240016^131072+1 1034608 L4245 2020 Generalized Fermat 2639 6387*2^3436719+1 1034560 L5613 2022 2640 78089172^131072+1 1034498 L4245 2020 Generalized Fermat 2641 2921*2^3436299+1 1034433 L5231 2022 2642 9739*2^3436242+1 1034416 L5178 2022 2643 77924964^131072+1 1034378 L5051 2020 Generalized Fermat 2644 77918854^131072+1 1034374 L4760 2020 Generalized Fermat 2645 1147*2^3435970+1 1034334 L3035 2017 2646 4589*2^3435707+1 1034255 L5174 2022 2647 7479*2^3435683+1 1034248 L5421 2022 2648 2863*2^3435616+1 1034227 L5197 2022 2649 77469882^131072+1 1034045 L4591 2020 Generalized Fermat 2650 9863*2^3434697+1 1033951 L5189 2022 2651 4065*2^3434623+1 1033929 L5197 2022 2652 77281404^131072+1 1033906 L4963 2020 Generalized Fermat 2653 9187*2^3434126+1 1033779 L5600 2022 2654 9531*2^3434103+1 1033772 L5601 2022 2655 1757*2^3433547+1 1033604 L5594 2022 2656 1421*2^3433099+1 1033469 L5237 2022 2657 3969*2^3433007+1 1033442 L5189 2022 2658 6557*2^3433003+1 1033441 L5261 2022 2659 7335*2^3432982+1 1033435 L5231 2022 2660 7125*2^3432836+1 1033391 L5594 2022 2661 2517*2^3432734+1 1033360 L5231 2022 2662 911*2^3432643+1 1033332 L1355 2017 2663 5413*2^3432626+1 1033328 L5231 2022 2664 76416048^131072+1 1033265 L4672 2020 Generalized Fermat 2665 3753*2^3432413+1 1033263 L5261 2022 2666b 2164*24^748621+1 1033259 A62 2025 2667 2691*2^3432191+1 1033196 L5585 2022 2668 3933*2^3432125+1 1033177 L5387 2022 2669 76026988^131072+1 1032975 L5094 2020 Generalized Fermat 2670 76018874^131072+1 1032969 L4774 2020 Generalized Fermat 2671b 5889*24^748409+1 1032967 A15 2025 2672 1435*2^3431284+1 1032923 L5587 2022 2673 75861530^131072+1 1032851 L5053 2020 Generalized Fermat 2674 6783*2^3430781+1 1032772 L5261 2022 2675 8079*2^3430683+1 1032743 L5585 2022 2676 75647276^131072+1 1032690 L4677 2020 Generalized Fermat 2677 75521414^131072+1 1032595 L4584 2020 Generalized Fermat 2678 6605*2^3430187+1 1032593 L5463 2022 2679 3761*2^3430057+1 1032554 L5582 2022 2680 6873*2^3429937+1 1032518 L5294 2022 2681 8067*2^3429891+1 1032504 L5581 2022 2682 3965*2^3429719+1 1032452 L5579 2022 2683 3577*2^3428812+1 1032179 L5401 2022 2684 8747*2^3428755+1 1032163 L5493 2022 2685 9147*2^3428638+1 1032127 L5493 2022 2686 3899*2^3428535+1 1032096 L5174 2022 2687 74833516^131072+1 1032074 L5102 2020 Generalized Fermat 2688 74817490^131072+1 1032062 L4591 2020 Generalized Fermat 2689 8891*2^3428303+1 1032026 L5532 2022 2690 793181*20^793181+1 1031959 L5765 2023 Generalized Cullen 2691 2147*2^3427371+1 1031745 L5189 2022 2692 74396818^131072+1 1031741 L4791 2020 Generalized Fermat 2693 74381296^131072+1 1031729 L4550 2020 Generalized Fermat 2694 74363146^131072+1 1031715 L4898 2020 Generalized Fermat 2695 1127*2^3427219+1 1031699 L3035 2017 2696 74325990^131072+1 1031687 L5024 2020 Generalized Fermat 2697 3021*2^3427059+1 1031652 L5554 2022 2698 3255*2^3426983+1 1031629 L5231 2022 2699 1733*2^3426753+1 1031559 L5565 2022 2700 2339*2^3426599+1 1031513 L5237 2022 2701 4729*2^3426558+1 1031501 L5493 2022 2702 73839292^131072+1 1031313 L4550 2020 Generalized Fermat 2703 5445*2^3425839+1 1031285 L5237 2022 2704 159*2^3425766+1 1031261 L4045 2015 2705 73690464^131072+1 1031198 L4884 2020 Generalized Fermat 2706 3405*2^3425045+1 1031045 L5261 2022 2707 73404316^131072+1 1030976 L5011 2020 Generalized Fermat 2708 1695*2^3424517+1 1030886 L5387 2022 2709 4715*2^3424433+1 1030861 L5557 2022 2710 5525*2^3424423+1 1030858 L5387 2022 2711 8615*2^3424231+1 1030801 L5261 2022 2712 5805*2^3424200+1 1030791 L5237 2022 2713 73160610^131072+1 1030787 L4550 2020 Generalized Fermat 2714 73132228^131072+1 1030765 L4905 2020 Generalized Fermat 2715 73099962^131072+1 1030740 L5068 2020 Generalized Fermat 2716 2109*2^3423798-3027*2^988658+1 1030670 CH13 2023 Arithmetic progression (3,d=2109*2^3423797-3027*2^988658) 2717 2109*2^3423797+1 1030669 L5197 2022 2718 4929*2^3423494+1 1030579 L5554 2022 2719 2987*2^3422911+1 1030403 L5226 2022 2720 72602370^131072+1 1030351 L4201 2020 Generalized Fermat 2721 4843*2^3422644+1 1030323 L5553 2022 2722 5559*2^3422566+1 1030299 L5555 2022 2723 7583*2^3422501+1 1030280 L5421 2022 2724 1119*2^3422189+1 1030185 L1355 2017 2725 2895*2^3422031-143157*2^2144728+1 1030138 p423 2023 Arithmetic progression (3,d=2895*2^3422030-143157*2^2144728) 2726 2895*2^3422030+1 1030138 L5237 2022 2727 2835*2^3421697+1 1030037 L5387 2022 2728 3363*2^3421353+1 1029934 L5226 2022 2729 72070092^131072+1 1029932 L4201 2020 Generalized Fermat 2730 9147*2^3421264+1 1029908 L5237 2022 2731 9705*2^3420915+1 1029803 L5540 2022 2732 1005*2^3420846+1 1029781 L2714 2017 Divides GF(3420844,10) 2733 8919*2^3420758+1 1029755 L5226 2022 2734 71732900^131072+1 1029665 L5053 2020 Generalized Fermat 2735 71679108^131072+1 1029623 L5072 2020 Generalized Fermat 2736 5489*2^3420137+1 1029568 L5174 2022 2737 9957*2^3420098+1 1029557 L5237 2022 2738 93*10^1029523-1 1029525 L4789 2019 Near-repdigit 2739 71450224^131072+1 1029440 L5029 2020 Generalized Fermat 2740a 1962*5^1472736-1 1029402 A11 2025 2741 7213*2^3419370+1 1029337 L5421 2022 2742 7293*2^3419264+1 1029305 L5192 2022 2743 975*2^3419230+1 1029294 L3545 2017 2744 4191*2^3419227+1 1029294 L5421 2022 2745 28080*745^358350-1 1029242 L4189 2024 2746 2393*2^3418921+1 1029202 L5197 2022 2747 999*2^3418885+1 1029190 L3035 2017 2748 2925*2^3418543+1 1029088 L5174 2022 2749 70960658^131072+1 1029049 L5039 2020 Generalized Fermat 2750 70948704^131072+1 1029039 L4660 2020 Generalized Fermat 2751 70934282^131072+1 1029028 L5067 2020 Generalized Fermat 2752 7383*2^3418297+1 1029014 L5189 2022 2753 70893680^131072+1 1028995 L5063 2020 Generalized Fermat 2754 907*2^3417890+1 1028891 L3035 2017 2755 5071*2^3417884+1 1028890 L5237 2022 2756 3473*2^3417741+1 1028847 L5541 2022 2757 191249*2^3417696-1 1028835 L1949 2010 2758 70658696^131072+1 1028806 L5051 2020 Generalized Fermat 2759 3299*2^3417329+1 1028723 L5421 2022 2760 6947*2^3416979+1 1028618 L5540 2022 2761 70421038^131072+1 1028615 L4984 2020 Generalized Fermat 2762 8727*2^3416652+1 1028519 L5226 2022 2763 8789*2^3416543+1 1028486 L5197 2022 2764 70050828^131072+1 1028315 L5021 2020 Generalized Fermat 2765 7917*2^3415947+1 1028307 L5537 2022 2766 70022042^131072+1 1028291 L4201 2020 Generalized Fermat 2767 2055*2^3415873+1 1028284 L5535 2022 2768 4731*2^3415712+1 1028236 L5192 2022 2769 2219*2^3415687+1 1028228 L5178 2022 2770 69915032^131072+1 1028204 L4591 2020 Generalized Fermat 2771 5877*2^3415419+1 1028148 L5532 2022 2772 3551*2^3415275+1 1028104 L5231 2022 2773 69742382^131072+1 1028063 L5053 2020 Generalized Fermat 2774 2313*2^3415046+1 1028035 L5226 2022 2775 69689592^131072+1 1028020 L4387 2020 Generalized Fermat 2776 7637*2^3414875+1 1027984 L5507 2022 2777 2141*2^3414821+1 1027967 L5226 2022 2778 69622572^131072+1 1027965 L4909 2020 Generalized Fermat 2779 3667*2^3414686+1 1027927 L5226 2022 2780 69565722^131072+1 1027919 L4387 2020 Generalized Fermat 2781 6159*2^3414623+1 1027908 L5226 2022 2782 69534788^131072+1 1027894 L5029 2020 Generalized Fermat 2783b 4606*24^744714+1 1027867 A11 2025 2784b 2586*24^744604+1 1027715 A11 2025 2785 4577*2^3413539+1 1027582 L5387 2022 2786 5137*2^3413524+1 1027577 L5261 2022 2787 8937*2^3413364+1 1027529 L5527 2022 2788 8829*2^3413339+1 1027522 L5531 2022 2789 7617*2^3413315+1 1027515 L5197 2022 2790 68999820^131072+1 1027454 L5044 2020 Generalized Fermat 2791 3141*2^3413112+1 1027453 L5463 2022 2792 8831*2^3412931+1 1027399 L5310 2022 2793 68924112^131072+1 1027391 L4745 2020 Generalized Fermat 2794 68918852^131072+1 1027387 L5021 2020 Generalized Fermat 2795 5421*2^3412877+1 1027383 L5310 2022 2796 9187*2^3412700+1 1027330 L5337 2022 2797 68811158^131072+1 1027298 L4245 2020 Generalized Fermat 2798 8243*2^3412577+1 1027292 L5524 2022 2799 1751*2^3412565+1 1027288 L5523 2022 2800 9585*2^3412318+1 1027215 L5197 2022 2801 9647*2^3412247+1 1027193 L5178 2022 2802 3207*2^3412108+1 1027151 L5189 2022 2803 479*2^3411975+1 1027110 L2873 2016 2804 245*2^3411973+1 1027109 L1935 2015 2805 177*2^3411847+1 1027071 L4031 2015 2806 68536972^131072+1 1027071 L5027 2020 Generalized Fermat 2807 9963*2^3411566+1 1026988 L5237 2022 2808 68372810^131072+1 1026934 L4956 2020 Generalized Fermat 2809 9785*2^3411223+1 1026885 L5189 2022 2810 5401*2^3411136+1 1026858 L5261 2022 2811 68275006^131072+1 1026853 L4963 2020 Generalized Fermat 2812 9431*2^3411105+1 1026849 L5237 2022 2813 8227*2^3410878+1 1026781 L5316 2022 2814 4735*2^3410724+1 1026734 L5226 2022 2815 9515*2^3410707+1 1026730 L5237 2022 2816 6783*2^3410690+1 1026724 L5434 2022 2817 8773*2^3410558+1 1026685 L5261 2022 2818 4629*2^3410321+1 1026613 L5517 2022 2819 67894288^131072+1 1026535 L5025 2020 Generalized Fermat 2820 113*2^3409934-1 1026495 L2484 2014 2821 5721*2^3409839+1 1026468 L5226 2022 2822 67725850^131072+1 1026393 L5029 2020 Generalized Fermat 2823 6069*2^3409493+1 1026364 L5237 2022 2824 1981*910^346850+1 1026347 L1141 2021 2825 5317*2^3409236+1 1026287 L5471 2022 2826 7511*2^3408985+1 1026211 L5514 2022 2827 7851*2^3408909+1 1026188 L5176 2022 2828 67371416^131072+1 1026094 L4550 2020 Generalized Fermat 2829 6027*2^3408444+1 1026048 L5239 2022 2830 59*2^3408416-1 1026038 L426 2010 2831 2153*2^3408333+1 1026014 L5237 2022 2832 9831*2^3408056+1 1025932 L5233 2022 2833 3615*2^3408035+1 1025925 L5217 2022 2834 6343*2^3407950+1 1025899 L5226 2022 2835 8611*2^3407516+1 1025769 L5509 2022 2836 66982940^131072+1 1025765 L4249 2020 Generalized Fermat 2837 7111*2^3407452+1 1025750 L5508 2022 2838 66901180^131072+1 1025696 L5018 2020 Generalized Fermat 2839 6945*2^3407256+1 1025691 L5507 2022 2840 6465*2^3407229+1 1025682 L5301 2022 2841 1873*2^3407156+1 1025660 L5440 2022 2842 7133*2^3406377+1 1025426 L5279 2022 2843 7063*2^3406122+1 1025349 L5178 2022 2844 3105*2^3405800+1 1025252 L5502 2022 2845 953*2^3405729+1 1025230 L3035 2017 2846 66272848^131072+1 1025159 L5013 2020 Generalized Fermat 2847 66131722^131072+1 1025037 L4530 2020 Generalized Fermat 2848 373*2^3404702+1 1024921 L3924 2016 2849 7221*2^3404507+1 1024863 L5231 2022 2850 6641*2^3404259+1 1024788 L5501 2022 2851 9225*2^3404209+1 1024773 L5250 2022 2852 65791182^131072+1 1024743 L4623 2019 Generalized Fermat 2853 833*2^3403765+1 1024639 L3035 2017 2854 65569854^131072+1 1024552 L4210 2019 Generalized Fermat 2855 2601*2^3403459+1 1024547 L5350 2022 2856 8835*2^3403266+1 1024490 L5161 2022 2857 7755*2^3403010+1 1024412 L5161 2022 2858 3123*2^3402834+1 1024359 L5260 2022 2859 65305572^131072+1 1024322 L5001 2019 Generalized Fermat 2860 65200798^131072+1 1024230 L4999 2019 Generalized Fermat 2861 1417*2^3402246+1 1024182 L5497 2022 2862 5279*2^3402241+1 1024181 L5250 2022 2863 6651*2^3402137+1 1024150 L5476 2022 2864 1779*2^3401715+1 1024022 L5493 2022 2865 64911056^131072+1 1023977 L4870 2019 Generalized Fermat 2866 8397*2^3401502+1 1023959 L5476 2022 2867 4057*2^3401472+1 1023949 L5492 2022 2868 64791668^131072+1 1023872 L4905 2019 Generalized Fermat 2869 4095*2^3401174+1 1023860 L5418 2022 2870 5149*2^3400970+1 1023798 L5176 2022 2871 4665*2^3400922+1 1023784 L5308 2022 2872 24*414^391179+1 1023717 L4273 2016 2873 64568930^131072+1 1023676 L4977 2019 Generalized Fermat 2874 64506894^131072+1 1023621 L4977 2019 Generalized Fermat 2875 1725*2^3400371+1 1023617 L5197 2022 2876 64476916^131072+1 1023595 L4997 2019 Generalized Fermat 2877 9399*2^3400243+1 1023580 L5488 2022 2878 1241*2^3400127+1 1023544 L5279 2022 2879 1263*2^3399876+1 1023468 L5174 2022 2880 1167*2^3399748+1 1023430 L3545 2017 2881 64024604^131072+1 1023194 L4591 2019 Generalized Fermat 2882b 3526*24^741308+1 1023166 A66 2025 2883 7679*2^3398569+1 1023076 L5295 2022 2884 6447*2^3398499+1 1023054 L5302 2022 2885 63823568^131072+1 1023015 L4585 2019 Generalized Fermat 2886 2785*2^3398332+1 1023004 L5250 2022 2887 611*2^3398273+1 1022985 L3035 2017 2888 2145*2^3398034+1 1022914 L5302 2022 2889 3385*2^3397254+1 1022679 L5161 2022 2890 4*3^2143374+1 1022650 L4965 2020 Generalized Fermat 2891 4463*2^3396657+1 1022500 L5476 2022 2892 2889*2^3396450+1 1022437 L5178 2022 2893 8523*2^3396448+1 1022437 L5231 2022 2894 63168480^131072+1 1022428 L4861 2019 Generalized Fermat 2895 63165756^131072+1 1022425 L4987 2019 Generalized Fermat 2896 3349*2^3396326+1 1022400 L5480 2022 2897 63112418^131072+1 1022377 L4201 2019 Generalized Fermat 2898 4477*2^3395786+1 1022238 L5161 2022 2899 3853*2^3395762+1 1022230 L5302 2022 2900 2693*2^3395725+1 1022219 L5284 2022 2901 8201*2^3395673+1 1022204 L5178 2022 2902 255*2^3395661+1 1022199 L3898 2014 2903 1049*2^3395647+1 1022195 L3035 2017 2904 9027*2^3395623+1 1022189 L5263 2022 2905 2523*2^3395549+1 1022166 L5472 2022 2906 3199*2^3395402+1 1022122 L5264 2022 2907 342924651*2^3394939-1 1021988 L4166 2017 2908 3825*2^3394947+1 1021985 L5471 2022 2909 1895*2^3394731+1 1021920 L5174 2022 2910 62276102^131072+1 1021618 L4715 2019 Generalized Fermat 2911 555*2^3393389+1 1021515 L2549 2017 2912 1865*2^3393387+1 1021515 L5237 2022 2913 4911*2^3393373+1 1021511 L5231 2022 2914 62146946^131072+1 1021500 L4720 2019 Generalized Fermat 2915 5229*2^3392587+1 1021275 L5463 2022 2916 61837354^131072+1 1021215 L4656 2019 Generalized Fermat 2917 609*2^3392301+1 1021188 L3035 2017 2918 9787*2^3392236+1 1021169 L5350 2022 2919 303*2^3391977+1 1021090 L2602 2016 2920 805*2^3391818+1 1021042 L4609 2017 2921 6475*2^3391496+1 1020946 L5174 2022 2922 67*2^3391385-1 1020911 L1959 2014 2923 61267078^131072+1 1020688 L4923 2019 Generalized Fermat 2924 4639*2^3390634+1 1020687 L5189 2022 2925 5265*2^3390581+1 1020671 L5456 2022 2926 663*2^3390469+1 1020636 L4316 2017 2927 6945*2^3390340+1 1020598 L5174 2022 2928 5871*2^3390268+1 1020577 L5231 2022 2929 7443*2^3390141+1 1020539 L5226 2022 2930 5383*2^3389924+1 1020473 L5350 2021 2931 61030988^131072+1 1020468 L4898 2019 Generalized Fermat 2932 9627*2^3389331+1 1020295 L5231 2021 2933 60642326^131072+1 1020104 L4591 2019 Generalized Fermat 2934 8253*2^3388624+1 1020082 L5226 2021 2935 3329*2^3388472-1 1020036 L4841 2020 2936 4695*2^3388393+1 1020012 L5237 2021 2937 60540024^131072+1 1020008 L4591 2019 Generalized Fermat 2938 7177*2^3388144+1 1019937 L5174 2021 2939 60455792^131072+1 1019929 L4760 2019 Generalized Fermat 2940 9611*2^3388059+1 1019912 L5435 2021 2941 1833*2^3387760+1 1019821 L5226 2021 2942 9003*2^3387528+1 1019752 L5189 2021 2943 3161*2^3387141+1 1019635 L5226 2021 2944 7585*2^3387110+1 1019626 L5189 2021 2945 60133106^131072+1 1019624 L4942 2019 Generalized Fermat 2946 453*2^3387048+1 1019606 L2602 2016 2947 5177*2^3386919+1 1019568 L5226 2021 2948 8739*2^3386813+1 1019537 L5226 2021 2949 2875*2^3386638+1 1019484 L5226 2021 2950 7197*2^3386526+1 1019450 L5178 2021 2951 1605*2^3386229+1 1019360 L5226 2021 2952 8615*2^3386181+1 1019346 L5442 2021 2953 3765*2^3386141+1 1019334 L5174 2021 2954 5379*2^3385806+1 1019233 L5237 2021 2955 59720358^131072+1 1019232 L4656 2019 Generalized Fermat 2956 59692546^131072+1 1019206 L4747 2019 Generalized Fermat 2957 59515830^131072+1 1019037 L4737 2019 Generalized Fermat 2958 173198*5^1457792-1 1018959 L3720 2013 2959 59405420^131072+1 1018931 L4645 2019 Generalized Fermat 2960 2109*2^3384733+1 1018910 L5261 2021 2961 7067*2^3384667+1 1018891 L5439 2021 2962 59362002^131072+1 1018890 L4249 2019 Generalized Fermat 2963 59305348^131072+1 1018835 L4932 2019 Generalized Fermat 2964 2077*2^3384472+1 1018831 L5237 2021 2965 59210784^131072+1 1018745 L4926 2019 Generalized Fermat 2966 59161754^131072+1 1018697 L4928 2019 Generalized Fermat 2967 9165*2^3383917+1 1018665 L5435 2021 2968 5579*2^3383209+1 1018452 L5434 2021 2969 8241*2^3383131+1 1018428 L5387 2021 2970 7409*2^3382869+1 1018349 L5161 2021 2971 4883*2^3382813+1 1018332 L5161 2021 2972 9783*2^3382792+1 1018326 L5189 2021 2973 58589880^131072+1 1018145 L4923 2019 Generalized Fermat 2974 58523466^131072+1 1018080 L4802 2019 Generalized Fermat 2975 8877*2^3381936+1 1018069 L5429 2021 2976 58447816^131072+1 1018006 L4591 2019 Generalized Fermat 2977 58447642^131072+1 1018006 L4591 2019 Generalized Fermat 2978 6675*2^3381688+1 1017994 L5197 2021 2979 2445*2^3381129+1 1017825 L5231 2021 2980 58247118^131072+1 1017811 L4309 2019 Generalized Fermat 2981 3381*2^3380585+1 1017662 L5237 2021 2982 7899*2^3380459+1 1017624 L5421 2021 2983 5945*2^3379933+1 1017465 L5418 2021 2984 1425*2^3379921+1 1017461 L1134 2020 2985 4975*2^3379420+1 1017311 L5161 2021 2986 57704312^131072+1 1017278 L4591 2019 Generalized Fermat 2987 57694224^131072+1 1017268 L4656 2019 Generalized Fermat 2988 57594734^131072+1 1017169 L4656 2019 Generalized Fermat 2989 9065*2^3378851+1 1017140 L5414 2021 2990 2369*2^3378761+1 1017112 L5197 2021 2991 57438404^131072+1 1017015 L4745 2019 Generalized Fermat 2992 621*2^3378148+1 1016927 L3035 2017 2993 7035*2^3378141+1 1016926 L5408 2021 2994 2067*2^3378115+1 1016918 L5405 2021 2995 1093*2^3378000+1 1016883 L4583 2017 2996 9577*2^3377612+1 1016767 L5406 2021 2997 861*2^3377601+1 1016763 L4582 2017 2998 5811*2^3377016+1 1016587 L5261 2021 2999 2285*2^3376911+1 1016555 L5261 2021 3000 4199*2^3376903+1 1016553 L5174 2021 3001 6405*2^3376890+1 1016549 L5269 2021 3002 1783*2^3376810+1 1016525 L5261 2021 3003 5401*2^3376768+1 1016513 L5174 2021 3004 56917336^131072+1 1016496 L4729 2019 Generalized Fermat 3005 2941*2^3376536+1 1016443 L5174 2021 3006 1841*2^3376379+1 1016395 L5401 2021 3007 6731*2^3376133+1 1016322 L5261 2021 3008 56735576^131072+1 1016314 L4760 2019 Generalized Fermat 3009 8121*2^3375933+1 1016262 L5356 2021 3010 5505*2^3375777+1 1016214 L5174 2021 3011 56584816^131072+1 1016162 L4289 2019 Generalized Fermat 3012 3207*2^3375314+1 1016075 L5237 2021 3013 56459558^131072+1 1016036 L4892 2019 Generalized Fermat 3014 5307*2^3374939+1 1015962 L5392 2021 3015 56383242^131072+1 1015959 L4889 2019 Generalized Fermat 3016 56307420^131072+1 1015883 L4843 2019 Generalized Fermat 3017 208003!-1 1015843 p394 2016 Factorial 3018 6219*2^3374198+1 1015739 L5393 2021 3019 3777*2^3374072+1 1015701 L5261 2021 3020 9347*2^3374055+1 1015696 L5387 2021 3021 1461*2^3373383+1 1015493 L5384 2021 3022 6395*2^3373135+1 1015419 L5382 2021 3023 7869*2^3373021+1 1015385 L5381 2021 3024 55645700^131072+1 1015210 L4745 2019 Generalized Fermat 3025 4905*2^3372216+1 1015142 L5261 2021 3026 55579418^131072+1 1015142 L4745 2019 Generalized Fermat 3027 2839*2^3372034+1 1015087 L5174 2021 3028 7347*2^3371803+1 1015018 L5217 2021 3029 9799*2^3371378+1 1014890 L5261 2021 3030 4329*2^3371201+1 1014837 L5197 2021 3031 3657*2^3371183+1 1014831 L5360 2021 3032 55268442^131072+1 1014822 L4525 2019 Generalized Fermat 3033 179*2^3371145+1 1014819 L3763 2014 3034 5155*2^3371016+1 1014781 L5237 2021 3035 7575*2^3371010+1 1014780 L5237 2021 3036 55184170^131072+1 1014736 L4871 2018 Generalized Fermat 3037 9195*2^3370798+1 1014716 L5178 2021 3038 1749*2^3370786+1 1014711 L5362 2021 3039 8421*2^3370599+1 1014656 L5174 2021 3040 55015050^131072+1 1014561 L4205 2018 Generalized Fermat 3041 4357*2^3369572+1 1014346 L5231 2021 3042 6073*2^3369544+1 1014338 L5358 2021 3043 839*2^3369383+1 1014289 L2891 2017 3044 65*2^3369359+1 1014280 L5236 2021 3045 8023*2^3369228+1 1014243 L5356 2021 3046 677*2^3369115+1 1014208 L2103 2017 3047 1437*2^3369083+1 1014199 L5282 2021 3048 9509*2^3368705+1 1014086 L5237 2021 3049 54548788^131072+1 1014076 L4726 2018 Generalized Fermat 3050 4851*2^3368668+1 1014074 L5307 2021 3051 7221*2^3368448+1 1014008 L5353 2021 3052 5549*2^3368437+1 1014005 L5217 2021 3053 715*2^3368210+1 1013936 L4527 2017 3054 617*2^3368119+1 1013908 L4552 2017 3055 54361742^131072+1 1013881 L4210 2018 Generalized Fermat 3056 1847*2^3367999+1 1013872 L5352 2021 3057 54334044^131072+1 1013852 L4745 2018 Generalized Fermat 3058c 17819*24^734523+1 1013802 A11 2025 3059 6497*2^3367743+1 1013796 L5285 2021 3060 2533*2^3367666+1 1013772 L5326 2021 3061 6001*2^3367552+1 1013738 L5350 2021 3062 54212352^131072+1 1013724 L4307 2018 Generalized Fermat 3063 54206254^131072+1 1013718 L4249 2018 Generalized Fermat 3064 777*2^3367372+1 1013683 L4408 2017 3065 9609*2^3367351+1 1013678 L5285 2021 3066 54161106^131072+1 1013670 L4307 2018 Generalized Fermat 3067 2529*2^3367317+1 1013667 L5237 2021 3068 5941*2^3366960+1 1013560 L5189 2021 3069 5845*2^3366956+1 1013559 L5197 2021 3070 54032538^131072+1 1013535 L4591 2018 Generalized Fermat 3071 9853*2^3366608+1 1013454 L5178 2021 3072 61*2^3366033-1 1013279 L4405 2017 3073 7665*2^3365896+1 1013240 L5345 2021 3074 8557*2^3365648+1 1013165 L5346 2021 3075 369*2^3365614+1 1013154 L4364 2016 3076 53659976^131072+1 1013141 L4823 2018 Generalized Fermat 3077 8201*2^3365283+1 1013056 L5345 2021 3078 9885*2^3365151+1 1013016 L5344 2021 3079 5173*2^3365096+1 1012999 L5285 2021 3080 8523*2^3364918+1 1012946 L5237 2021 3081 3985*2^3364776+1 1012903 L5178 2021 3082 9711*2^3364452+1 1012805 L5192 2021 3083 7003*2^3364172+1 1012721 L5217 2021 3084 6703*2^3364088+1 1012696 L5337 2021 3085 7187*2^3364011+1 1012673 L5217 2021 3086 53161266^131072+1 1012610 L4307 2018 Generalized Fermat 3087 53078434^131072+1 1012521 L4835 2018 Generalized Fermat 3088 2345*2^3363157+1 1012415 L5336 2021 3089 6527*2^3363135+1 1012409 L5167 2021 3090 9387*2^3363088+1 1012395 L5161 2021 3091 8989*2^3362986+1 1012364 L5161 2021 3092 533*2^3362857+1 1012324 L3171 2017 3093 619*2^3362814+1 1012311 L4527 2017 3094 2289*2^3362723+1 1012284 L5161 2021 3095 7529*2^3362565+1 1012237 L5161 2021 3096 7377*2^3362366+1 1012177 L5161 2021 3097 4509*2^3362311+1 1012161 L5324 2021 3098 7021*2^3362208+1 1012130 L5178 2021 3099 52712138^131072+1 1012127 L4819 2018 Generalized Fermat 3100 104*873^344135-1 1012108 L4700 2018 3101 4953*2^3362054+1 1012083 L5323 2021 3102 8575*2^3361798+1 1012006 L5237 2021 3103 2139*2^3361706+1 1011978 L5174 2021 3104 6939*2^3361203+1 1011827 L5217 2021 3105 52412612^131072+1 1011802 L4289 2018 Generalized Fermat 3106 3^2120580-3^623816-1 1011774 CH9 2019 3107 8185*2^3360896+1 1011735 L5189 2021 3108 2389*2^3360882+1 1011730 L5317 2021 3109 2787*2^3360631+1 1011655 L5197 2021 3110 6619*2^3360606+1 1011648 L5316 2021 3111 2755*2^3360526+1 1011623 L5174 2021 3112 1445*2^3360099+1 1011494 L5261 2021 3113 2846*67^553905-1 1011476 L4955 2023 3114 8757*2^3359788+1 1011401 L5197 2021 3115 52043532^131072+1 1011400 L4810 2018 Generalized Fermat 3116 5085*2^3359696+1 1011373 L5261 2021 3117 51954384^131072+1 1011303 L4720 2018 Generalized Fermat 3118 6459*2^3359457+1 1011302 L5310 2021 3119 51872628^131072+1 1011213 L4591 2018 Generalized Fermat 3120 6115*2^3358998+1 1011163 L5309 2021 3121 7605*2^3358929+1 1011143 L5308 2021 3122 2315*2^3358899+1 1011133 L5197 2021 3123 6603*2^3358525+1 1011021 L5307 2021 3124 51580416^131072+1 1010891 L4765 2018 Generalized Fermat 3125 51570250^131072+1 1010880 L4591 2018 Generalized Fermat 3126 51567684^131072+1 1010877 L4800 2018 Generalized Fermat 3127 5893*2^3357490+1 1010709 L5285 2021 3128 6947*2^3357075+1 1010585 L5302 2021 3129 4621*2^3357068+1 1010582 L5301 2021 3130 51269192^131072+1 1010547 L4795 2018 Generalized Fermat 3131 1479*2^3356275+1 1010343 L5178 2021 3132 3645*2^3356232+1 1010331 L5296 2021 3133 1259*2^3356215+1 1010325 L5298 2021 3134 2075*2^3356057+1 1010278 L5174 2021 3135 4281*2^3356051+1 1010276 L5295 2021 3136 1275*2^3356045+1 1010274 L5294 2021 3137 50963598^131072+1 1010206 L4726 2018 Generalized Fermat 3138 4365*2^3355770+1 1010192 L5261 2021 3139 50844724^131072+1 1010074 L4656 2018 Generalized Fermat 3140 2183*2^3355297+1 1010049 L5266 2021 3141 3087*2^3355000+1 1009960 L5226 2021 3142 8673*2^3354760+1 1009888 L5233 2021 3143 50495632^131072+1 1009681 L4591 2018 Generalized Fermat 3144 3015*2^3353943+1 1009641 L5290 2021 3145 6819*2^3353877+1 1009622 L5174 2021 3146 9*10^1009567-1 1009568 L3735 2016 Near-repdigit 3147 6393*2^3353366+1 1009468 L5287 2021 3148 3573*2^3353273+1 1009440 L5161 2021 3149 4047*2^3353222+1 1009425 L5286 2021 3150 1473*2^3353114+1 1009392 L5161 2021 3151 1183*2^3353058+1 1009375 L3824 2017 3152 50217306^131072+1 1009367 L4720 2018 Generalized Fermat 3153 81*2^3352924+1 1009333 L1728 2012 Generalized Fermat 3154 50110436^131072+1 1009245 L4591 2018 Generalized Fermat 3155 50055102^131072+1 1009183 L4309 2018 Generalized Fermat 3156 7123*2^3352180+1 1009111 L5161 2021 3157 2757*2^3352180+1 1009111 L5285 2021 3158 9307*2^3352014+1 1009061 L5284 2021 3159 2217*2^3351732+1 1008976 L5283 2021 3160 543*2^3351686+1 1008961 L4198 2017 3161 4419*2^3351666+1 1008956 L5279 2021 3162 49817700^131072+1 1008912 L4760 2018 Generalized Fermat 3163 3059*2^3351379+1 1008870 L5278 2021 3164 7789*2^3351046+1 1008770 L5276 2021 3165 9501*2^3350668+1 1008656 L5272 2021 3166 49530004^131072+1 1008582 L4591 2018 Generalized Fermat 3167 9691*2^3349952+1 1008441 L5242 2021 3168 49397682^131072+1 1008430 L4764 2018 Generalized Fermat 3169 3209*2^3349719+1 1008370 L5269 2021 3170 49331672^131072+1 1008354 L4763 2018 Generalized Fermat 3171 393*2^3349525+1 1008311 L3101 2016 3172 49243622^131072+1 1008252 L4741 2018 Generalized Fermat 3173 5487*2^3349303+1 1008245 L5266 2021 3174 49225986^131072+1 1008232 L4757 2018 Generalized Fermat 3175 2511*2^3349104+1 1008185 L5264 2021 3176 1005*2^3349046-1 1008167 L4518 2021 3177 7659*2^3348894+1 1008122 L5263 2021 3178 9703*2^3348872+1 1008115 L5262 2021 3179 49090656^131072+1 1008075 L4752 2018 Generalized Fermat 3180 7935*2^3348578+1 1008027 L5161 2021 3181 49038514^131072+1 1008015 L4743 2018 Generalized Fermat 3182 7821*2^3348400+1 1007973 L5260 2021 3183 7911*2^3347532+1 1007712 L5250 2021 3184 8295*2^3347031+1 1007561 L5249 2021 3185 48643706^131072+1 1007554 L4691 2018 Generalized Fermat 3186 4029*2^3346729+1 1007470 L5239 2021 3187 9007*2^3346716+1 1007466 L5161 2021 3188 8865*2^3346499+1 1007401 L5238 2021 3189 6171*2^3346480+1 1007395 L5174 2021 3190 6815*2^3346045+1 1007264 L5235 2021 3191 5*326^400785+1 1007261 L4786 2019 3192 5951*2^3345977+1 1007244 L5233 2021 3193 48370248^131072+1 1007234 L4701 2018 Generalized Fermat 3194 1257*2^3345843+1 1007203 L5192 2021 3195 4701*2^3345815+1 1007195 L5192 2021 3196 48273828^131072+1 1007120 L4456 2018 Generalized Fermat 3197 7545*2^3345355+1 1007057 L5231 2021 3198 5559*2^3344826+1 1006897 L5223 2021 3199 6823*2^3344692+1 1006857 L5223 2021 3200 4839*2^3344453+1 1006785 L5188 2021 3201 7527*2^3344332+1 1006749 L5220 2021 3202 7555*2^3344240+1 1006721 L5188 2021 3203 6265*2^3344080+1 1006673 L5197 2021 3204 1299*2^3343943+1 1006631 L5217 2021 3205 2815*2^3343754+1 1006574 L5216 2021 3206 5349*2^3343734+1 1006568 L5174 2021 3207 2863*2^3342920+1 1006323 L5179 2020 3208 7387*2^3342848+1 1006302 L5208 2020 3209 9731*2^3342447+1 1006181 L5203 2020 3210 7725*2^3341708+1 1005959 L5195 2020 3211 7703*2^3341625+1 1005934 L5178 2020 3212 7047*2^3341482+1 1005891 L5194 2020 3213 4839*2^3341309+1 1005838 L5192 2020 3214 47179704^131072+1 1005815 L4673 2017 Generalized Fermat 3215 47090246^131072+1 1005707 L4654 2017 Generalized Fermat 3216 8989*2^3340866+1 1005705 L5189 2020 3217 6631*2^3340808+1 1005688 L5188 2020 3218 1341*2^3340681+1 1005649 L5188 2020 3219 733*2^3340464+1 1005583 L3035 2016 3220 2636*138^469911+1 1005557 L5410 2021 3221 3679815*2^3340001+1 1005448 L4922 2019 3222 57*2^3339932-1 1005422 L3519 2015 3223 46776558^131072+1 1005326 L4659 2017 Generalized Fermat 3224 46736070^131072+1 1005277 L4245 2017 Generalized Fermat 3225 46730280^131072+1 1005270 L4656 2017 Generalized Fermat 3226 3651*2^3339341+1 1005246 L5177 2020 3227 3853*2^3339296+1 1005232 L5178 2020 3228 8015*2^3339267+1 1005224 L5176 2020 3229 3027*2^3339182+1 1005198 L5174 2020 3230 9517*2^3339002+1 1005144 L5172 2020 3231 4003*2^3338588+1 1005019 L3035 2020 3232 6841*2^3338336+1 1004944 L1474 2020 3233 2189*2^3338209+1 1004905 L5031 2020 3234 46413358^131072+1 1004883 L4626 2017 Generalized Fermat 3235 46385310^131072+1 1004848 L4622 2017 Generalized Fermat 3236 46371508^131072+1 1004831 L4620 2017 Generalized Fermat 3237 2957*2^3337667+1 1004742 L5144 2020 3238 1515*2^3337389+1 1004658 L1474 2020 3239 7933*2^3337270+1 1004623 L4666 2020 3240 1251*2^3337116+1 1004576 L4893 2020 3241 651*2^3337101+1 1004571 L3260 2016 3242 46077492^131072+1 1004469 L4595 2017 Generalized Fermat 3243 8397*2^3336654+1 1004437 L5125 2020 3244 8145*2^3336474+1 1004383 L5110 2020 3245 1087*2^3336385-1 1004355 L1828 2012 3246 5325*2^3336120+1 1004276 L2125 2020 3247 849*2^3335669+1 1004140 L3035 2016 3248 8913*2^3335216+1 1004005 L5079 2020 3249 7725*2^3335213+1 1004004 L3035 2020 3250 611*2^3334875+1 1003901 L3813 2016 3251 45570624^131072+1 1003840 L4295 2017 Generalized Fermat 3252 403*2^3334410+1 1003761 L4293 2016 3253 5491*2^3334392+1 1003756 L4815 2020 3254 6035*2^3334341+1 1003741 L2125 2020 3255 1725*2^3334341+1 1003740 L2125 2020 3256 4001*2^3334031+1 1003647 L1203 2020 3257 2315*2^3333969+1 1003629 L2125 2020 3258 6219*2^3333810+1 1003581 L4582 2020 3259 8063*2^3333721+1 1003554 L1823 2020 3260 9051*2^3333677+1 1003541 L3924 2020 3261 45315256^131072+1 1003520 L4562 2017 Generalized Fermat 3262 4091*2^3333153+1 1003383 L1474 2020 3263 9949*2^3332750+1 1003262 L5090 2020 3264 3509*2^3332649+1 1003231 L5085 2020 3265 3781*2^3332436+1 1003167 L1823 2020 3266 4425*2^3332394+1 1003155 L3431 2020 3267 6459*2^3332086+1 1003062 L2629 2020 3268 44919410^131072+1 1003020 L4295 2017 Generalized Fermat 3269 5257*2^3331758+1 1002963 L1188 2020 3270 2939*2^3331393+1 1002853 L1823 2020 3271 6959*2^3331365+1 1002845 L1675 2020 3272 8815*2^3330748+1 1002660 L3329 2020 3273 4303*2^3330652+1 1002630 L4730 2020 3274 8595*2^3330649+1 1002630 L4723 2020 3275 673*2^3330436+1 1002564 L3035 2016 3276 8163*2^3330042+1 1002447 L3278 2020 3277 44438760^131072+1 1002408 L4505 2016 Generalized Fermat 3278 193*2^3329782+1 1002367 L3460 2014 Divides Fermat F(3329780) 3279 44330870^131072+1 1002270 L4501 2016 Generalized Fermat 3280 2829*2^3329061+1 1002151 L4343 2020 3281 5775*2^3329034+1 1002143 L1188 2020 3282 7101*2^3328905+1 1002105 L4568 2020 3283 7667*2^3328807+1 1002075 L4087 2020 3284 129*2^3328805+1 1002073 L3859 2014 3285 7261*2^3328740+1 1002055 L2914 2020 3286 4395*2^3328588+1 1002009 L3924 2020 3287 44085096^131072+1 1001953 L4482 2016 Generalized Fermat 3288 143183*2^3328297+1 1001923 L4504 2017 3289 44049878^131072+1 1001908 L4466 2016 Generalized Fermat 3290 9681*2^3327987+1 1001828 L1204 2020 3291 2945*2^3327987+1 1001828 L2158 2020 3292 5085*2^3327789+1 1001769 L1823 2020 3293 8319*2^3327650+1 1001727 L1204 2020 3294 4581*2^3327644+1 1001725 L2142 2020 3295 655*2^3327518+1 1001686 L4490 2016 3296 8863*2^3327406+1 1001653 L1675 2020 3297 659*2^3327371+1 1001642 L3502 2016 3298 3411*2^3327343+1 1001634 L1675 2020 3299 4987*2^3327294+1 1001619 L3924 2020 3300 821*2^3327003+1 1001531 L3035 2016 3301 2435*2^3326969+1 1001521 L3035 2020 3302 1931*2^3326850-1 1001485 L4113 2022 3303 2277*2^3326794+1 1001469 L5014 2020 3304 6779*2^3326639+1 1001422 L3924 2020 3305 31*2^3326149-1 1001273 L1862 2024 3306 6195*2^3325993+1 1001228 L1474 2019 3307 555*2^3325925+1 1001206 L4414 2016 3308 9041*2^3325643+1 1001123 L3924 2019 3309 1965*2^3325639-1 1001121 L4113 2022 3310 1993*2^3325302+1 1001019 L3662 2019 3311 6179*2^3325027+1 1000937 L3048 2019 3312 4485*2^3324900+1 1000899 L1355 2019 3313 3559*2^3324650+1 1000823 L3035 2019 3314 12512*13^898392-1 1000762 L2425 2024 3315 43165206^131072+1 1000753 L4309 2016 Generalized Fermat 3316 43163894^131072+1 1000751 L4334 2016 Generalized Fermat 3317 6927*2^3324387+1 1000745 L3091 2019 3318 9575*2^3324287+1 1000715 L3824 2019 3319 1797*2^3324259+1 1000705 L3895 2019 3320 4483*2^3324048+1 1000642 L3035 2019 3321 791*2^3323995+1 1000626 L3035 2016 3322 6987*2^3323926+1 1000606 L4973 2019 3323 3937*2^3323886+1 1000593 L3035 2019 3324 2121*2^3323852+1 1000583 L1823 2019 3325 1571*2^3323493+1 1000475 L3035 2019 3326 2319*2^3323402+1 1000448 L4699 2019 3327 2829*2^3323341+1 1000429 L4754 2019 3328 4335*2^3323323+1 1000424 L1823 2019 3329 8485*2^3322938+1 1000308 L4858 2019 3330 6505*2^3322916+1 1000302 L4858 2019 3331 597*2^3322871+1 1000287 L3035 2016 3332 9485*2^3322811+1 1000270 L2603 2019 3333 8619*2^3322774+1 1000259 L3035 2019 3334 387*2^3322763+1 1000254 L1455 2016 3335 1965*2^3322579-1 1000200 L4113 2022 3336 42654182^131072+1 1000075 L4208 2015 Generalized Fermat 3337 6366*745^348190-1 1000060 L4189 2022 3338 13841792445*2^3322000-1 1000032 L5827 2023 3339 5553507*2^3322000+1 1000029 p391 2016 3340 5029159647*2^3321910-1 1000005 L4960 2021 3341 5009522505*2^3321910-1 1000005 L4960 2021 3342 4766298357*2^3321910-1 1000005 L4960 2021 3343 4759383915*2^3321910-1 1000005 L4960 2021 3344 4635733263*2^3321910-1 1000005 L4960 2021 3345 4603393047*2^3321910-1 1000005 L4960 2021 3346 4550053935*2^3321910-1 1000005 L4960 2021 3347 4288198767*2^3321910-1 1000005 L4960 2021 3348 4229494557*2^3321910-1 1000005 L4960 2021 3349 4110178197*2^3321910-1 1000005 L4960 2021 3350 4022490843*2^3321910-1 1000005 L4960 2021 3351 3936623697*2^3321910-1 1000005 L4960 2021 3352 3751145343*2^3321910-1 1000005 L4960 2021 3353 3715773735*2^3321910-1 1000005 L4960 2021 3354 3698976057*2^3321910-1 1000005 L4960 2021 3355 3659465685*2^3321910-1 1000005 L4960 2020 3356 3652932033*2^3321910-1 1000005 L4960 2020 3357 3603204333*2^3321910-1 1000005 L4960 2020 3358 3543733545*2^3321910-1 1000005 L4960 2020 3359 3191900133*2^3321910-1 1000005 L4960 2020 3360 3174957723*2^3321910-1 1000005 L4960 2020 3361 2973510903*2^3321910-1 1000005 L4960 2019 3362 2848144257*2^3321910-1 1000005 L4960 2019 3363 2820058827*2^3321910-1 1000005 L4960 2019 3364 2611553775*2^3321910-1 1000004 L4960 2020 3365 2601087525*2^3321910-1 1000004 L4960 2019 3366 2386538565*2^3321910-1 1000004 L4960 2019 3367 2272291887*2^3321910-1 1000004 L4960 2019 3368 2167709265*2^3321910-1 1000004 L4960 2019 3369 2087077797*2^3321910-1 1000004 L4960 2019 3370 1848133623*2^3321910-1 1000004 L4960 2019 3371 1825072257*2^3321910-1 1000004 L4960 2019 3372 1633473837*2^3321910-1 1000004 L4960 2019 3373 1228267623*2^3321910-1 1000004 L4808 2019 3374 1148781333*2^3321910-1 1000004 L4808 2019 3375 1065440787*2^3321910-1 1000004 L4808 2019 3376 1055109357*2^3321910-1 1000004 L4960 2019 3377 992309607*2^3321910-1 1000004 L4808 2019 3378 926102325*2^3321910-1 1000004 L4808 2019 3379 892610007*2^3321910-1 1000004 L4960 2019 3380 763076757*2^3321910-1 1000004 L4960 2019 3381 607766997*2^3321910-1 1000004 L4808 2019 3382 539679177*2^3321910-1 1000004 L4808 2019 3383 425521077*2^3321910-1 1000004 L4808 2019 3384 132940575*2^3321910-1 1000003 L4808 2019 3385 239378138685*2^3321891+1 1000001 L5104 2020 3386 464253*2^3321908-1 1000000 L466 2013 3387 3^2095902+3^647322-1 1000000 x44 2018 3388 191273*2^3321908-1 1000000 L466 2013 3389 1814570322984178^65536+1 1000000 L5080 2020 Generalized Fermat 3390 1814570322977518^65536+1 1000000 L5080 2020 Generalized Fermat 3391 3292665455999520712131952624640^32768+1 1000000 L5749 2023 Generalized Fermat 3392 3292665455999520712131951642528^32768+1 1000000 L5120 2020 Generalized Fermat 3393 3292665455999520712131951625894^32768+1 1000000 L5122 2020 Generalized Fermat 3394 10841645805132531666786792405311319418846637043199917731999190^16384+1 1000000 L5749 2023 Generalized Fermat 3395 10841645805132531666786792405311319418846637043199917731311876^16384+1 1000000 L5207 2020 Generalized Fermat 3396 10841645805132531666786792405311319418846637043199917731150000^16384+1 1000000 L5122 2020 Generalized Fermat 3397 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729599864^8192+1 1000000 L5749 2023 Generalized Fermat 3398 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729375350^8192+1 1000000 p417 2021 Generalized Fermat 3399 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729240092^8192+1 1000000 p419 2021 Generalized Fermat 3400 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729154678^8192+1 1000000 p418 2021 Generalized Fermat 3401 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729122666^8192+1 1000000 p417 2021 Generalized Fermat 3402 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729023786^8192+1 1000000 p416 2021 Generalized Fermat 3403 1381595338887690358821474589959638055848096769928148782339849168699728\ 6960050362175966390289809116354643446309069559318476498264187530254667\ 3096047093511481998019892105889132464543550102310865144502037206654116\ 79519151409973433052122012097875144^4096+1 1000000 p421 2021 Generalized Fermat 3404 1381595338887690358821474589959638055848096769928148782339849168699728\ 6960050362175966390289809116354643446309069559318476498264187530254667\ 3096047093511481998019892105889132464543550102310865144502037206654116\ 79519151409973433052122012097840702^4096+1 1000000 p417 2021 Generalized Fermat 3405e ((sqrtnint(10^999999,2048)+2)+7748134)^2048+1 1000000 A55 2025 Generalized Fermat 3406 ((sqrtnint(10^999999,2048)+2)+364176)^2048+1 1000000 p417 2022 Generalized Fermat 3407 10^999999+10^840885+10^333333+1 1000000 p436 2023 3408 10^999999+308267*10^292000+1 1000000 CH10 2021 3409 10^999999-1022306*10^287000-1 999999 CH13 2021 3410 10^999999-1087604*10^287000-1 999999 CH13 2021 3411 531631540026641*6^1285077+1 999999 L3494 2021 3412 3139*2^3321905-1 999997 L185 2008 3413 702*507^369680+1 999991 A28 2024 3414 42550702^131072+1 999937 L4309 2022 Generalized Fermat 3415 42414020^131072+1 999753 L5030 2022 Generalized Fermat 3416 4847*2^3321063+1 999744 SB9 2005 3417 42254832^131072+1 999539 L5375 2022 Generalized Fermat 3418 42243204^131072+1 999524 L4898 2022 Generalized Fermat 3419 42230406^131072+1 999506 L5453 2022 Generalized Fermat 3420 42168978^131072+1 999424 L5462 2022 Generalized Fermat 3421 439*2^3318318+1 998916 L5573 2022 3422 201382*5^1428998+1 998833 A11 2024 3423 41688706^131072+1 998772 L5270 2022 Generalized Fermat 3424 41364744^131072+1 998327 L5453 2022 Generalized Fermat 3425 41237116^131072+1 998152 L5459 2022 Generalized Fermat 3426 47714*17^811139+1 998070 L5765 2023 Generalized Cullen 3427 41102236^131072+1 997965 L4245 2022 Generalized Fermat 3428 41007562^131072+1 997834 L4210 2022 Generalized Fermat 3429 41001148^131072+1 997825 L4210 2022 Generalized Fermat 3430 975*2^3312951+1 997301 L5231 2022 3431 40550398^131072+1 997196 L4245 2022 Generalized Fermat 3432 11796*46^599707+1 997172 L5670 2023 3433 40463598^131072+1 997074 L4591 2022 Generalized Fermat 3434 689*2^3311423+1 996841 L5226 2022 3435 40151896^131072+1 996633 L4245 2022 Generalized Fermat 3436 593*2^3309333+1 996212 L5572 2022 3437 383*2^3309321+1 996208 L5570 2022 3438 49*2^3309087-1 996137 L1959 2013 3439 39746366^131072+1 996056 L4201 2022 Generalized Fermat 3440 139413*6^1279992+1 996033 L4001 2015 3441 1274*67^545368-1 995886 L5410 2023 3442 51*2^3308171+1 995861 L2840 2015 3443 719*2^3308127+1 995849 L5192 2022 3444 39597790^131072+1 995842 L4737 2022 Generalized Fermat 3445 39502358^131072+1 995705 L5453 2022 Generalized Fermat 3446 39324372^131072+1 995448 L5202 2022 Generalized Fermat 3447 245114*5^1424104-1 995412 L3686 2013 3448 39100746^131072+1 995123 L5441 2022 Generalized Fermat 3449 38824296^131072+1 994719 L4245 2022 Generalized Fermat 3450 38734748^131072+1 994588 L4249 2021 Generalized Fermat 3451 175124*5^1422646-1 994393 L3686 2013 3452 453*2^3303073+1 994327 L5568 2022 3453 856*75^530221-1 994200 A11 2024 3454 38310998^131072+1 993962 L4737 2021 Generalized Fermat 3455 531*2^3301693+1 993912 L5226 2022 3456 38196496^131072+1 993791 L4861 2021 Generalized Fermat 3457 38152876^131072+1 993726 L4245 2021 Generalized Fermat 3458 195*2^3301018+1 993708 L5569 2022 3459 341*2^3300789+1 993640 L5192 2022 3460 37909914^131072+1 993363 L4249 2021 Generalized Fermat 3461 849*2^3296427+1 992327 L5571 2022 3462 1611*22^738988+1 992038 L4139 2015 3463 36531196^131072+1 991254 L4249 2021 Generalized Fermat 3464 2017*2^3292325-1 991092 L3345 2017 3465 36422846^131072+1 991085 L4245 2021 Generalized Fermat 3466 36416848^131072+1 991076 L5202 2021 Generalized Fermat 3467 885*2^3290927+1 990671 L5161 2022 3468 36038176^131072+1 990481 L4245 2021 Generalized Fermat 3469 35997532^131072+1 990416 L4245 2021 Generalized Fermat 3470 35957420^131072+1 990353 L4245 2021 Generalized Fermat 3471 107970^196608-107970^98304+1 989588 L4506 2016 Generalized unique 3472 35391288^131072+1 989449 L5070 2021 Generalized Fermat 3473 35372304^131072+1 989419 L5443 2021 Generalized Fermat 3474 219*2^3286614+1 989372 L5567 2022 3475 61*2^3286535-1 989348 L4405 2016 3476 35327718^131072+1 989347 L4591 2021 Generalized Fermat 3477 35282096^131072+1 989274 L4245 2021 Generalized Fermat 3478 35141602^131072+1 989046 L4729 2021 Generalized Fermat 3479 35139782^131072+1 989043 L4245 2021 Generalized Fermat 3480 35047222^131072+1 988893 L4249 2021 Generalized Fermat 3481 531*2^3284944+1 988870 L5536 2022 3482 34957136^131072+1 988747 L5321 2021 Generalized Fermat 3483 301*2^3284232+1 988655 L5564 2022 3484 34871942^131072+1 988608 L4245 2021 Generalized Fermat 3485 34763644^131072+1 988431 L4737 2021 Generalized Fermat 3486 34585314^131072+1 988138 L4201 2021 Generalized Fermat 3487 311*2^3282455+1 988120 L5568 2022 3488 34530386^131072+1 988048 L5070 2021 Generalized Fermat 3489 833*2^3282181+1 988038 L5564 2022 3490 561*2^3281889+1 987950 L5477 2022 3491 34087952^131072+1 987314 L4764 2021 Generalized Fermat 3492 87*2^3279368+1 987191 L3458 2015 3493 965*2^3279151+1 987126 L5564 2022 3494 33732746^131072+1 986717 L4359 2021 Generalized Fermat 3495 33474284^131072+1 986279 L5051 2021 Generalized Fermat 3496 33395198^131072+1 986145 L4658 2021 Generalized Fermat 3497 427*2^3275606+1 986059 L5566 2022 3498 33191418^131072+1 985796 L4201 2021 Generalized Fermat 3499 337*2^3274106+1 985607 L5564 2022 3500 357*2^3273543+1 985438 L5237 2022 Divides GF(3273542,10) 3501 1045*2^3273488+1 985422 L5192 2022 3502 32869172^131072+1 985241 L4285 2021 Generalized Fermat 3503 32792696^131072+1 985108 L5198 2021 Generalized Fermat 3504 1047*2^3272351+1 985079 L5563 2022 3505 32704348^131072+1 984955 L5312 2021 Generalized Fermat 3506 6781*24^713573-1 984886 A11 2024 3507 32608738^131072+1 984788 L5395 2021 Generalized Fermat 3508 75*2^3271125-1 984709 A38 2024 3509 933*2^3270993+1 984670 L5562 2022 3510 311*2^3270759+1 984600 L5560 2022 3511 32430486^131072+1 984476 L4245 2021 Generalized Fermat 3512 32417420^131072+1 984453 L4245 2021 Generalized Fermat 3513 65*2^3270127+1 984409 L3924 2015 3514 32348894^131072+1 984333 L4245 2021 Generalized Fermat 3515 579*2^3269850+1 984326 L5226 2022 3516 32286660^131072+1 984223 L5400 2021 Generalized Fermat 3517 32200644^131072+1 984071 L4387 2021 Generalized Fermat 3518 32137342^131072+1 983959 L4559 2021 Generalized Fermat 3519 32096608^131072+1 983887 L4559 2021 Generalized Fermat 3520 32055422^131072+1 983814 L4559 2021 Generalized Fermat 3521 31821360^131072+1 983397 L4861 2021 Generalized Fermat 3522 31768014^131072+1 983301 L4252 2021 Generalized Fermat 3523 335*2^3266237+1 983238 L5559 2022 3524 1031*2^3265915+1 983142 L5364 2022 3525 31469984^131072+1 982765 L5078 2021 Generalized Fermat 3526 5*2^3264650-1 982759 L384 2013 3527 223*2^3264459-1 982703 L1884 2012 3528 1101*2^3264400+1 982686 L5231 2022 3529 483*2^3264181+1 982620 L5174 2022 3530 525*2^3263227+1 982332 L5231 2022 3531 31145080^131072+1 982174 L4201 2021 Generalized Fermat 3532 622*48^584089+1 981998 L5629 2023 3533 31044982^131072+1 981991 L5041 2021 Generalized Fermat 3534 683*2^3262037+1 981974 L5192 2022 3535 923*2^3261401+1 981783 L5477 2022 3536 30844300^131072+1 981622 L5102 2021 Generalized Fermat 3537 30819256^131072+1 981575 L4201 2021 Generalized Fermat 3538 9*2^3259381-1 981173 L1828 2011 3539 31*2^3259185-1 981114 L1862 2024 3540 1059*2^3258751+1 980985 L5231 2022 3541 6*5^1403337+1 980892 L4965 2020 3542 30318724^131072+1 980643 L4309 2021 Generalized Fermat 3543 30315072^131072+1 980636 L5375 2021 Generalized Fermat 3544 30300414^131072+1 980609 L4755 2021 Generalized Fermat 3545 30225714^131072+1 980468 L4201 2021 Generalized Fermat 3546 875*2^3256589+1 980334 L5550 2022 3547 30059800^131072+1 980155 L4928 2021 Generalized Fermat 3548a 176268*5^1402258-1 980142 A11 2025 3549 30022816^131072+1 980085 L5273 2021 Generalized Fermat 3550 29959190^131072+1 979964 L4905 2021 Generalized Fermat 3551 968*75^522276-1 979303 A11 2024 3552 29607314^131072+1 979292 L5378 2021 Generalized Fermat 3553 779*2^3253063+1 979273 L5192 2022 3554 29505368^131072+1 979095 L5378 2021 Generalized Fermat 3555 163*2^3250978+1 978645 L5161 2022 Divides GF(3250977,6) 3556 29169314^131072+1 978443 L5380 2021 Generalized Fermat 3557 417*2^3248255+1 977825 L5178 2022 3558 28497098^131072+1 977116 L4308 2021 Generalized Fermat 3559 28398204^131072+1 976918 L5379 2021 Generalized Fermat 3560 28294666^131072+1 976710 L5375 2021 Generalized Fermat 3561 28175634^131072+1 976470 L5378 2021 Generalized Fermat 3562 33*2^3242126-1 975979 L3345 2014 3563 27822108^131072+1 975752 L4760 2021 Generalized Fermat 3564 39*2^3240990+1 975637 L3432 2014 3565 27758510^131072+1 975621 L4289 2021 Generalized Fermat 3566 3706*103^484644+1 975514 A11 2024 3567 27557876^131072+1 975208 L4245 2021 Generalized Fermat 3568 27544748^131072+1 975181 L4387 2021 Generalized Fermat 3569 27408050^131072+1 974898 L4210 2021 Generalized Fermat 3570 14275*60^548133-1 974668 x51 2024 3571 225*2^3236967+1 974427 L5529 2022 3572 27022768^131072+1 974092 L4309 2021 Generalized Fermat 3573 26896670^131072+1 973826 L5376 2021 Generalized Fermat 3574 1075*2^3234606+1 973717 L5192 2022 3575 26757382^131072+1 973530 L5375 2021 Generalized Fermat 3576b 8091*24^705188+1 973313 A64 2025 3577 26599558^131072+1 973194 L4245 2021 Generalized Fermat 3578 6*5^1392287+1 973168 L4965 2020 3579 26500832^131072+1 972982 L4956 2021 Generalized Fermat 3580 325*2^3231474+1 972774 L5536 2022 3581 933*2^3231438+1 972763 L5197 2022 3582 123*2^3230548+1 972494 L5178 2022 Divides GF(3230546,12) 3583 26172278^131072+1 972272 L4245 2021 Generalized Fermat 3584 697*2^3229518+1 972185 L5534 2022 3585 22598*745^338354-1 971810 L4189 2022 3586 385*2^3226814+1 971371 L5178 2022 3587 211195*2^3224974+1 970820 L2121 2013 3588 1173*2^3223546+1 970388 L5178 2022 3589 7*6^1246814+1 970211 L4965 2019 3590 25128150^131072+1 969954 L4738 2021 Generalized Fermat 3591 25124378^131072+1 969946 L5102 2021 Generalized Fermat 3592 1089*2^3221691+1 969829 L5178 2022 3593 35*832^332073-1 969696 L4001 2019 3594 600921*2^3219922-1 969299 g337 2018 3595 939*2^3219319+1 969115 L5178 2022 3596 24734116^131072+1 969055 L5070 2021 Generalized Fermat 3597 76896*5^1386360+1 969029 A42 2024 3598 24644826^131072+1 968849 L5070 2021 Generalized Fermat 3599 24642712^131072+1 968844 L5070 2021 Generalized Fermat 3600 24641166^131072+1 968840 L5070 2021 Generalized Fermat 3601 129*2^3218214+1 968782 L5529 2022 3602 24522386^131072+1 968565 L5070 2021 Generalized Fermat 3603 24486806^131072+1 968483 L4737 2021 Generalized Fermat 3604 811*2^3216944+1 968400 L5233 2022 3605 24297936^131072+1 968042 L4201 2021 Generalized Fermat 3606 1023*2^3214745+1 967738 L5178 2022 3607 187*2^3212152+1 966957 L5178 2022 3608 301*2^3211281-1 966695 L5545 2022 3609 6*409^369832+1 965900 L4001 2015 3610 23363426^131072+1 965809 L5033 2021 Generalized Fermat 3611 1165*2^3207702+1 965618 L5178 2022 3612 94373*2^3206717+1 965323 L2785 2013 3613 2751*2^3206569-1 965277 L4036 2015 3614 761*2^3206341+1 965208 L5178 2022 3615 23045178^131072+1 965029 L5023 2021 Generalized Fermat 3616 23011666^131072+1 964946 L5273 2021 Generalized Fermat 3617 911*2^3205225+1 964872 L5364 2022 3618 22980158^131072+1 964868 L4201 2021 Generalized Fermat 3619 22901508^131072+1 964673 L4743 2021 Generalized Fermat 3620 22808110^131072+1 964440 L5248 2021 Generalized Fermat 3621 22718284^131072+1 964215 L5254 2021 Generalized Fermat 3622 22705306^131072+1 964183 L5248 2021 Generalized Fermat 3623 113983*2^3201175-1 963655 L613 2008 3624 34*888^326732-1 963343 L4001 2017 3625 899*2^3198219+1 962763 L5503 2022 3626 22007146^131072+1 962405 L4245 2020 Generalized Fermat 3627 4*3^2016951+1 962331 L4965 2020 3628 21917442^131072+1 962173 L4622 2020 Generalized Fermat 3629 987*2^3195883+1 962060 L5282 2022 3630 21869554^131072+1 962048 L5061 2020 Generalized Fermat 3631 21757066^131072+1 961754 L4773 2020 Generalized Fermat 3632 21582550^131072+1 961296 L5068 2020 Generalized Fermat 3633 21517658^131072+1 961125 L5126 2020 Generalized Fermat 3634 20968936^131072+1 959654 L4245 2020 Generalized Fermat 3635 671*2^3185411+1 958908 L5315 2022 3636 20674450^131072+1 958849 L4245 2020 Generalized Fermat 3637 1027*2^3184540+1 958646 L5174 2022 3638 789*2^3183463+1 958321 L5482 2022 3639 855*2^3183158+1 958229 L5161 2022 3640 20234282^131072+1 957624 L4942 2020 Generalized Fermat 3641 20227142^131072+1 957604 L4677 2020 Generalized Fermat 3642 625*2^3180780+1 957513 L5178 2022 Generalized Fermat 3643 20185276^131072+1 957486 L4201 2020 Generalized Fermat 3644 935*2^3180599+1 957459 L5477 2022 3645 573*2^3179293+1 957066 L5226 2022 3646 33*2^3176269+1 956154 L3432 2013 3647 81*2^3174353-1 955578 L3887 2022 3648 19464034^131072+1 955415 L4956 2020 Generalized Fermat 3649 600921*2^3173683-1 955380 g337 2018 3650 587*2^3173567+1 955342 L5301 2022 3651 19216648^131072+1 954687 L5024 2020 Generalized Fermat 3652 1414*95^482691-1 954633 L4877 2019 3653 305*2^3171039+1 954581 L5301 2022 3654 755*2^3170701+1 954479 L5302 2022 3655 775*2^3170580+1 954443 L5449 2022 3656 78*236^402022-1 953965 L5410 2020 3657 18968126^131072+1 953946 L5011 2020 Generalized Fermat 3658 18813106^131072+1 953479 L4201 2020 Generalized Fermat 3659 18608780^131072+1 952857 L4488 2020 Generalized Fermat 3660 1087*2^3164677-1 952666 L1828 2012 3661 18509226^131072+1 952552 L4884 2020 Generalized Fermat 3662 18501600^131072+1 952528 L4875 2020 Generalized Fermat 3663 459*2^3163175+1 952214 L5178 2022 3664 15*2^3162659+1 952057 p286 2012 3665 18309468^131072+1 951934 L4928 2020 Generalized Fermat 3666 18298534^131072+1 951900 L4201 2020 Generalized Fermat 3667 849*2^3161727+1 951778 L5178 2022 3668 67*2^3161450+1 951694 L3223 2015 3669 119*2^3161195+1 951617 L5320 2022 3670 1759*2^3160863-1 951518 L4965 2021 3671 58*117^460033+1 951436 L5410 2020 3672 417*2^3160443+1 951391 L5302 2022 3673 9231*70^515544+1 951234 L5410 2021 3674 671*2^3159523+1 951115 L5188 2022 3675 17958952^131072+1 950834 L4201 2020 Generalized Fermat 3676 1001*2^3158422-1 950783 L4518 2023 3677 17814792^131072+1 950375 L4752 2020 Generalized Fermat 3678 17643330^131072+1 949824 L4201 2020 Generalized Fermat 3679 19*2^3155009-1 949754 L1828 2012 3680 281*2^3151457+1 948686 L5316 2022 3681 179*2^3150265+1 948327 L5302 2022 3682 17141888^131072+1 948183 L4963 2019 Generalized Fermat 3683 17138628^131072+1 948172 L4963 2019 Generalized Fermat 3684 17119936^131072+1 948110 L4963 2019 Generalized Fermat 3685 17052490^131072+1 947885 L4715 2019 Generalized Fermat 3686 17025822^131072+1 947796 L4870 2019 Generalized Fermat 3687 16985784^131072+1 947662 L4295 2019 Generalized Fermat 3688 865*2^3147482+1 947490 L5178 2021 3689 963*2^3145753+1 946969 L5451 2021 3690 16741226^131072+1 946837 L4201 2019 Generalized Fermat 3691 387*2^3144483+1 946587 L5450 2021 3692 1035*2^3144236+1 946513 L5449 2021 3693 1065*2^3143667+1 946342 L4944 2021 3694d 1598*187^416536-1 946308 A11 2025 3695 193*2^3142150+1 945884 L5178 2021 3696 915*2^3141942+1 945822 L5448 2021 3697 939*2^3141397+1 945658 L5320 2021 3698 1063*2^3141350+1 945644 L5178 2021 3699 16329572^131072+1 945420 L4201 2019 Generalized Fermat 3700 69*2^3140225-1 945304 L3764 2014 3701 3*2^3136255-1 944108 L256 2007 3702 417*2^3136187+1 944089 L5178 2021 3703 15731520^131072+1 943296 L4245 2019 Generalized Fermat 3704 62721^196608-62721^98304+1 943210 L4506 2016 Generalized unique 3705 15667716^131072+1 943064 L4387 2019 Generalized Fermat 3706 15567144^131072+1 942698 L4918 2019 Generalized Fermat 3707 299*2^3130621+1 942414 L5178 2021 3708 15342502^131072+1 941870 L4245 2019 Generalized Fermat 3709 15237960^131072+1 941481 L4898 2019 Generalized Fermat 3710 571*2^3127388+1 941441 L5440 2021 3711 107*2^3126660-1 941221 A38 2024 3712 15147290^131072+1 941141 L4861 2019 Generalized Fermat 3713 197*2^3126343+1 941126 L5178 2021 3714 15091270^131072+1 940930 L4760 2019 Generalized Fermat 3715 1097*2^3124455+1 940558 L5178 2021 3716 3125*2^3124079+1 940445 L1160 2019 3717 495*2^3123624+1 940308 L5438 2021 3718 14790404^131072+1 939784 L4871 2019 Generalized Fermat 3719 1041*2^3120649+1 939412 L5437 2021 3720 14613898^131072+1 939101 L4926 2019 Generalized Fermat 3721 3317*2^3117162-1 938363 L5399 2021 3722 763*2^3115684+1 937918 L4944 2021 3723 25*746^326451-1 937810 A28 2024 3724 581*2^3114611+1 937595 L5178 2021 3725 14217182^131072+1 937534 L4387 2019 Generalized Fermat 3726 134*864^319246-1 937473 L5410 2020 3727 700057*2^3113753-1 937339 L5410 2022 3728 5*6^1204077-1 936955 A2 2023 3729 1197*2^3111838+1 936760 L5178 2021 3730 14020004^131072+1 936739 L4249 2019 Generalized Fermat 3731 27777*2^3111027+1 936517 L2777 2014 Generalized Cullen 3732 755*2^3110759+1 936435 L5320 2021 3733 13800346^131072+1 935840 L4880 2019 Generalized Fermat 3734 866981*12^866981-1 935636 L5765 2023 Generalized Woodall 3735 313*2^3107219-1 935369 L5819 2024 3736 13613070^131072+1 935062 L4245 2019 Generalized Fermat 3737 628*80^491322+1 935033 L5410 2021 3738 761*2^3105087+1 934728 L5197 2021 3739 13433028^131072+1 934305 L4868 2018 Generalized Fermat 3740 1019*2^3103680-1 934304 L1828 2012 3741 12*978^312346+1 934022 L4294 2023 3742 579*2^3102639+1 933991 L5315 2021 3743 99*2^3102401-1 933918 L1862 2017 3744 256612*5^1335485-1 933470 L1056 2013 3745 13083418^131072+1 932803 L4747 2018 Generalized Fermat 3746 882*1017^310074+1 932495 A10 2024 3747 69*2^3097340-1 932395 L3764 2014 3748 153*2^3097277+1 932376 L4944 2021 3749 12978952^131072+1 932347 L4849 2018 Generalized Fermat 3750 12961862^131072+1 932272 L4245 2018 Generalized Fermat 3751 207*2^3095391+1 931808 L5178 2021 3752 12851074^131072+1 931783 L4670 2018 Generalized Fermat 3753 45*2^3094632-1 931579 L1862 2018 3754 259*2^3094582+1 931565 L5214 2021 3755 553*2^3094072+1 931412 L4944 2021 3756 57*2^3093440-1 931220 L2484 2020 3757 12687374^131072+1 931054 L4289 2018 Generalized Fermat 3758 513*2^3092705+1 931000 L4329 2016 3759 12661786^131072+1 930939 L4819 2018 Generalized Fermat 3760 933*2^3091825+1 930736 L5178 2021 3761 38*875^316292-1 930536 L4001 2019 3762 5*2^3090860-1 930443 L1862 2012 3763 12512992^131072+1 930266 L4814 2018 Generalized Fermat 3764 4*5^1330541-1 930009 L4965 2022 3765 12357518^131072+1 929554 L4295 2018 Generalized Fermat 3766 12343130^131072+1 929488 L4720 2018 Generalized Fermat 3767 297*2^3087543+1 929446 L5326 2021 3768 1149*2^3087514+1 929438 L5407 2021 3769 745*2^3087428+1 929412 L5178 2021 3770 373*520^342177+1 929357 L3610 2014 3771 19401*2^3086450-1 929119 L541 2015 3772 75*2^3086355+1 929088 L3760 2015 3773 65*2^3080952-1 927461 L2484 2020 3774 11876066^131072+1 927292 L4737 2018 Generalized Fermat 3775 1139*2^3079783+1 927111 L5174 2021 3776 271*2^3079189-1 926931 L2484 2018 3777 766*33^610412+1 926923 L4001 2016 3778 11778792^131072+1 926824 L4672 2018 Generalized Fermat 3779 555*2^3078792+1 926812 L5226 2021 3780 31*332^367560+1 926672 L4294 2018 3781 167*2^3077568-1 926443 L1862 2020 3782 10001*2^3075602-1 925853 L4405 2019 3783 116*107^455562-1 924513 L4064 2021 3784 11292782^131072+1 924425 L4672 2018 Generalized Fermat 3785 14844*430^350980-1 924299 L4001 2016 3786 11267296^131072+1 924297 L4654 2017 Generalized Fermat 3787b 19861029*2^3070319+1 924266 A31 2025 3788 4*3^1936890+1 924132 L4965 2020 Generalized Fermat 3789 1105*2^3069884+1 924131 L5314 2021 3790 319*2^3069362+1 923973 L5377 2021 3791 11195602^131072+1 923933 L4706 2017 Generalized Fermat 3792 973*2^3069092+1 923892 L5214 2021 3793 765*2^3068511+1 923717 L5174 2021 3794 60849*2^3067914+1 923539 L591 2014 3795 674*249^385359+1 923400 L5410 2019 3796 499*2^3066970+1 923253 L5373 2021 3797 553*2^3066838+1 923213 L5368 2021 3798 629*2^3066827+1 923210 L5226 2021 3799 11036888^131072+1 923120 L4660 2017 Generalized Fermat 3800 261*2^3066009+1 922964 L5197 2021 3801 10994460^131072+1 922901 L4704 2017 Generalized Fermat 3802 214916*3^1934246-1 922876 L4965 2023 Generalized Woodall 3803 21*2^3065701+1 922870 p286 2012 3804 10962066^131072+1 922733 L4702 2017 Generalized Fermat 3805 10921162^131072+1 922520 L4559 2017 Generalized Fermat 3806 875*2^3063847+1 922313 L5364 2021 3807 43*2^3063674+1 922260 L3432 2013 3808 677*2^3063403+1 922180 L5346 2021 3809 8460*241^387047-1 921957 L5410 2019 3810 10765720^131072+1 921704 L4695 2017 Generalized Fermat 3811 111*2^3060238-1 921226 L2484 2020 3812 1165*2^3060228+1 921224 L5360 2021 3813 5*2^3059698-1 921062 L503 2008 3814 10453790^131072+1 920031 L4694 2017 Generalized Fermat 3815 453*2^3056181+1 920005 L5320 2021 3816 791*2^3055695+1 919859 L5177 2021 3817 10368632^131072+1 919565 L4692 2017 Generalized Fermat 3818 582971*2^3053414-1 919175 L5410 2022 3819 123*2^3049038+1 917854 L4119 2015 3820 10037266^131072+1 917716 L4691 2017 Generalized Fermat 3821 400*95^463883-1 917435 L4001 2019 3822 9907326^131072+1 916975 L4690 2017 Generalized Fermat 3823 454*383^354814+1 916558 L2012 2020 3824 9785844^131072+1 916272 L4326 2017 Generalized Fermat 3825 435*2^3041954+1 915723 L5320 2021 3826 639*2^3040438+1 915266 L5320 2021 3827 13822*115^443832+1 914608 A11 2024 3828 1045*2^3037988+1 914529 L5178 2021 3829 291*2^3037904+1 914503 L3545 2015 3830 311*2^3037565+1 914401 L5178 2021 3831 373*2^3036746+1 914155 L5178 2021 3832 9419976^131072+1 914103 L4591 2017 Generalized Fermat 3833 5706*162^413708+1 914098 A14 2024 3834 341*2^3036506-1 914082 p435 2023 3835 801*2^3036045+1 913944 L5348 2021 3836 915*2^3033775+1 913261 L5178 2021 3837 38804*3^1913975+1 913203 L5410 2021 3838 9240606^131072+1 913009 L4591 2017 Generalized Fermat 3839 869*2^3030655+1 912322 L5260 2021 3840 643*2^3030650+1 912320 L5320 2021 3841 99*2^3029959-1 912111 L1862 2020 3842 417*2^3029342+1 911926 L5178 2021 3843 345*2^3027769+1 911452 L5343 2021 3844 26*3^1910099+1 911351 L4799 2020 3845 355*2^3027372+1 911333 L5174 2021 3846 99*2^3026660-1 911118 L1862 2020 3847 417*2^3026492+1 911068 L5197 2021 3848 1065*2^3025527+1 910778 L5208 2021 3849 34202*3^1908800+1 910734 L5410 2021 3850 8343*42^560662+1 910099 L4444 2020 3851 699*2^3023263+1 910096 L5335 2021 3852 8770526^131072+1 910037 L4245 2017 Generalized Fermat 3853 8704114^131072+1 909604 L4670 2017 Generalized Fermat 3854 383731*2^3021377-1 909531 L466 2011 3855 46821*2^3021380-374567 909531 p363 2013 3856 2^3021377-1 909526 G3 1998 Mersenne 37 3857d 255*2^3021196-1 909474 L3994 2025 3858 615*2^3019445+1 908947 L5260 2021 3859 389*2^3019025+1 908820 L5178 2021 3860 875*2^3018175+1 908565 L5334 2021 3861 375*2^3016803-1 908151 L2235 2023 3862 555*2^3016352+1 908016 L5178 2021 3863 7*2^3015762+1 907836 g279 2008 3864 759*2^3015314+1 907703 L5178 2021 3865 32582*3^1901790+1 907389 L5372 2021 3866 75*2^3012342+1 906808 L3941 2015 3867 459*2^3011814+1 906650 L5178 2021 3868d 171*2^3010938-1 906385 A27 2025 3869 991*2^3010036+1 906115 L5326 2021 3870 583*2^3009698+1 906013 L5325 2021 3871 8150484^131072+1 905863 L4249 2017 Generalized Fermat 3872 593*2^3006969+1 905191 L5178 2021 3873 327*2^3006540-1 905062 L2257 2023 3874 75*2^3006235-1 904969 A38 2024 3875 367*2^3004536+1 904459 L5178 2021 3876 7926326^131072+1 904276 L4249 2017 Generalized Fermat 3877 1003*2^3003756+1 904224 L5320 2021 3878 626*1017^300576+1 903932 A9 2024 3879 573*2^3002662+1 903895 L5319 2021 3880 7858180^131072+1 903784 L4201 2017 Generalized Fermat 3881 329*2^3002295+1 903784 L5318 2021 3882 4*5^1292915-1 903710 L4965 2022 3883 7832704^131072+1 903599 L4249 2017 Generalized Fermat 3884 268514*5^1292240-1 903243 L3562 2013 3885 7*10^902708+1 902709 p342 2013 3886 435*2^2997453+1 902326 L5167 2021 3887 583*2^2996526+1 902047 L5174 2021 3888 1037*2^2995695+1 901798 L5178 2021 3889 717*2^2995326+1 901686 L5178 2021 3890 885*2^2995274+1 901671 L5178 2021 3891 43*2^2994958+1 901574 L3222 2013 3892 1065*2^2994154+1 901334 L5315 2021 3893 561*2^2994132+1 901327 L5314 2021 3894d 147*2^2993165-1 901035 L1817 2025 3895 1095*2^2992587-1 900862 L1828 2011 3896 519*2^2991849+1 900640 L5311 2021 3897 7379442^131072+1 900206 L4201 2017 Generalized Fermat 3898b 109932*5^1287894-1 900205 A11 2025 3899 459*2^2990134+1 900123 L5197 2021 3900 15*2^2988834+1 899730 p286 2012 3901 29*564^326765+1 899024 L4001 2017 3902 5129*24^650539+1 897885 A11 2024 3903 971*2^2982525+1 897833 L5197 2021 3904 1033*2^2980962+1 897362 L5305 2021 3905 357*2^2980540-1 897235 L2257 2023 3906 367*2^2979033-1 896781 L2257 2023 3907 39*2^2978894+1 896739 L2719 2013 3908 38*977^299737+1 896184 L5410 2021 3909 4348099*2^2976221-1 895939 L466 2008 3910 205833*2^2976222-411665 895938 L4667 2017 3911 593*2^2976226-18975 895937 p373 2014 3912 2^2976221-1 895932 G2 1997 Mersenne 36 3913 1024*3^1877301+1 895704 p378 2014 3914 1065*2^2975442+1 895701 L5300 2021 Divides GF(2975440,3) 3915 24704*3^1877135+1 895626 L5410 2021 3916 591*2^2975069+1 895588 L5299 2021 3917 249*2^2975002+1 895568 L2322 2015 3918 18431*82^467690-1 895076 A14 2024 3919 195*2^2972947+1 894949 L3234 2015 3920 6705932^131072+1 894758 L4201 2017 Generalized Fermat 3921 391*2^2971600+1 894544 L5242 2021 3922 46425*2^2971203+1 894426 L2777 2014 Generalized Cullen 3923 625*2^2970336+1 894164 L5233 2021 Generalized Fermat 3924 369*2^2968175-1 893513 L2257 2023 3925 493*72^480933+1 893256 L3610 2014 3926 561*2^2964753+1 892483 L5161 2021 3927 1185*2^2964350+1 892362 L5161 2021 3928 6403134^131072+1 892128 L4510 2016 Generalized Fermat 3929 6391936^131072+1 892028 L4511 2016 Generalized Fermat 3930d 1964*991^297652-1 891791 A11 2025 3931 395*2^2961370-1 891464 L2257 2023 3932 21*2^2959789-1 890987 L5313 2021 3933 627*2^2959098+1 890781 L5197 2021 3934 45*2^2958002-1 890449 L1862 2017 3935 729*2^2955389+1 889664 L5282 2021 3936 706*1017^295508+1 888691 p433 2023 3937 198677*2^2950515+1 888199 L2121 2012 3938 88*985^296644+1 887987 L5410 2020 3939 303*2^2949403-1 887862 L1817 2022 3940 5877582^131072+1 887253 L4245 2016 Generalized Fermat 3941 321*2^2946654-1 887034 L1817 2022 3942 17*2^2946584-1 887012 L3519 2013 3943 489*2^2944673+1 886438 L5167 2021 3944 141*2^2943065+1 885953 L3719 2015 3945 757*2^2942742+1 885857 L5261 2021 3946 5734100^131072+1 885846 L4477 2016 Generalized Fermat 3947 33*2^2939064-5606879602425*2^1290000-1 884748 p423 2021 Arithmetic progression (3,d=33*2^2939063-5606879602425*2^1290000) 3948 33*2^2939063-1 884748 L3345 2013 3949 5903*2^2938744-1 884654 L4036 2015 3950 717*2^2937963+1 884418 L5256 2021 3951 5586416^131072+1 884361 L4454 2016 Generalized Fermat 3952f 297*2^2937584-1 884304 L1817 2025 3953 243*2^2937316+1 884223 L4114 2015 3954 973*2^2937046+1 884142 L5253 2021 3955 61*2^2936967-1 884117 L2484 2017 3956f 203*2^2935338-1 883628 L1817 2025 3957 903*2^2934602+1 883407 L5246 2021 3958 5471814^131072+1 883181 L4362 2016 Generalized Fermat 3959 188*228^374503+1 883056 L4786 2020 3960 53*248^368775+1 883016 L5196 2020 3961 13613*82^461323-1 882891 A11 2024 3962 5400728^131072+1 882436 L4201 2016 Generalized Fermat 3963 17*326^350899+1 881887 L4786 2019 3964 855*2^2929550+1 881886 L5200 2021 3965 5326454^131072+1 881648 L4201 2016 Generalized Fermat 3966 839*2^2928551+1 881585 L5242 2021 3967 7019*10^881309-1 881313 L3564 2013 3968 25*2^2927222+1 881184 L1935 2013 Generalized Fermat 3969 391*2^2925759-1 880744 L2257 2023 3970 577*2^2925602+1 880697 L5201 2021 3971 97366*5^1259955-1 880676 L3567 2013 3972b 246234*5^1259806-1 880572 A65 2025 3973 19861029*2^2924096-1 880248 A31 2024 3974 973*2^2923062+1 879933 L5228 2021 3975 1126*177^391360+1 879770 L4955 2020 3976 243944*5^1258576-1 879713 L3566 2013 3977 693*2^2921528+1 879471 L5201 2021 3978 6*10^879313+1 879314 L5009 2019 3979 269*2^2918105+1 878440 L2715 2015 3980 331*2^2917844+1 878362 L5210 2021 3981 169*2^2917805-1 878350 L2484 2018 3982 1085*2^2916967+1 878098 L5174 2020 3983 389*2^2916499+1 877957 L5215 2020 3984 431*2^2916429+1 877936 L5214 2020 3985 1189*2^2916406+1 877929 L5174 2020 3986 1011*2^2916119-1 877843 L4518 2023 3987 7*2^2915954+1 877791 g279 2008 Divides GF(2915953,12) [g322] 3988 4974408^131072+1 877756 L4380 2016 Generalized Fermat 3989 465*2^2914079+1 877228 L5210 2020 3990 427194*113^427194+1 877069 p310 2012 Generalized Cullen 3991d 322*952^294414+1 876955 A11 2025 3992 4893072^131072+1 876817 L4303 2016 Generalized Fermat 3993 493*2^2912552+1 876769 L5192 2021 3994 379*2^2911423-1 876429 L2257 2023 3995 143157*2^2911403+1 876425 L4504 2017 3996 567*2^2910402+1 876122 L5201 2020 3997c 4098*1003^291860+1 875964 A14 2025 3998 683*2^2909217+1 875765 L5199 2020 3999 674*249^365445+1 875682 L5410 2019 4000 475*2^2908802+1 875640 L5192 2021 4001 2351*24^634318+1 875497 A11 2024 4002f 117*2^2908312-1 875492 A27 2025 4003 371*2^2907377+1 875211 L5197 2020 4004 8161*24^633274+1 874056 A11 2024 4005 207*2^2903535+1 874054 L3173 2015 4006 851*2^2902731+1 873813 L5177 2020 4007 267*2^2902469-1 873733 A27 2024 4008 777*2^2901907+1 873564 L5192 2020 4009 717*2^2900775+1 873224 L5185 2020 4010 99*2^2899303-1 872780 L1862 2017 4011 63*2^2898957+1 872675 L3262 2013 4012 173*2^2897448-1 872221 A27 2024 4013 11*2^2897409+1 872209 L2973 2013 Divides GF(2897408,3) 4014 187*2^2896841-1 872039 L3994 2024 4015 29601*24^631722+1 871915 A11 2024 4016 747*2^2895307+1 871578 L5178 2020 4017 403*2^2894566+1 871354 L5180 2020 4018b 62022*5^1246456-1 871241 A11 2025 4019 629*2^2892961+1 870871 L5173 2020 4020 627*2^2891514+1 870436 L5168 2020 4021 325*2^2890955-1 870267 L5545 2022 4022 363*2^2890208+1 870042 L3261 2020 4023 471*2^2890148+1 870024 L5158 2020 4024 4329134^131072+1 869847 L4395 2016 Generalized Fermat 4025 583*2^2889248+1 869754 L5139 2020 4026 353*2^2888332-1 869478 L2257 2023 4027 955*2^2887934+1 869358 L4958 2020 4028 8300*171^389286+1 869279 L5410 2023 4029 303*2^2887603-1 869258 L5184 2022 4030 937*2^2887130+1 869116 L5134 2020 4031 885*2^2886389+1 868893 L3924 2020 4032 763*2^2885928+1 868754 L2125 2020 4033 1071*2^2884844+1 868428 L3593 2020 4034 1181*2^2883981+1 868168 L3593 2020 4035 327*2^2881349-1 867375 L5545 2022 4036 51*2^2881227+1 867338 L3512 2013 4037 933*2^2879973+1 866962 L4951 2020 4038 261*2^2879941+1 866952 L4119 2015 4039 4085818^131072+1 866554 L4201 2016 Generalized Fermat 4040 65*2^2876718-1 865981 L2484 2016 4041 21*948^290747-1 865500 L4985 2019 4042 4013*2^2873250-1 864939 L1959 2014 4043 41*2^2872058-1 864578 L2484 2013 4044 359*2^2870935+1 864241 L1300 2020 4045 165*2^2870868+1 864220 L4119 2015 4046 961*2^2870596+1 864139 L1300 2020 Generalized Fermat 4047 665*2^2869847+1 863913 L2885 2020 4048c 12*753^300293+1 863883 A59 2025 4049 283*2^2868750+1 863583 L3877 2015 4050 663703*20^663703-1 863504 L5765 2023 Generalized Woodall 4051 845*2^2868291+1 863445 L5100 2020 4052 3125*2^2867399+1 863177 L1754 2019 4053 701*2^2867141+1 863099 L1422 2020 4054 9*10^862868+1 862869 L4789 2024 Generalized Fermat 4055 3814944^131072+1 862649 L4201 2016 Generalized Fermat 4056 81030*91^440109-1 862197 A11 2024 4057 119*954^289255+1 861852 L5410 2022 4058 307*2^2862962+1 861840 L4740 2020 4059 147*2^2862651+1 861746 L1741 2015 4060 1207*2^2861901-1 861522 L1828 2011 4061 231*2^2860725+1 861167 L2873 2015 4062 193*2^2858812+1 860591 L2997 2015 4063b 41079*78^454700-1 860341 A11 2025 4064 629*2^2857891+1 860314 L3035 2020 4065 493*2^2857856+1 860304 L5087 2020 4066 241*2^2857313-1 860140 L2484 2018 4067 707*2^2856331+1 859845 L5084 2020 4068 3615210^131072+1 859588 L4201 2016 Generalized Fermat 4069 949*2^2854946+1 859428 L2366 2020 4070 222361*2^2854840+1 859398 g403 2006 4071 725*2^2854661+1 859342 L5031 2020 4072 178972*5^1228284+1 858539 A42 2024 4073 399*2^2851994+1 858539 L4099 2020 4074 225*2^2851959+1 858528 L3941 2015 4075 247*2^2851602+1 858421 L3865 2015 4076 183*2^2850321+1 858035 L2117 2015 4077 1191*2^2849315+1 857733 L1188 2020 4078 717*2^2848598+1 857517 L1204 2020 4079 795*2^2848360+1 857445 L4099 2020 4080 4242104*15^728840-1 857189 L5410 2023 4081e 2*647^304931+1 857133 L550 2025 4082 3450080^131072+1 856927 L4201 2016 Generalized Fermat 4083 705*2^2846638+1 856927 L1808 2020 4084 369*2^2846547+1 856899 L4099 2020 4085 233*2^2846392-1 856852 L2484 2021 4086 223952*91^437353-1 856798 A11 2024 4087 955*2^2844974+1 856426 L1188 2020 4088 753*2^2844700+1 856343 L1204 2020 4089 11138*745^297992-1 855884 L4189 2019 4090 111*2^2841992+1 855527 L1792 2015 4091 44*744^297912-1 855478 L5410 2021 4092 649*2^2841318+1 855325 L4732 2020 4093 228*912^288954-1 855305 L5410 2022 4094 305*2^2840155+1 854975 L4907 2020 4095 914*871^290787-1 854923 L5787 2023 4096 1149*2^2839622+1 854815 L2042 2020 4097 95*2^2837909+1 854298 L3539 2013 4098 199*2^2835667-1 853624 L2484 2019 4099 595*2^2833406+1 852943 L4343 2020 4100 1101*2^2832061+1 852539 L4930 2020 4101 813*2^2831757+1 852447 L4951 2020 4102 435*2^2831709+1 852432 L4951 2020 4103 38*500^315752-1 852207 A21 2024 4104 13613*82^445251-1 852132 A11 2024 4105 393*2^2828738-1 851538 L2257 2023 4106 543*2^2828217+1 851381 L4746 2019 4107 68*1010^283267+1 851027 L5778 2023 4108 704*249^354745+1 850043 L5410 2019 4109 1001*2^2822037+1 849521 L1209 2019 4110 84466*5^1215373-1 849515 L3562 2013 4111 97*2^2820650+1 849103 L2163 2013 4112 381*2^2820157-1 848955 L2257 2023 4113 43814*91^433332-1 848920 A32 2024 4114 107*2^2819922-1 848884 L2484 2013 4115 84256*3^1778899+1 848756 L4789 2018 4116 45472*3^1778899-1 848756 L4789 2018 4117 495*2^2819449-1 848742 L3994 2024 4118 14804*3^1778530+1 848579 L4064 2021 4119 497*2^2818787+1 848543 L4842 2019 4120 97*2^2818306+1 848397 L3262 2013 4121 313*2^2817751-1 848231 L802 2021 4122 177*2^2816050+1 847718 L129 2012 4123 585*2^2816000-1 847704 L5819 2024 4124 553*2^2815596+1 847582 L4980 2019 4125 1071*2^2814469+1 847243 L3035 2019 4126 105*2^2813000+1 846800 L3200 2015 4127 1115*2^2812911+1 846774 L1125 2019 4128 96*10^846519-1 846521 L2425 2011 Near-repdigit 4129 763*2^2811726+1 846417 L3919 2019 4130 1125*2^2811598+1 846379 L4981 2019 4131 891*2^2810100+1 845928 L4981 2019 4132 441*2^2809881+1 845862 L4980 2019 4133 499*2^2809261-1 845675 L5516 2024 4134 711*2^2808473+1 845438 L1502 2019 4135 1089*2^2808231+1 845365 L4687 2019 4136 63*2^2807130+1 845033 L3262 2013 4137 1083*2^2806536+1 844855 L3035 2019 4138 675*2^2805669+1 844594 L1932 2019 4139 819*2^2805389+1 844510 L3372 2019 4140 1027*2^2805222+1 844459 L3035 2019 4141 437*2^2803775+1 844024 L3168 2019 4142 29113*820^289614+1 843886 A50 2024 4143 381*2^2801281-1 843273 L2257 2023 4144 4431*372^327835-1 842718 L5410 2019 4145 150344*5^1205508-1 842620 L3547 2013 4146 311*2^2798459+1 842423 L4970 2019 4147 81*2^2797443-1 842117 L3887 2021 4148 400254*127^400254+1 842062 g407 2013 Generalized Cullen 4149 2639850^131072+1 841690 L4249 2016 Generalized Fermat 4150 43*2^2795582+1 841556 L2842 2013 4151 1001*2^2794357+1 841189 L1675 2019 4152 117*2^2794014+1 841085 L1741 2015 4153b 1962*5^1203024-1 840881 A63 2025 4154 1057*2^2792700+1 840690 L1675 2019 4155 345*2^2792269+1 840560 L1754 2019 4156 267*2^2792074-1 840501 L1817 2024 4157 711*2^2792072+1 840501 L4256 2019 4158 293*2^2791482-1 840323 A27 2024 4159b 42896*78^444110-1 840303 A11 2025 4160 315*2^2791414-1 840302 L2235 2021 4161 973*2^2789516+1 839731 L3372 2019 4162 27602*3^1759590+1 839543 L4064 2021 4163 2187*2^2786802+1 838915 L1745 2019 4164 15*2^2785940+1 838653 p286 2012 4165 333*2^2785626-1 838560 L802 2021 4166 1337*2^2785444-1 838506 L4518 2017 4167 711*2^2784213+1 838135 L4687 2019 4168 58582*91^427818+1 838118 L5410 2020 4169 923*2^2783153+1 837816 L1675 2019 4170 1103*2^2783149+1 837815 L3784 2019 4171 20708*82^437279-1 836875 A48 2024 4172 297*2^2778276-1 836347 A27 2024 4173 485*2^2778151+1 836310 L1745 2019 4174 600921*2^2776014-1 835670 g337 2017 4175 1129*2^2774934+1 835342 L1774 2019 4176 750*1017^277556-1 834703 L4955 2021 4177 8700*241^350384-1 834625 L5410 2019 4178 1023*2^2772512+1 834613 L4724 2019 4179 656*249^348030+1 833953 L5410 2019 4180 92*10^833852-1 833854 L4789 2018 Near-repdigit 4181 437*2^2769299+1 833645 L3760 2019 4182 967*2^2768408+1 833377 L3760 2019 4183 2280466^131072+1 833359 L4201 2016 Generalized Fermat 4184 1171*2^2768112+1 833288 L2676 2019 4185 57*2^2765963+1 832640 L3262 2013 4186 1323*2^2764024+1 832058 L1115 2019 4187 189*2^2762731-1 831668 A27 2024 4188 471*2^2762718-1 831664 L5516 2023 4189 115*2^2762111-1 831481 A27 2024 4190 77*2^2762047+1 831461 L3430 2013 4191 745*2^2761514+1 831302 L1204 2019 4192 2194180^131072+1 831164 L4276 2016 Generalized Fermat 4193 543*2^2760224-1 830913 L5516 2023 4194 7*10^830865+1 830866 p342 2014 4195 893*2^2758841+1 830497 L4826 2019 4196 593*2^2757554-1 830110 L5516 2023 4197 557*2^2757276-1 830026 L5516 2023 4198 537*2^2755164+1 829390 L3035 2019 4199 225*370^322863-1 829180 A14 2024 4200 579*2^2754370+1 829151 L1823 2019 4201 441*2^2754188+1 829096 L2564 2019 Generalized Fermat 4202 455*2^2754132-1 829080 L5516 2023 4203 139*2^2751839-1 828389 A27 2024 4204 677*792^285769-1 828369 L541 2023 4205 215*2^2751022-1 828143 L2484 2018 4206 337*2^2750860+1 828094 L4854 2019 4207 701*2^2750267+1 827916 L3784 2019 4208 467*2^2749195+1 827593 L1745 2019 4209 245*2^2748663+1 827433 L3173 2015 4210 591*2^2748315+1 827329 L3029 2019 4211 205*2^2747571-1 827104 L1817 2024 4212 57*2^2747499+1 827082 L3514 2013 Divides Fermat F(2747497) 4213 1007*2^2747268-1 827014 L4518 2022 4214 1089*2^2746155+1 826679 L2583 2019 4215 707*2^2745815+1 826576 L3760 2019 4216 525*2^2743252-1 825804 L5516 2023 4217 459*2^2742310+1 825521 L4582 2019 4218 777*2^2742196+1 825487 L3919 2019 4219 609*2^2741078+1 825150 L3091 2019 4220 684*157^375674+1 824946 L5112 2022 4221 639*2^2740186+1 824881 L4958 2019 4222 905*2^2739805+1 824767 L4958 2019 4223 119*954^276761+1 824625 L5410 2022 4224 1955556^131072+1 824610 L4250 2015 Generalized Fermat 4225 777*2^2737282+1 824007 L1823 2019 4226d 224*938^277168-1 823802 A11 2025 4227 765*2^2735232+1 823390 L1823 2019 4228 609*2^2735031+1 823330 L1823 2019 4229 9*10^823037+1 823038 L4789 2024 4230 305*2^2733989+1 823016 L1823 2019 4231 165*2^2732983+1 822713 L1741 2015 4232 1133*2^2731993+1 822415 L4687 2019 4233 251*2^2730917+1 822091 L3924 2015 4234 189*2^2730633-1 822005 A27 2024 4235 1185*2^2730620+1 822002 L4948 2019 4236 (10^410997+1)^2-2 821995 p405 2022 4237 173*2^2729905+1 821786 L3895 2015 4238 285*2^2728979-1 821507 A27 2024 4239 1981*2^2728877-1 821478 L1134 2018 4240 693*2^2728537+1 821375 L3035 2019 4241 501*2^2728224+1 821280 L3035 2019 4242 763*2^2727928+1 821192 L3924 2019 4243 553*2^2727583-1 821088 L5516 2023 4244 5292*820^281664+1 820721 A11 2024 4245 465*2^2726085-1 820637 L5516 2023 4246 291*2^2725533-1 820470 L1817 2024 4247 10*743^285478+1 819606 L4955 2019 4248 17*2^2721830-1 819354 p279 2010 4249 1006*639^291952+1 819075 L4444 2021 4250 1101*2^2720091+1 818833 L4935 2019 4251 1766192^131072+1 818812 L4231 2015 Generalized Fermat 4252 555*2^2719105-1 818535 L5516 2023 4253 165*2^2717378-1 818015 L2055 2012 4254 495*2^2717011-1 817905 L5516 2023 4255 68633*2^2715609+1 817485 L5105 2020 4256 1722230^131072+1 817377 L4210 2015 Generalized Fermat 4257 9574*5^1169232+1 817263 L5410 2021 4258 1717162^131072+1 817210 L4226 2015 Generalized Fermat 4259 133*2^2713410+1 816820 L3223 2015 4260 9022*96^411931-1 816563 L5410 2023 4261b 17423*52^475727-1 816354 A11 2025 4262 45*2^2711732+1 816315 L1349 2012 4263 569*2^2711451+1 816231 L4568 2019 4264 567*2^2710898-1 816065 L5516 2023 4265 12830*3^1709456+1 815622 L5410 2021 4266 335*2^2708958-1 815481 L2235 2020 4267 93*2^2708718-1 815408 L1862 2016 4268 1660830^131072+1 815311 L4207 2015 Generalized Fermat 4269 837*2^2708160+1 815241 L4314 2019 4270 261*2^2707551-1 815057 A27 2024 4271 1005*2^2707268+1 814972 L4687 2019 4272 13*458^306196+1 814748 L3610 2015 4273 253*2^2705844+1 814543 L4083 2015 4274 657*2^2705620+1 814476 L4907 2019 4275 39*2^2705367+1 814399 L1576 2013 Divides GF(2705360,3) 4276 405*2^2704471-1 814130 L5516 2023 4277 303*2^2703864+1 813947 L1204 2019 4278 141*2^2702160+1 813434 L1741 2015 4279 753*2^2701925+1 813364 L4314 2019 4280 133*2^2701452+1 813221 L3173 2015 4281 58434*5^1162930+1 812858 A11 2024 4282 521*2^2700095+1 812813 L4854 2019 4283 393*2^2698956+1 812470 L1823 2019 4284 417*2^2698652+1 812378 L3035 2019 4285 525*2^2698118+1 812218 L1823 2019 4286 3125*2^2697651+1 812078 L3924 2019 4287 287*2^2697536-1 812042 A27 2024 4288 153*2^2697173+1 811933 L3865 2015 4289 1560730^131072+1 811772 L4201 2015 Generalized Fermat 4290 26*3^1700041+1 811128 L4799 2020 4291 1538654^131072-1538654^65536+1 810961 L4561 2017 Generalized unique 4292 11*2^2691961+1 810363 p286 2013 Divides GF(2691960,12) 4293 555*2^2691334-1 810176 L5516 2023 4294 58*536^296735-1 809841 L5410 2021 4295 33016*3^1696980+1 809670 L5366 2021 4296 7335*2^2689080-1 809498 L4036 2015 4297 1049*2^2688749+1 809398 L4869 2018 4298 120*957^271487-1 809281 L541 2023 4299 329*2^2688221+1 809238 L3035 2018 4300 1578*37^515979-1 809163 p443 2024 4301 865*2^2687434+1 809002 L4844 2018 4302 989*2^2686591+1 808748 L2805 2018 4303 136*904^273532+1 808609 L5410 2020 4304 243*2^2685873+1 808531 L3865 2015 4305 909*2^2685019+1 808275 L3431 2018 4306 1455*2^2683954-6325241166627*2^1290000-1 807954 p423 2021 Arithmetic progression (3,d=1455*2^2683953-6325241166627*2^1290000) 4307 1455*2^2683953-1 807954 L1134 2020 4308 11210*241^339153-1 807873 L5410 2019 4309 1456746^131072-1456746^65536+1 807848 L4561 2017 Generalized unique 4310 975*2^2681840+1 807318 L4155 2018 4311 999*2^2681353-1 807171 L4518 2022 4312 295*2^2680932+1 807044 L1741 2015 4313 275*2^2679936-1 806744 A27 2024 4314 1427604^131072-1427604^65536+1 806697 L4561 2017 Generalized unique 4315 575*2^2679711+1 806677 L2125 2018 4316c 46533*52^469992-1 806513 L6248 2025 4317 2386*52^469972+1 806477 L4955 2019 4318 2778*991^269162+1 806433 p433 2023 4319 10*80^423715-1 806369 p247 2023 4320 219*2^2676229+1 805628 L1792 2015 4321 637*2^2675976+1 805552 L3035 2018 4322 1395583^131072-1395583^65536+1 805406 L4561 2017 Generalized unique 4323 951*2^2674564+1 805127 L1885 2018 4324 531*2^2673250-1 804732 L5516 2023 4325 1372930^131072+1 804474 g236 2003 Generalized Fermat 4326 662*1009^267747-1 804286 L5410 2020 4327 261*2^2671677+1 804258 L3035 2015 4328 895*2^2671520+1 804211 L3035 2018 4329 1361244^131072+1 803988 g236 2004 Generalized Fermat 4330 789*2^2670409+1 803877 L3035 2018 4331 256*11^771408+1 803342 L3802 2014 Generalized Fermat 4332 503*2^2668529+1 803310 L4844 2018 4333 255*2^2668448+1 803286 L1129 2015 4334 4189*2^2666639-1 802742 L1959 2017 4335 539*2^2664603+1 802129 L4717 2018 4336 3^1681130+3^445781+1 802103 CH9 2022 4337 26036*745^279261-1 802086 L4189 2020 4338 295*2^2663855-1 801903 A27 2024 4339 1396*5^1146713-1 801522 L3547 2013 4340 676*687^282491-1 801418 L5426 2023 4341 267*2^2662090+1 801372 L3234 2015 Divides Fermat F(2662088) 4342 51*892^271541+1 801147 L5410 2019 4343 1851*24^580404+1 801084 A49 2024 4344e 12124*477^299035-1 800975 A11 2025 4345 297*2^2660048+1 800757 L3865 2015 4346 133*2^2658587-1 800317 L1817 2024 4347 99*2^2658496-1 800290 L1862 2021 4348 851*2^2656411+1 799663 L4717 2018 4349 487*2^2655008+1 799240 L3760 2018 4350 153*2^2654686-1 799143 A27 2024 4351 441*2^2652807-1 798578 L5516 2023 4352b 77594*78^421949-1 798373 A11 2025 4353 371*2^2651663+1 798233 L3760 2018 4354 69*2^2649939-1 797713 L3764 2014 4355 207*2^2649810+1 797675 L1204 2015 4356 505*2^2649496+1 797581 L3760 2018 4357 993*2^2649256+1 797509 L3760 2018 4358 225*718^279185-1 797390 A11 2024 4359 517*2^2648698+1 797341 L3760 2018 4360 340*703^280035+1 797250 L4001 2018 4361 441*2^2648307+1 797223 L3760 2018 4362 1129*2^2646590+1 796707 L3760 2018 4363 128*518^293315+1 796156 L4001 2019 4364 211*744^277219-1 796057 L5410 2021 4365 1181782^131072-1181782^65536+1 795940 L4142 2015 Generalized unique 4366 1176694^131072+1 795695 g236 2003 Generalized Fermat 4367 13*2^2642943-1 795607 L1862 2012 4368b 73406*105^393484+1 795311 A11 2025 4369 119*410^304307+1 795091 L4294 2019 4370 501*2^2641052+1 795039 L3035 2018 4371 267*2^2640554-1 794889 A27 2024 4372 879*2^2639962+1 794711 L3760 2018 4373 57*2^2639528-1 794579 L2484 2016 4374 342673*2^2639439-1 794556 L53 2007 4375 813*2^2639092+1 794449 L2158 2018 4376 1147980^131072-1147980^65536+1 794288 L4142 2015 Generalized unique 4377 197*972^265841-1 794247 L4955 2022 4378 1027*2^2638186+1 794177 L3760 2018 4379 889*2^2637834+1 794071 L3545 2018 4380 175*2^2637399-1 793939 A27 2024 4381 421*2^2636975-1 793812 L5516 2023 4382 92182*5^1135262+1 793520 L3547 2013 4383 5608*70^429979+1 793358 L5390 2021 4384 741*2^2634385+1 793032 L1204 2018 4385c 34449*52^461672-1 792236 A11 2025 4386 465*2^2630496+1 791861 L1444 2018 4387 189*2^2630487+1 791858 L3035 2015 4388 87*2^2630468+1 791852 L3262 2013 4389 123454321*2^2630208+1 791780 L6049 2024 Generalized Fermat 4390b 5252*53^459192-1 791778 A63 2025 4391 4*5^1132659-1 791696 L4965 2022 4392 1131*2^2629345+1 791515 L4826 2018 4393 967*2^2629344+1 791515 L3760 2018 4394 267*2^2629210+1 791474 L3035 2015 4395 154*883^268602+1 791294 L5410 2020 4396 237*2^2627713-1 791023 L1817 2024 4397 819*2^2627529+1 790968 L1387 2018 4398 183*2^2626880-1 790772 L1817 2024 4399 17152*5^1131205-1 790683 L3552 2013 4400 183*2^2626442+1 790641 L3035 2015 4401 137*2^2626238-1 790579 A27 2024 4402 813*2^2626224+1 790576 L4830 2018 4403d 66*952^265412+1 790568 A52 2025 4404 807*2^2625044+1 790220 L1412 2018 4405 557*2^2624952-1 790193 L5516 2023 4406 4*10^789955+1 789956 L4789 2024 4407 1063730^131072+1 789949 g260 2013 Generalized Fermat 4408 1243*2^2623707-1 789818 L1828 2011 4409 693*2^2623557+1 789773 L3278 2018 4410 981*2^2622032+1 789314 L1448 2018 4411 145*2^2621020+1 789008 L3035 2015 4412 963*792^271959-1 788338 L5410 2021 4413 1798*165^354958+1 787117 p365 2024 4414 541*2^2614676+1 787099 L4824 2018 4415 545*2^2614294-1 786984 L5516 2023 4416 (10^393063-1)^2-2 786126 p405 2022 Near-repdigit 4417 1061*268^323645-1 785857 L5410 2019 4418 1662*483^292719-1 785646 L5410 2022 4419 984522^131072-984522^65536+1 785545 p379 2015 Generalized unique 4420 1071*2^2609316+1 785486 L3760 2018 4421 87*2^2609046+1 785404 L2520 2013 4422 18922*111^383954+1 785315 L4927 2021 4423 543*2^2608129+1 785128 L4822 2018 4424 377*2^2607856-1 785046 L2257 2023 4425 329584*5^1122935-1 784904 L3553 2013 4426 10*311^314806+1 784737 L3610 2014 4427b 85806*52^457298-1 784730 A11 2025 4428 1019*2^2606525+1 784646 L1201 2018 4429 977*2^2606211+1 784551 L4746 2018 4430 13*2^2606075-1 784508 L1862 2011 4431 693*2^2605905+1 784459 L4821 2018 4432e 6984*507^289940-1 784294 A54 2025 4433 147*2^2604275+1 783968 L1741 2015 4434 105*2^2603631+1 783774 L3459 2015 4435 93*2^2602483-1 783428 L1862 2016 4436 155*2^2602213+1 783347 L2719 2015 4437 545*2^2602018-1 783289 L5516 2023 4438 303*2^2601525+1 783140 L4816 2018 4439 711*2^2600535+1 782842 L4815 2018 4440 1133*2^2599345+1 782484 L4796 2018 4441 397*2^2598796+1 782319 L3877 2018 4442 421*2^2597273-1 781860 L5516 2023 4443 585*2^2596523-1 781635 L5819 2023 4444 203*2^2595752-1 781402 A27 2024 4445 1536*177^347600+1 781399 L5410 2020 4446 1171*2^2595736+1 781398 L3035 2018 4447 (146^180482+1)^2-2 781254 p405 2022 4448 579*2^2595159-1 781224 L5516 2023 4449 543*2^2594975-1 781169 L5516 2023 4450 909548^131072+1 781036 p387 2015 Generalized Fermat 4451 7386*82^408082-1 780997 A11 2024 4452 2*218^333925+1 780870 L4683 2017 4453 15690*29^533930+1 780823 L5787 2023 4454 1149*2^2593359+1 780682 L1125 2018 4455 225*2^2592918+1 780549 L1792 2015 Generalized Fermat 4456 495*2^2592802-1 780514 L5516 2023 4457 333*2^2591874-1 780235 L2017 2019 4458 883969^131072-883969^65536+1 779412 p379 2015 Generalized unique 4459 2154*687^274573-1 778956 L5752 2023 4460 872989^131072-872989^65536+1 778700 p379 2015 Generalized unique 4461 703*2^2586728+1 778686 L4256 2018 4462 2642*372^302825-1 778429 L5410 2019 4463 120*825^266904+1 778416 L4001 2018 4464 337*2^2585660+1 778364 L2873 2018 4465 31*2^2585311-1 778258 L4521 2022 4466 393*2^2584957+1 778153 L4600 2018 4467 151*2^2584480+1 778009 L4043 2015 4468 862325^131072-862325^65536+1 778001 p379 2015 Generalized unique 4469 385*2^2584280+1 777949 L4600 2018 4470 861088^131072-861088^65536+1 777919 p379 2015 Generalized unique 4471 65*2^2583720-1 777780 L2484 2015 4472 25*2^2583690+1 777770 L3249 2013 Generalized Fermat 4473 82*920^262409-1 777727 L4064 2015 4474 123*2^2583362-1 777672 L1817 2024 4475 1041*2^2582112+1 777297 L1456 2018 4476 153*2^2581916-1 777237 L1817 2024 4477 334310*211^334310-1 777037 p350 2012 Generalized Woodall 4478 229*2^2581111-1 776995 L1862 2017 4479 61*2^2580689-1 776867 L2484 2015 4480 1113*2^2580205+1 776723 L4724 2018 4481 51*2^2578652+1 776254 L3262 2013 4482 173*2^2578197+1 776117 L3035 2015 4483 833*2^2578029+1 776067 L4724 2018 4484b 51729*52^452017-1 775668 A11 2025 4485 80*394^298731-1 775358 L541 2020 4486b 41748*78^409654-1 775109 A11 2025 4487 302*423^295123-1 775096 L5413 2021 4488 460*628^276994+1 775021 L5410 2020 4489 459*2^2573899+1 774824 L1204 2018 4490 593*2^2572634-1 774443 L5516 2023 4491 806883^131072-806883^65536+1 774218 p379 2015 Generalized unique 4492 3*2^2571360-3*2^1285680+1 774057 A3 2023 Generalized unique 4493 181*2^2570921-1 773927 A27 2024 4494 285*2^2570839-1 773903 A27 2024 4495 357*2^2568110-1 773081 L2257 2023 4496 627*2^2567718+1 772963 L3803 2018 4497 933*2^2567598+1 772927 L4724 2018 4498 757*2^2566468+1 772587 L2606 2018 4499 471*2^2566323-1 772543 L5516 2023 4500 231*2^2565263+1 772224 L3035 2015 4501 4*737^269302+1 772216 L4294 2016 Generalized Fermat 4502 941*2^2564867+1 772105 L4724 2018 4503 923*2^2563709+1 771757 L1823 2018 4504 151*596^278054+1 771671 L4876 2019 4505 770202^131072-770202^65536+1 771570 p379 2015 Generalized unique 4506 303*2^2562423-1 771369 L2017 2018 4507 75*2^2562382-1 771356 L2055 2011 4508 147559*2^2562218+1 771310 L764 2012 4509 117*412^294963+1 771300 p268 2021 4510 829*2^2561730+1 771161 L1823 2018 4511 404*12^714558+1 771141 L1471 2011 4512 5*308^309755+1 770842 L4294 2024 4513 757576^131072-757576^65536+1 770629 p379 2015 Generalized unique 4514 295*80^404886+1 770537 L5410 2021 4515 1193*2^2559453+1 770476 L2030 2018 4516 205*2^2559417-1 770464 A27 2024 4517 19*984^257291+1 770072 L5410 2020 4518 116*950^258458-1 769619 L5410 2021 4519 147314*91^392798-1 769513 A11 2024 4520 612497*18^612497+1 768857 L5765 2023 Generalized Cullen 4521 19861029*2^2553830+1 768787 A31 2024 4522 175*2^2553699-1 768743 A27 2024 4523 731582^131072-731582^65536+1 768641 p379 2015 Generalized unique 4524 479*2^2553152-1 768579 L5516 2023 4525 65*752^267180-1 768470 L5410 2020 4526 120312*91^392238-1 768416 A15 2024 4527 419*2^2552363+1 768341 L4713 2018 4528 369*2^2551955-1 768218 L2257 2023 4529 34*759^266676-1 768093 L4001 2019 4530 315*2^2550412+1 767754 L4712 2017 4531 415*2^2549590+1 767506 L4710 2017 4532 1152*792^264617-1 767056 L4955 2021 4533 693*2^2547752+1 766953 L4600 2017 4534 673*2^2547226+1 766795 L2873 2017 4535 169*2^2545526+1 766282 L2125 2015 Divides GF(2545525,10), generalized Fermat 4536 196*814^263256+1 766242 L5410 2021 Generalized Fermat 4537 183*2^2545116+1 766159 L3035 2015 4538 311*2^2544778-1 766058 L2017 2018 4539 9*2^2543551+1 765687 L1204 2011 Divides Fermat F(2543548), GF(2543549,3), GF(2543549,6), GF(2543549,12) 4540 67*446^288982+1 765612 L4273 2020 4541 663*2^2542990+1 765520 L4703 2017 4542 705*2^2542464+1 765361 L2873 2017 4543 689186^131072+1 765243 g429 2013 Generalized Fermat 4544 745*2^2540726+1 764838 L4696 2017 4545 682504^131072-682504^65536+1 764688 p379 2015 Generalized unique 4546 64*177^340147-1 764644 L3610 2015 4547 421*2^2539336+1 764419 L4148 2017 4548 (2^64-189)*10^764330+1 764350 p439 2024 4549 123287*2^2538167+1 764070 L3054 2012 4550 305716*5^1093095-1 764047 L3547 2013 4551 223*2^2538080+1 764041 L2125 2015 4552 83*2^2537641+1 763908 L1300 2013 4553 543539*2^2536028-1 763427 L4187 2022 4554 473*2^2533376-1 762625 L5516 2023 4555 645*2^2532811+1 762455 L4600 2017 4556 953*2^2531601+1 762091 L4404 2017 4557 694*567^276568-1 761556 L4444 2021 4558 545*2^2528179+1 761061 L1502 2017 4559 517*2^2527857-1 760964 L5516 2023 4560 203*2^2526505+1 760557 L3910 2015 4561 967*2^2526276+1 760488 L1204 2017 4562 3317*2^2523366-1 759613 L5399 2021 4563 241*2^2522801-1 759442 L2484 2018 4564 153*2^2522271-1 759282 A27 2024 4565 360307*6^975466-1 759066 p255 2017 4566 326*80^398799+1 758953 L4444 2021 4567 749*2^2519457+1 758436 L1823 2017 4568 199*2^2518871-1 758259 L2484 2018 4569 6*10^758068+1 758069 L5009 2019 4570 87*2^2518122-1 758033 L2484 2014 4571 515*2^2517626-1 757884 L5516 2023 4572 605347^131072-605347^65536+1 757859 p379 2015 Generalized unique 4573 711*2^2516187+1 757451 L3035 2017 4574 967*2^2514698+1 757003 L4600 2017 4575 33*2^2513872-1 756753 L3345 2013 4576 1-V(-3,-3,1307101)-3^1307101 756533 p437 2024 4577 973*2^2511920+1 756167 L1823 2017 4578 679*2^2511814+1 756135 L4598 2017 4579 1093*2^2511384+1 756005 L1823 2017 4580 38*875^256892-1 755780 L4001 2019 4581 209*2^2510308-1 755681 A27 2024 4582 45*2^2507894+1 754953 L1349 2012 4583 130484*5^1080012-1 754902 L3547 2013 4584 572186^131072+1 754652 g0 2004 Generalized Fermat 4585 242*501^279492-1 754586 L4911 2019 4586 883*2^2506382+1 754500 L1823 2017 4587f 9702*871^256606+1 754431 A44 2025 4588 77*2^2505854-1 754340 A27 2024 4589 847*2^2505540+1 754246 L4600 2017 4590 39768*5^1079005+1 754197 A11 2024 4591 175604*91^384974-1 754186 A16 2024 4592 191*2^2504121+1 753818 L3035 2015 4593 783*2^2500912+1 752853 L1823 2017 4594 133*488^279973-1 752688 L541 2023 4595 165*2^2500130-1 752617 L2055 2011 4596 33*2^2499883-1 752542 L3345 2013 4597 319*2^2498685-1 752182 L2017 2018 4598 215206*5^1076031-1 752119 L20 2023 Generalized Woodall 4599c 41712*52^438229-1 752008 A11 2025 4600 477*2^2496685-1 751580 L5516 2023 4601 321*2^2496594-1 751553 L2235 2018 4602 531*2^2495930-1 751353 L5516 2023 4603 365*2^2494991+1 751070 L3035 2017 4604 91*2^2494467-1 750912 L1817 2024 4605 213*2^2493004-1 750472 L1863 2017 4606 777*2^2492560+1 750339 L3035 2017 4607 57*2^2492031+1 750178 L1230 2013 4608 879*2^2491342+1 749972 L4600 2017 4609 14*152^343720-1 749945 L3610 2015 4610 231*2^2489083+1 749292 L3035 2015 4611 255*2^2488562+1 749135 L3035 2015 4612 483*2^2488154-1 749012 L5516 2023 4613 708*48^445477-1 748958 L5410 2022 4614 221*780^258841-1 748596 L4001 2018 4615 303*2^2486629+1 748553 L3035 2017 4616 6*433^283918-1 748548 L3610 2015 4617 413*2^2486596-1 748543 L5516 2023 4618 617*2^2485919+1 748339 L1885 2017 4619 4118*82^390928-1 748168 A11 2024 4620 515*2^2484885+1 748028 L3035 2017 4621 1095*2^2484828+1 748011 L3035 2017 4622 1113*2^2484125+1 747800 L3035 2017 4623 607*2^2483616+1 747646 L3035 2017 4624 625*2^2483272+1 747543 L2487 2017 Generalized Fermat 4625 527*2^2482876-1 747423 L5516 2023 4626 723*2^2482064+1 747179 L3035 2017 4627 2154*687^263317-1 747023 L5410 2023 4628 26*3^1565545+1 746957 L4799 2020 4629 14336*3^1563960+1 746203 L5410 2021 4630 3*2^2478785+1 746190 g245 2003 Divides Fermat F(2478782), GF(2478782,3), GF(2478776,6), GF(2478782,12) 4631 483*2^2478266-1 746036 L5516 2023 4632 429*2^2478139-1 745997 L5516 2023 4633 33324*5^1067123+1 745892 A11 2024 4634 1071*2^2477584+1 745831 L3035 2017 4635 22*30^504814-1 745673 p355 2014 4636 2074*483^277812-1 745637 L5410 2022 4637 11*2^2476839+1 745604 L2691 2011 4638 95977*6^957680-1 745225 L4521 2024 4639 825*2^2474996+1 745051 L1300 2017 4640 1061*2^2474282-1 744837 L1828 2012 4641 435*2^2473905+1 744723 L3035 2017 4642 1005*2^2473724-1 744669 L4518 2021 4643 1121*2^2473401+1 744571 L3924 2017 4644 325*2^2473267-1 744531 L2017 2018 4645 400*639^265307-1 744322 L5410 2022 4646 11996*3^1559395+1 744025 L5410 2021 4647 889*2^2471082+1 743873 L1300 2017 4648 529*2^2470514+1 743702 L3924 2017 Generalized Fermat 4649 561*2^2469713-1 743461 L5516 2023 4650 883*2^2469268+1 743327 L4593 2017 4651 5754*313^297824-1 743237 L5089 2020 4652 81*2^2468789+1 743182 g418 2009 4653 55154*5^1063213+1 743159 L3543 2013 4654 119*2^2468556-1 743112 L2484 2018 4655 2136*396^285974+1 742877 L5410 2021 4656 525*2^2467658+1 742842 L3035 2017 4657 465*2^2467625-1 742832 L5516 2023 4658 715*2^2465640+1 742235 L3035 2017 4659 26773*2^2465343-1 742147 L197 2006 4660 581*550^270707-1 741839 L5410 2020 4661 993*2^2464082+1 741766 L3035 2017 4662 295*2^2463785-1 741676 L1817 2024 4663 1179*2^2463746+1 741665 L3035 2017 4664 857*2^2463411+1 741564 L3662 2017 4665 227*2^2462914-1 741414 L1817 2024 4666 103*2^2462567-1 741309 L2484 2014 4667 12587*2^2462524-1 741298 L2012 2017 4668e 6962*507^273940-1 741014 A11 2025 4669 15592*67^405715+1 740871 A11 2024 4670 5*2^2460482-1 740680 L503 2008 4671 763*2^2458592+1 740113 L1823 2017 4672 453*2^2458461+1 740074 L3035 2017 4673 519*2^2458058+1 739952 L3803 2017 4674 373*2^2457859-1 739892 L2257 2023 4675 545*2^2457692-1 739842 L5516 2023 4676 137*2^2457639+1 739826 L4021 2014 4677 411*2^2457241-1 739706 L5516 2023 4678 41676*7^875197-1 739632 L2777 2012 Generalized Woodall 4679 2688*991^246849+1 739582 L5410 2021 4680 6143*82^386291-1 739293 A11 2024 4681 133*2^2455666+1 739232 L2322 2014 4682 99*2^2455541-1 739194 L1862 2015 4683 115*2^2454363-1 738839 L1817 2024 4684 14855*82^385937-1 738616 A11 2024 4685 129*2^2452892-1 738397 L1817 2024 4686 377*2^2452639+1 738321 L3035 2017 4687 2189*138^345010+1 738284 L5410 2020 4688 1129*2^2452294+1 738218 L3035 2017 4689 1103*2^2451133+1 737868 L4531 2017 4690 65*2^2450614-1 737711 L2074 2014 4691 549*2^2450523+1 737684 L3035 2017 4692 4*789^254595+1 737582 L4955 2019 4693 3942*55^423771-1 737519 L4955 2019 4694 441*2^2449825-1 737474 L5516 2023 4695 (3*2^1224895)^2-3*2^1224895+1 737462 A3 2023 Generalized unique 4696 2166*483^274670-1 737204 L5410 2022 4697 765*2^2448660+1 737123 L4412 2017 4698 77*2^2448152-1 736970 L5819 2024 4699 607*2^2447836+1 736875 L4523 2017 4700 1261*988^246031+1 736807 L5342 2021 4701 1005*2^2446722+1 736540 L4522 2017 4702 703*2^2446472+1 736465 L2805 2017 4703 75*2^2446050+1 736337 L3035 2013 4704 115*26^520277-1 736181 L1471 2014 4705 114986*5^1052966-1 735997 L3528 2013 4706 1029*2^2444707+1 735934 L3035 2017 4707 4*5^1052422+1 735613 L4965 2023 Generalized Fermat 4708 1035*2^2443369+1 735531 L3173 2017 4709 1052072*5^1052072-1 735373 L20 2023 Generalized Woodall 4710b 13194*93^373570+1 735371 A11 2025 4711 1017*2^2442723+1 735336 L4417 2017 4712 489*2^2442281-1 735203 L5516 2023 4713 962*3^1540432+1 734976 L5410 2021 4714 1065*2^2441132+1 734857 L1823 2017 4715 210060*91^374955-1 734558 A10 2024 4716 369*2^2436949-1 733598 L2257 2023 4717 393*2^2436849+1 733568 L3035 2016 4718 1425*2^2435607-1 733194 L1134 2020 4719 183*2^2433172-1 732461 L1817 2024 4720 386892^131072+1 732377 p259 2009 Generalized Fermat 4721 465*2^2431455+1 731944 L3035 2016 4722 905*2^2430509+1 731660 L4408 2016 4723 223*2^2430490+1 731653 L4016 2014 4724 8*410^279991+1 731557 L4700 2019 4725f 962*333^289821+1 731061 A52 2025 4726 69*2^2428251-1 730979 L384 2014 4727 6070*466^273937+1 730974 L5410 2021 4728 541*2^2427667-1 730804 L5516 2023 4729 233*2^2426512-1 730456 L2484 2020 4730 645*2^2426494+1 730451 L3035 2016 4731 665*2^2425789+1 730239 L3173 2016 4732 539*2^2425704-1 730213 L5516 2023 4733 23*2^2425641+1 730193 L2675 2011 4734 527*2^2424868-1 729961 L5516 2023 4735 361*2^2424232+1 729770 L3035 2016 Generalized Fermat 4736 433*2^2423839-1 729651 L5516 2023 4737 753*2^2422914+1 729373 L3035 2016 4738 5619*52^424922+1 729172 L5410 2019 4739 105*2^2422105+1 729129 L2520 2014 4740 62*962^244403+1 729099 L5409 2021 4741 3338*396^280633+1 729003 L5410 2021 4742 539*2^2421556-1 728964 L5516 2023 4743 201*2^2421514-1 728951 L1862 2016 4744 1084*7^862557+1 728949 L5211 2021 4745 239*2^2421404-1 728918 L2484 2018 4746 577*2^2420868+1 728757 L4489 2016 4747 3156*82^380339-1 727902 A11 2024 4748 929*2^2417767+1 727824 L3924 2016 4749 4075*2^2417579-1 727768 L1959 2017 4750 303*2^2417452-1 727729 L2235 2018 4751 895*2^2417396+1 727712 L3035 2016 4752 113*1010^242194-1 727631 L5789 2023 4753 1764*327^289322+1 727518 L5410 2020 Generalized Fermat 4754 3317*2^2415998-1 727292 L5399 2021 4755c 43406*52^423786-1 727223 A11 2025 4756 115*2^2415271-1 727072 A27 2024 4757 5724*313^291243-1 726814 L4444 2020 4758 1081*2^2412780+1 726323 L1203 2016 4759 333*2^2412735-1 726309 L2017 2018 4760 6891*52^423132+1 726100 L5410 2019 4761 83*2^2411962-1 726075 L1959 2018 4762 69*2^2410035-1 725495 L2074 2013 4763 12362*1027^240890-1 725462 L4444 2018 4764 143157*2^2409056+1 725204 L4504 2016 4765 340594^131072-340594^65536+1 725122 p379 2015 Generalized unique 4766 339*2^2408337+1 724985 L3029 2016 4767 811*2^2408096+1 724913 L2526 2016 4768 157*2^2407958+1 724870 L1741 2014 4769 243686*5^1036954-1 724806 L3549 2013 4770 91*2^2407249-1 724657 A27 2024 4771 3660*163^327506+1 724509 L4955 2019 4772 303*2^2406433+1 724411 L4425 2016 4773 345*2^2405701+1 724191 L3035 2016 4774 921*2^2405056+1 723997 L2805 2016 4775 970*323^288448+1 723778 A11 2024 4776 673*2^2403606+1 723561 L3035 2016 4777 475*2^2403220+1 723444 L4445 2016 4778 837*2^2402798+1 723318 L3372 2016 4779 329886^131072-329886^65536+1 723303 p379 2015 Generalized unique 4780 231*2^2402748+1 723302 L3995 2014 4781 375*2^2401881+1 723041 L2805 2016 4782 511*2^2401795-1 723016 L5516 2023 4783 107*2^2401731+1 722996 L3998 2014 4784 419*2^2401672-1 722978 L5516 2023 4785 143*2^2400710-1 722688 L5819 2024 4786 1023*2^2398601+1 722054 L4414 2016 4787 539*2^2398227+1 721941 L4061 2016 4788 659*2^2397567+1 721743 L4441 2016 4789 40*844^246524+1 721416 L4001 2017 4790 453*2^2395836-1 721222 L5516 2023 4791 465*2^2395133+1 721010 L4088 2016 4792 56*318^288096+1 720941 L1471 2019 4793 667*2^2394430+1 720799 L4408 2016 4794 15*2^2393365+1 720476 L1349 2010 4795 1642*273^295670+1 720304 L5410 2019 4796 8*908^243439+1 720115 L5410 2021 4797 427*2^2391685-1 719972 L5516 2023 4798 633*2^2391222+1 719833 L3743 2016 4799b 5096*53^417366-1 719658 A11 2025 4800 9*10^719055+1 719056 L4789 2024 4801 273*2^2388104+1 718894 L3668 2014 4802 118*558^261698+1 718791 L4877 2019 4803 77*2^2387116-1 718596 L1817 2024 4804 1485*2^2386037-1 718272 L1134 2017 4805 399*2^2384115+1 717693 L4412 2016 4806 99*2^2383846+1 717612 L1780 2013 4807 737*2^2382804-1 717299 L191 2007 4808 111*2^2382772+1 717288 L3810 2014 4809 423*2^2382134-1 717097 L2519 2023 4810 61*2^2381887-1 717022 L2432 2012 4811 202*249^299162+1 716855 L5410 2019 4812d 170*938^240974-1 716226 A11 2025 4813 321*2^2378535-1 716013 L2017 2018 4814 435*2^2378522+1 716010 L1218 2016 4815 829*672^253221+1 715953 p433 2023 4816 4*3^1499606+1 715495 L4962 2020 Generalized Fermat 4817 147*2^2375995+1 715248 L1130 2014 4818 915*2^2375923+1 715228 L1741 2016 4819 1981*2^2375591-1 715128 L1134 2017 4820 81*2^2375447-1 715083 L3887 2021 4821 1129*2^2374562+1 714818 L3035 2016 4822 97*2^2374485-1 714794 L2484 2018 4823 1117*2^2373977-1 714642 L1828 2012 4824 161*2^2373286-1 714433 L1817 2024 4825 949*2^2372902+1 714318 L4408 2016 4826 1005*2^2372754-1 714274 L4518 2021 4827 659*2^2372657+1 714244 L3035 2016 4828 1365*2^2372586+1 714223 L1134 2016 4829 509*2^2370721+1 713661 L1792 2016 4830 99*2^2370390+1 713561 L1204 2013 4831 959*2^2370077+1 713468 L1502 2016 4832 21683*82^372763-1 713404 A11 2024 4833 1135*2^2369808+1 713387 L2520 2016 4834 125*2^2369461+1 713281 L3035 2014 4835 475*2^2369411-1 713267 L5516 2023 4836 1183953*2^2367907-1 712818 L447 2007 Woodall 4837 57671892869766803925...(712708 other digits)...06520121133805600769 712748 p360 2013 4838 119878*5^1019645-1 712707 L3528 2013 4839 453*2^2367388+1 712658 L3035 2016 4840 150209!+1 712355 p3 2011 Factorial 4841 77*2^2363352-1 711442 L1817 2024 4842 281*2^2363327+1 711435 L1741 2014 4843 225408*5^1017214-1 711008 A11 2024 4844 2683*2^2360743-1 710658 L1959 2012 4845 16132*67^389127+1 710580 A11 2024 4846f 411522!3-1 710578 x46 2025 Multifactorial 4847 409*2^2360166+1 710484 L1199 2016 4848 465*2^2360088-1 710460 L5516 2023 4849 561*2^2359543-1 710296 L5516 2023 4850 305*2^2358854-1 710089 L2017 2018 4851 1706*123^339764+1 710078 L5410 2021 4852 169324*5^1015854+1 710057 A36 2024 4853 403*2^2357572+1 709703 L3029 2016 4854 155*2^2357111+1 709564 L3975 2014 4855 523*2^2356047-1 709244 L2519 2023 4856 365*2^2355607+1 709111 L2117 2016 4857 33706*6^910462+1 708482 L587 2014 4858 423*2^2353447-1 708461 L5516 2023 4859 1087*2^2352830+1 708276 L1492 2016 4860 152*1002^235971+1 708120 L5410 2019 4861 179*2^2352291+1 708113 L1741 2014 4862 85*2^2352083-1 708050 L1817 2024 4863 559*2^2351894+1 707994 L3924 2016 4864 24573*2^2350824+1 707673 p168 2018 4865 1035*2^2350388+1 707541 L2526 2016 4866 51306*5^1011671-1 707133 A34 2024 4867 513*2^2348508-1 706975 L5516 2023 4868 433*2^2348252+1 706897 L2322 2016 4869 329*2^2348105+1 706853 L3029 2016 4870b 821*2^2347438-1 706653 A58 2025 4871 45*2^2347187+1 706576 L1349 2012 4872 7675*46^424840+1 706410 L5410 2019 4873 127*2^2346377-1 706332 L282 2009 4874 933*2^2345893+1 706188 L3035 2016 4875 903*2^2345013+1 705923 L2006 2016 4876 33*2^2345001+1 705918 L2322 2013 4877d 704*733^246349-1 705819 A56 2025 4878b 917*2^2344474-1 705760 A27 2025 4879 242079^131072-242079^65536+1 705687 p379 2015 Generalized unique 4880b 905*2^2344164-1 705667 A27 2025 4881b 635*2^2344154-1 705664 A58 2025 4882 495*2^2343641-1 705509 L5516 2023 4883 627*2^2343140+1 705359 L3125 2016 4884 83*2^2342345+1 705119 L2626 2013 4885b 985*2^2342059-1 705034 A27 2025 4886 914*871^239796-1 705008 L5410 2023 4887b 879*2^2341883-1 704980 A27 2025 4888 61*380^273136+1 704634 L5410 2019 4889 277*2^2340182+1 704468 L1158 2014 4890b 819*2^2339643-1 704306 A27 2025 4891 159*2^2339566+1 704282 L3035 2014 4892b 767*2^2339244-1 704186 A27 2025 4893 335*2^2338972-1 704104 L2235 2017 4894 535*2^2338971-1 704104 L2519 2023 4895 22*422^268038+1 703685 L4955 2019 4896 9602*241^295318-1 703457 L5410 2019 4897 1149*2^2336638+1 703402 L4388 2016 4898 339*2^2336421-1 703336 L2519 2017 4899 231*2^2335281-1 702992 L1862 2019 4900 275293*2^2335007-1 702913 L193 2006 4901 105*2^2334755-1 702834 L1959 2018 4902 228188^131072+1 702323 g124 2010 Generalized Fermat 4903 809*2^2333017+1 702312 L2675 2016 4904 795*2^2332488+1 702152 L3029 2016 4905 3^1471170-3^529291+1 701927 p269 2019 4906 351*2^2331311-1 701798 L2257 2023 4907 229*2^2331017-1 701709 L1862 2021 4908 118*761^243458+1 701499 L5410 2019 4909 435*2^2329948+1 701387 L2322 2016 4910 205906*5^1003382+1 701340 A39 2024 4911b 617*2^2329682-1 701307 A58 2025 4912 585*2^2329350+1 701207 L2707 2016 4913 213*2^2328530-1 700960 L1863 2017 4914 1482*327^278686+1 700773 L5410 2020 4915 26472*91^357645+1 700646 L5410 2020 4916 1107*2^2327472+1 700642 L3601 2016 4917 435*2^2327152+1 700546 L2337 2016 4918 413*2^2327048-1 700514 L5516 2023 4919 4161*2^2326875-1 700463 L1959 2016 4920 427*2^2326288+1 700286 L2719 2016 4921 438*19^547574-1 700215 L5410 2020 4922c 12778*58^397058+1 700188 A62 2025 4923 147855!-1 700177 p362 2013 Factorial 4924 5872*3^1467401+1 700132 L4444 2021 4925b 981*2^2324786-1 699834 A58 2025 4926 421*2^2324375-1 699710 L5516 2023 4927 451*2^2323952+1 699582 L3173 2016 4928b 803*2^2323684-1 699502 A58 2025 4929 431*2^2323633+1 699486 L3260 2016 4930 3084*871^237917-1 699484 L5790 2023 4931 228*912^236298-1 699444 L5366 2022 4932 1085*2^2323291+1 699384 L1209 2016 4933d 3338*187^307843-1 699375 A57 2025 4934 15*2^2323205-1 699356 L2484 2011 4935 7566*46^420563+1 699299 L5410 2019 4936 1131*2^2322167+1 699045 L1823 2016 4937 385*2^2321502+1 698845 L1129 2016 4938 8348*3^1464571+1 698782 L5367 2021 4939 645*2^2320231+1 698462 L3377 2016 4940 51306*5^999035-1 698301 A28 2024 4941 1942*877^237267+1 698280 L5410 2022 4942 165*2^2319575+1 698264 L2627 2014 4943 809*2^2319373+1 698204 L3924 2016 4944 10*11^670128+1 697868 A2 2024 4945b 4708*53^404689-1 697800 A11 2025 4946 125098*6^896696+1 697771 L587 2014 4947 65536*5^997872+1 697488 L3802 2014 Generalized Fermat 4948 381*2^2314743+1 696810 L4358 2016 4949 120*825^238890+1 696714 L4837 2018 4950 3375*2^2314297+1 696677 L1745 2019 4951c 759*2^2314104-1 696618 A58 2025 4952 4063*2^2313843-1 696540 L1959 2016 4953 345*2^2313720-1 696502 L2017 2017 4954 74*830^238594-1 696477 L5410 2020 4955 495*2^2313462-1 696425 L5545 2023 4956 926*639^248221-1 696388 L4444 2022 4957 361*2^2312832+1 696235 L3415 2016 Generalized Fermat 4958 1983*366^271591-1 696222 L2054 2012 4959 3*2^2312734-1 696203 L158 2005 4960 46188*5^995988-1 696171 A11 2024 4961 2643996*7^823543-1 695981 p396 2021 4962 53653*2^2311848+1 695941 L2012 2017 4963 873*2^2311086+1 695710 L2526 2016 4964 1033*2^2310976+1 695677 L4352 2016 4965 4063*2^2310187-1 695440 L1959 2016 4966 4063*2^2309263-1 695162 L1959 2016 4967 565*2^2308984+1 695077 L2322 2016 4968 447*2^2308104-1 694812 L5516 2023 4969c 691*2^2307933-1 694760 L2257 2025 4970 450457*2^2307905-1 694755 L172 2006 4971 1018*3^1455600+1 694501 L5410 2021 4972 553*2^2306343-1 694282 L5516 2023 4973 1185*2^2306324+1 694276 L4347 2016 4974 702*718^243032-1 694133 A11 2024 4975 3267*2^2305266+1 693958 L1204 2019 4976 107*770^240408-1 693938 L4955 2020 4977 467*2^2304298-1 693666 L5516 2023 4978 537*2^2304115+1 693611 L3267 2016 4979 842*1017^230634-1 693594 L4001 2017 4980 729*2^2303162+1 693324 L1204 2016 Generalized Fermat 4981 641*2^2302879+1 693239 L2051 2016 4982c 939*2^2301535-1 692835 A27 2025 4983 729*2^2300290+1 692460 L1204 2016 Generalized Fermat 4984 189*2^2299959+1 692359 L2627 2014 4985b 29389*78^365841-1 692211 A11 2025 4986 2582*111^338032-1 691389 L4786 2021 4987 659*2^2294393+1 690684 L3378 2016 4988 3*2^2291610+1 689844 L753 2008 Divides GF(2291607,3), GF(2291609,5) 4989 2*11171^168429+1 681817 g427 2014 Divides Phi(11171^168429,2) 4990 11*2^2230369+1 671410 L2561 2011 Divides GF(2230368,3) 4991 2*179^294739+1 664004 g424 2011 Divides Phi(179^294739,2) 4992e 2717*2^2196891+1 661334 L5239 2025 Divides GF(2196890,12) 4993 2*10271^164621+1 660397 g427 2014 Divides Phi(10271^164621,2) 4994 2*659^233973+1 659544 g424 2015 Divides Phi(659^233973,2) 4995 2*191^287901+1 656713 g424 2015 Divides Phi(191^287901,2) 4996 7*2^2167800+1 652574 g279 2007 Divides Fermat F(2167797), GF(2167799,5), GF(2167799,10) 4997 1179*2^2158475+1 649769 L3035 2014 Divides GF(2158470,6) 4998 3*2^2145353+1 645817 g245 2003 Divides Fermat F(2145351), GF(2145351,3), GF(2145352,5), GF(2145348,6), GF(2145352,10), GF(2145351,12) 4999 753*2^2143388+1 645227 L2583 2014 Divides GF(2143383,3) 5000 25*2^2141884+1 644773 L1741 2011 Divides Fermat F(2141872), GF(2141871,5), GF(2141872,10); generalized Fermat 5001 7*2^2139912+1 644179 g279 2007 Divides GF(2139911,12) 5002 189*2^2115473+1 636824 L3784 2014 Divides GF(2115468,6) 5003 107*2^2081775+1 626679 L3432 2013 Divides GF(2081774,6) 5004f 2167*2^2050616+1 617301 L6095 2025 Divides GF(2050615,5) 5005 45*2^2014557+1 606444 L1349 2012 Divides GF(2014552,10) 5006 251749*2^2013995-1 606279 L436 2007 Woodall 5007 657*2^1998854+1 601718 L2520 2013 Divides GF(1998852,10) 5008 101*2^1988279+1 598534 L3141 2013 Divides GF(1988278,12) 5009 175*2^1962288+1 590710 L2137 2013 Divides GF(1962284,10) 5010 225*2^1960083+1 590047 L3548 2013 Divides GF(1960078,6) 5011 2*47^346759+1 579816 g424 2011 Divides Phi(47^346759,2) 5012 4401*2^1925824+1 579735 L5309 2024 Divides GF(1925823,5) 5013 71*2^1873569+1 564003 L1223 2011 Divides GF(1873568,5) 5014 13*2^1861732+1 560439 g267 2005 Divides GF(1861731,6) 5015 3*2^1832496+1 551637 p189 2007 Divides GF(1832490,3), GF(1832494,5) 5016 39*2^1824871+1 549343 L2664 2011 Divides GF(1824867,6) 5017 45*2^1779971+1 535827 L1223 2011 Divides GF(1779969,5) 5018 5*2^1777515+1 535087 p148 2005 Divides GF(1777511,5), GF(1777514,6) 5019 129*2^1774709+1 534243 L2526 2013 Divides GF(1774705,12) 5020 2*191^232149+1 529540 g424 2011 Divides Phi(191^232149,2) 5021 183*2^1747660+1 526101 L2163 2013 Divides Fermat F(1747656) 5022 110059!+1 507082 p312 2011 Factorial 5023 2^1667321-2^833661+1 501914 L137 2011 Gaussian Mersenne norm 38, generalized unique 5024 2*359^192871+1 492804 g424 2014 Divides Phi(359^192871,2) 5025 10^490030+10^309648+12345678987654321*10^245007+10^180382+1 490031 p363 2024 Palindrome 5026 10^490000+3*(10^7383-1)/9*10^241309+1 490001 p413 2021 Palindrome 5027 1098133#-1 476311 p346 2012 Primorial 5028 10^474500+999*10^237249+1 474501 p363 2014 Palindrome 5029 103040!-1 471794 p301 2010 Factorial 5030 135*2^1515894+1 456332 L1129 2013 Divides GF(1515890,10) 5031 2*839^155785+1 455479 g424 2014 Divides Phi(839^155785,2) 5032 131*2^1494099+1 449771 L2959 2012 Divides Fermat F(1494096) 5033 1467763*2^1467763-1 441847 L381 2007 Woodall 5034 4125*2^1445205-1 435054 L1959 2014 Arithmetic progression (2,d=4125*2^1445205-2723880039837*2^1290000) [p199] 5035 94550!-1 429390 p290 2010 Factorial 5036 2415*2^1413627-1 425548 L1959 2014 Arithmetic progression (2,d=2415*2^1413627-1489088842587*2^1290000) [p199] 5037 2985*2^1404274-1 422733 L1959 2014 Arithmetic progression (2,d=2985*2^1404274-770527213395*2^1290000) [p199] 5038 2^1398269-1 420921 G1 1996 Mersenne 35 5039 17*2^1388355+1 417938 g267 2005 Divides GF(1388354,10) 5040 338707*2^1354830+1 407850 L124 2005 Cullen 5041 107*2^1337019+1 402485 L2659 2012 Divides GF(1337018,10) 5042 1389*2^1335434+1 402009 L1209 2015 Divides GF(1335433,10) 5043 10^400000+4*(10^102381-1)/9*10^148810+1 400001 p413 2021 Palindrome 5044 10^390636+999*10^195317+1 390637 p363 2014 Palindrome 5045 6325241166627*2^1290000-1 388342 L3573 2021 Arithmetic progression (1,d=1455*2^2683953-6325241166627*2^1290000) 5046 5606879602425*2^1290000-1 388342 L3573 2021 Arithmetic progression (1,d=33*2^2939063-5606879602425*2^1290000) 5047 2618163402417*2^1290001-1 388342 L927 2016 Sophie Germain (2p+1) 5048 4966510140375*2^1290000-1 388342 L3573 2020 Arithmetic progression (2,d=2227792035315*2^1290001) 5049 2996863034895*2^1290000+1 388342 L2035 2016 Twin (p+2) 5050 2996863034895*2^1290000-1 388342 L2035 2016 Twin (p) 5051 2723880039837*2^1290000-1 388342 L3829 2016 Arithmetic progression (1,d=4125*2^1445205-2723880039837*2^1290000) [p199] 5052 2618163402417*2^1290000-1 388342 L927 2016 Sophie Germain (p) 5053 2060323099527*2^1290000-1 388342 L3606 2015 Arithmetic progression (2,d=69718264533*2^1290002) [p199] 5054 1938662032575*2^1290000-1 388341 L927 2015 Arithmetic progression (1,d=10032831585*2^1290001) [p199] 5055 1781450041395*2^1290000-1 388341 L3203 2015 Arithmetic progression (1,d=69718264533*2^1290002) [p199] 5056 15*2^1276177+1 384169 g279 2006 Divides GF(1276174,3), GF(1276174,10) 5057 1268979*2^1268979-1 382007 L201 2007 Woodall 5058 2^1257787-1 378632 SG 1996 Mersenne 34 5059 329*2^1246017+1 375092 L2085 2012 Divides Fermat F(1246013) 5060 843301#-1 365851 p302 2010 Primorial 5061 10^362600+666*10^181299+1 362601 p363 2014 Palindrome 5062 2^1203793-2^601897+1 362378 L192 2006 Gaussian Mersenne norm 37, generalized unique 5063 1195203*2^1195203-1 359799 L124 2005 Woodall 5064 2145*2^1099064+1 330855 L1792 2013 Divides Fermat F(1099061) 5065 10^320236+10^160118+1+(137*10^160119+731*10^159275)*(10^843-1)/999 320237 p44 2014 Palindrome 5066 10^320096+10^160048+1+(137*10^160049+731*10^157453)*(10^2595-1)/999 320097 p44 2014 Palindrome 5067 10^314727-8*10^157363-1 314727 p235 2013 Near-repdigit, palindrome 5068 10^300010+10^204235+12345678987654321*10^149997+10^95775+1 300011 x45 2024 Palindrome 5069 10^300000+5*(10^48153-1)/9*10^125924+1 300001 p413 2021 Palindrome 5070 10^300000+10^158172+11011*10^149998+10^141828+1 300001 p409 2024 Palindrome 5071 2^991961-2^495981+1 298611 x28 2005 Gaussian Mersenne norm 36, generalized unique 5072 11*2^960901+1 289262 g277 2005 Divides Fermat F(960897) 5073 1705*2^906110+1 272770 L3174 2012 Divides Fermat F(906108) 5074 2^859433-1 258716 SG 1994 Mersenne 33 5075 13243*2^699764+1 210655 L5808 2023 Divides Fermat F(699760) 5076 667071*2^667071-1 200815 g55 2000 Woodall 5077 18543637900515*2^666668-1 200701 L2429 2012 Sophie Germain (2p+1) 5078 18543637900515*2^666667-1 200701 L2429 2012 Sophie Germain (p) 5079 3756801695685*2^666669+1 200700 L1921 2011 Twin (p+2) 5080 3756801695685*2^666669-1 200700 L1921 2011 Twin (p) 5081 392113#+1 169966 p16 2001 Primorial 5082 213778324725*2^561418+1 169015 p430 2023 Cunningham chain 2nd kind (2p-1) 5083 213778324725*2^561417+1 169015 p430 2023 Cunningham chain 2nd kind (p) 5084 366439#+1 158936 p16 2001 Primorial 5085 2*893962950^16384+1 146659 p428 2023 Cunningham chain 2nd kind (2p-1) 5086 893962950^16384+1 146659 p427 2023 Cunningham chain 2nd kind (p), generalized Fermat 5087 481899*2^481899+1 145072 gm 1998 Cullen 5088 669821552^16384-669821552^8192+1 144605 A18 2024 Twin (p+2), generalized unique 5089 669821552^16384-669821552^8192-1 144605 A18 2024 Twin (p) 5090 34790!-1 142891 p85 2002 Factorial 5091 (124750^27751-1)/124749 141416 p441 2024 Generalized repunit 5092 222710306^16384-222710306^8192+1 136770 A13 2024 Twin (p+2), generalized unique 5093 222710306^16384-222710306^8192-1 136770 A13 2024 Twin (p) 5094 (92365^24691-1)/92364 122599 CH14 2024 Generalized repunit 5095c 9955858992*11^111111+1 115721 A25 2025 Twin (p+2) 5096c 9955858992*11^111111-1 115721 A25 2025 Twin (p) 5097b 7977227425*(2^368352-2^257849)+2^110505+1 110895 x52 2025 Consecutive primes arithmetic progression (2,d=6) 5098b 7977227425*(2^368352-2^257849)+2^110505-5 110895 x52 2025 Consecutive primes arithmetic progression (1,d=6) 5099 (102936^21961-1)/102935 110076 CH14 2023 Generalized repunit 5100 2^364289-2^182145+1 109662 p58 2001 Gaussian Mersenne norm 35, generalized unique 5101b R(109297) 109297 E12 2025 Repunit, ECPP, unique 5102 361275*2^361275+1 108761 DS 1998 Cullen 5103 26951!+1 107707 p65 2002 Factorial 5104 47356235323005*2^333444-1 100391 L6077 2024 Sophie Germain (2p+1) 5105 47356235323005*2^333443-1 100391 L6077 2024 Sophie Germain (p) 5106 21480284945595*2^333444-1 100390 L6029 2024 Sophie Germain (2p+1) 5107 21480284945595*2^333443-1 100390 L6029 2024 Sophie Germain (p) 5108 65516468355*2^333333+1 100355 L923 2009 Twin (p+2) 5109 65516468355*2^333333-1 100355 L923 2009 Twin (p) 5110c 954589277*(2^332267-2^110758)+2^221511+1 100032 p408 2025 Consecutive primes arithmetic progression (2,d=4) 5111c 954589277*(2^332267-2^110758)+2^221511-3 100032 p408 2025 Consecutive primes arithmetic progression (1,d=4) 5112e 8797170843*(2^317583+2^190552)+2^127033+3 95612 p408 2025 Consecutive primes arithmetic progression (2,d=4) 5113e 8797170843*(2^317583+2^190552)+2^127033-1 95612 p408 2025 Consecutive primes arithmetic progression (1,d=4) 5114 (7176^24691-1)/7175 95202 CH2 2017 Generalized repunit 5115 R(86453) 86453 E3 2023 Repunit, ECPP, unique 5116 (84741735735*(2^190738-1)+4)*2^95369+5 86138 p408 2024 Consecutive primes arithmetic progression (2,d=6) 5117 (84741735735*(2^190738-1)+4)*2^95369-1 86138 p408 2024 Consecutive primes arithmetic progression (1,d=6) 5118 (74018908351*(2^190738-1)+4)*2^95369+3 86138 p408 2024 Consecutive primes arithmetic progression (2,d=4) 5119 (74018908351*(2^190738-1)+4)*2^95369-1 86138 p408 2024 Consecutive primes arithmetic progression (1,d=4) 5120 21480!-1 83727 p65 2001 Factorial 5121 (74968^17107-1)/74967 83390 p441 2024 Generalized repunit 5122b 66629493*2^269335-1 81086 L3494 2025 Sophie Germain (2p+1) 5123b 66629493*2^269334-1 81086 L3494 2025 Sophie Germain (p) 5124b 1867513233*2^266698+1 80294 L527 2025 Twin (p+2) 5125b 1867513233*2^266698-1 80294 L527 2025 Twin (p) 5126 201926367*2^266668+1 80284 A25 2024 Twin (p+2) 5127 201926367*2^266668-1 80284 A25 2024 Twin (p) 5128 107928275961*2^265876+1 80048 p364 2023 Cunningham chain 2nd kind (2p-1) 5129 107928275961*2^265875+1 80048 p364 2023 Cunningham chain 2nd kind (p) 5130 22942396995*2^265777-1 80018 L3494 2023 Sophie Germain (2p+1) 5131 22942396995*2^265776-1 80017 L3494 2023 Sophie Germain (p) 5132 183027*2^265441-1 79911 L983 2010 Sophie Germain (2p+1) 5133 183027*2^265440-1 79911 L983 2010 Sophie Germain (p) 5134 262419*2^262419+1 79002 DS 1998 Cullen 5135 160204065*2^262148+1 78923 L5115 2021 Twin (p+2) 5136 160204065*2^262148-1 78923 L5115 2021 Twin (p) 5137 3622179275715*2^256003+1 77078 x47 2020 Cunningham chain 2nd kind (2p-1) 5138 3622179275715*2^256002+1 77077 x47 2020 Cunningham chain 2nd kind (p) 5139 648621027630345*2^253825-1 76424 x24 2009 Sophie Germain (2p+1) 5140 620366307356565*2^253825-1 76424 x24 2009 Sophie Germain (2p+1) 5141 648621027630345*2^253824-1 76424 x24 2009 Sophie Germain (p) 5142 620366307356565*2^253824-1 76424 x24 2009 Sophie Germain (p) 5143 2570606397*2^252763+1 76099 p364 2020 Cunningham chain 2nd kind (2p-1) 5144 2570606397*2^252762+1 76099 p364 2020 Cunningham chain 2nd kind (p) 5145 1893611985^8192-1893611985^4096+1 76000 A13 2024 Twin (p+2), generalized unique 5146 1893611985^8192-1893611985^4096-1 76000 A13 2024 Twin (p) 5147 1589173270^8192-1589173270^4096+1 75376 A22 2024 Twin (p+2), generalized unique 5148 1589173270^8192-1589173270^4096-1 75376 A22 2024 Twin (p) 5149 (40734^16111-1)/40733 74267 CH2 2015 Generalized repunit 5150 (64758^15373-1)/64757 73960 p170 2018 Generalized repunit 5151 996094234^8192-996094234^4096+1 73715 A18 2024 Twin (p+2), generalized unique 5152 996094234^8192-996094234^4096-1 73715 A18 2024 Twin (p) 5153 895721531^8192-895721531^4096+1 73337 A7 2024 Twin (p+2), generalized unique 5154 895721531^8192-895721531^4096-1 73337 A7 2024 Twin (p) 5155 5^104824+104824^5 73269 E4 2023 ECPP 5156 795507696^8192-795507696^4096+1 72915 A5 2024 Twin (p+2), generalized unique 5157 795507696^8192-795507696^4096-1 72915 A5 2024 Twin (p) 5158 primV(111534,1,27000) 72683 x25 2013 Generalized Lucas primitive part 5159 691595760^8192-691595760^4096+1 72417 A13 2024 Twin (p+2), generalized unique 5160 691595760^8192-691595760^4096-1 72417 A13 2024 Twin (p) 5161 647020826^8192-647020826^4096+1 72180 A5 2024 Twin (p+2), generalized unique 5162 647020826^8192-647020826^4096-1 72180 A5 2024 Twin (p) 5163 629813654^8192-629813654^4096+1 72084 A5 2024 Twin (p+2), generalized unique 5164 629813654^8192-629813654^4096-1 72084 A5 2024 Twin (p) 5165 (58729^15091-1)/58728 71962 CH2 2017 Generalized repunit 5166 504983334^8192-504983334^4096+1 71298 A7 2024 Twin (p+2), generalized unique 5167 504983334^8192-504983334^4096-1 71298 A7 2024 Twin (p) 5168 314305725^8192-314305725^4096+1 69611 A7 2023 Twin (p+2), generalized unique 5169 314305725^8192-314305725^4096-1 69611 A7 2023 Twin (p) 5170 (27987^15313-1)/27986 68092 CH12 2020 Generalized repunit 5171 184534086^8192-184534086^4096+1 67716 A5 2023 Twin (p+2), generalized unique 5172 184534086^8192-184534086^4096-1 67716 A5 2023 Twin (p) 5173 (23340^15439-1)/23339 67435 p170 2020 Generalized repunit 5174 10957126745325*2^222334-1 66943 L5843 2023 Sophie Germain (2p+1) 5175 20690306380455*2^222333-1 66943 L5843 2023 Sophie Germain (2p+1) 5176 10030004436315*2^222334-1 66943 L5843 2023 Sophie Germain (2p+1) 5177 8964472847055*2^222334-1 66943 L5843 2023 Sophie Germain (2p+1) 5178 10957126745325*2^222333-1 66942 L5843 2023 Sophie Germain (p) 5179 20690306380455*2^222332-1 66942 L5843 2023 Sophie Germain (p) 5180 10030004436315*2^222333-1 66942 L5843 2023 Sophie Germain (p) 5181 8964472847055*2^222333-1 66942 L5843 2023 Sophie Germain (p) 5182 (2^221509-1)/292391881 66673 E12 2023 Mersenne cofactor, ECPP 5183 (24741^15073-1)/24740 66218 p170 2020 Generalized repunit 5184 (63847^13339-1)/63846 64091 p170 2013 Generalized repunit 5185 1068669447*2^211089-1 63554 L4166 2020 Sophie Germain (2p+1) 5186 1068669447*2^211088-1 63553 L4166 2020 Sophie Germain (p) 5187 145823#+1 63142 p21 2000 Primorial 5188 U(15694,1,14700)+U(15694,1,14699) 61674 x45 2019 Lehmer number 5189 (28507^13831-1)/28506 61612 CH12 2020 Generalized repunit 5190 2^203789+2^101895+1 61347 O 2000 Gaussian Mersenne norm 34, generalized unique 5191 (26371^13681-1)/26370 60482 p170 2012 Generalized repunit 5192 U(24,-25,43201) 60391 CH12 2020 Generalized Lucas number 5193 99064503957*2^200009-1 60220 L95 2016 Sophie Germain (2p+1) 5194 99064503957*2^200008-1 60220 L95 2016 Sophie Germain (p) 5195 (4529^16381-1)/4528 59886 CH2 2012 Generalized repunit 5196 3^125330+1968634623437000 59798 E4 2022 ECPP 5197 (9082^15091-1)/9081 59729 CH2 2014 Generalized repunit 5198 primV(27655,1,19926) 57566 x25 2013 Generalized Lucas primitive part 5199 Ramanujan tau function at 199^4518 57125 E3 2022 ECPP 5200 (43326^12041-1)/43325 55827 p170 2017 Generalized repunit 5201 12443794755*2^184517-1 55556 L3494 2021 Sophie Germain (2p+1) 5202 21749869755*2^184516-1 55556 L3494 2021 Sophie Germain (2p+1) 5203 14901867165*2^184516-1 55556 L3494 2021 Sophie Germain (2p+1) 5204 12443794755*2^184516-1 55555 L3494 2021 Sophie Germain (p) 5205 21749869755*2^184515-1 55555 L3494 2021 Sophie Germain (p) 5206 14901867165*2^184515-1 55555 L3494 2021 Sophie Germain (p) 5207 607095*2^176312-1 53081 L983 2009 Sophie Germain (2p+1) 5208 607095*2^176311-1 53081 L983 2009 Sophie Germain (p) 5209 (38284^11491-1)/38283 52659 CH2 2013 Generalized repunit 5210 (2^174533-1)/193594572654550537/91917886778031629891960890057 52494 E5 2022 Mersenne cofactor, ECPP 5211f (940^17581-1)/939 52268 E2 2025 ECPP generalized repunit 5212 48047305725*2^172404-1 51910 L99 2007 Sophie Germain (2p+1) 5213 48047305725*2^172403-1 51910 L99 2007 Sophie Germain (p) 5214 (34120^11311-1)/34119 51269 CH2 2011 Generalized repunit 5215 U(809,1,17325)-U(809,1,17324) 50378 x45 2019 Lehmer number 5216 10^50000+65859 50001 E3 2022 ECPP 5217 R(49081) 49081 c70 2022 Repunit, unique, ECPP 5218 2^160423-2^80212+1 48293 O 2000 Gaussian Mersenne norm 33, generalized unique 5219 U(67,-1,26161) 47773 x45 2019 Generalized Lucas number 5220 primV(40395,-1,15588) 47759 x23 2007 Generalized Lucas primitive part 5221 primV(53394,-1,15264) 47200 CH4 2007 Generalized Lucas primitive part 5222 151023*2^151023-1 45468 g25 1998 Woodall 5223c 24157096*104561#+1 45260 p364 2025 Arithmetic progression (4,d=6519272*104561#) 5224c 17637824*104561#+1 45259 p364 2025 Arithmetic progression (3,d=6519272*104561#) 5225c 11118552*104561#+1 45259 p364 2025 Arithmetic progression (2,d=6519272*104561#) 5226c 4599280*104561#+1 45259 p364 2025 Arithmetic progression (1,d=6519272*104561#) 5227 2^148227+60443 44621 E11 2024 ECPP 5228 U(52245,1,9241)+U(52245,1,9240) 43595 x45 2019 Lehmer number 5229 71509*2^143019-1 43058 g23 1998 Woodall, arithmetic progression (2,d=(143018*2^83969-80047)*2^59049) [x12] 5230 U(2449,-1,12671) 42939 x45 2018 Generalized Lucas number, cyclotomy 5231 V(202667) 42355 E4 2023 Lucas number, ECPP 5232 2^139964+35461 42134 E11 2024 ECPP 5233 U(201107) 42029 E11 2023 Fibonacci number, ECPP 5234 (2^138937+1)/3 41824 E12 2023 Wagstaff, ECPP, generalized Lucas number 5235 E(11848)/7910215 40792 E8 2022 Euler irregular, ECPP 5236 V(193201) 40377 E4 2023 Lucas number, ECPP 5237 10^40000+14253 40001 E3 2022 ECPP 5238 p(1289844341) 40000 c84 2020 Partitions, ECPP 5239 primV(4836,1,16704) 39616 x25 2013 Generalized Lucas primitive part 5240 (2^130439-1)/260879 39261 E9 2023 Mersenne cofactor, ECPP 5241 U(21041,-1,9059) 39159 x45 2018 Generalized Lucas number, cyclotomy 5242 V(183089) 38264 E4 2023 Lucas number, ECPP 5243 (2^127031+1)/3 38240 E5 2023 Wagstaff, ECPP, generalized Lucas number 5244 U(5617,-1,9539) 35763 x45 2019 Generalized Lucas number, cyclotomy 5245 (2^117239+1)/3 35292 E2 2022 Wagstaff, ECPP, generalized Lucas number 5246 p(1000007396) 35219 E4 2022 Partitions, ECPP 5247 (V(60145,1,7317)-1)/(V(60145,1,27)-1) 34841 x45 2019 Lehmer primitive part 5248 primV(38513,-1,11502) 34668 x23 2006 Generalized Lucas primitive part 5249 E(10168)/1097239206089665 34323 E10 2023 Euler irregular, ECPP 5250 primV(9008,1,16200) 34168 x23 2005 Generalized Lucas primitive part 5251 (V(28138,1,7587)-1)/(V(28138,1,27)-1) 33637 x45 2019 Lehmer primitive part 5252 V(159521) 33338 E4 2023 Lucas number, ECPP 5253 U(35896,1,7260)+U(35896,1,7259) 33066 x45 2019 Lehmer number 5254 primV(6586,1,16200) 32993 x25 2013 Generalized Lucas primitive part 5255 U(1624,-1,10169) 32646 x45 2018 Generalized Lucas number, cyclotomy 5256 (V(48395,1,6921)-1)/(V(48395,1,9)-1) 32382 x45 2019 Lehmer primitive part 5257c 7300751*74719#-1 32315 p364 2025 Arithmetic progression (4,d=1475275*74719#) 5258c 5825476*74719#-1 32314 p364 2025 Arithmetic progression (3,d=1475275*74719#) 5259c 4350201*74719#-1 32314 p364 2025 Arithmetic progression (2,d=1475275*74719#) 5260c 2874926*74719#-1 32314 p364 2025 Arithmetic progression (1,d=1475275*74719#) 5261 2^106693+2^53347+1 32118 O 2000 Gaussian Mersenne norm 32, generalized unique 5262 primV(28875,1,13500) 32116 x25 2016 Generalized Lucas primitive part 5263 (2^106391-1)/286105171290931103 32010 c95 2022 Mersenne cofactor, ECPP 5264 (2^105269-1)/308568703561/44450301591671/36340288035156065237111970871\ /304727251426107823036749303510161 31603 E17 2024 Mersenne cofactor, ECPP 5265 (V(77786,1,6453)+1)/(V(77786,1,27)+1) 31429 x25 2012 Lehmer primitive part 5266 primV(10987,1,14400) 31034 x25 2005 Generalized Lucas primitive part 5267 V(148091) 30950 c81 2015 Lucas number, ECPP 5268 U(148091) 30949 x49 2021 Fibonacci number, ECPP 5269 -E(9266)/2129452307358569777 30900 E10 2023 Euler irregular, ECPP 5270 Phi(11589,-10000) 30897 E1 2022 Unique,ECPP 5271 (V(73570,1,6309)-1)/(V(73570,1,9)-1) 30661 x25 2016 Lehmer primitive part 5272 V(145703)/179214691 30442 E4 2023 Lucas cofactor, ECPP 5273 V(145193)/38621339 30336 E4 2023 Lucas cofactor, ECPP 5274 1524633857*2^99902-1 30083 p364 2022 Arithmetic progression (4,d=928724769*2^99901) 5275 2120542945*2^99901-1 30083 p364 2022 Arithmetic progression (3,d=928724769*2^99901) 5276 18622159*2^99907-1 30083 p364 2022 Arithmetic progression (2,d=928724769*2^99901) 5277 263093407*2^99901-1 30082 p364 2022 Arithmetic progression (1,d=928724769*2^99901) 5278 Phi(36547,-10) 29832 E1 2022 Unique, ECPP 5279 49363*2^98727-1 29725 Y 1997 Woodall 5280 U(2341,-1,8819) 29712 x25 2008 Generalized Lucas number 5281 primV(24127,-1,6718) 29433 CH3 2005 Generalized Lucas primitive part 5282 primV(12215,-1,13500) 29426 x25 2016 Generalized Lucas primitive part 5283 V(140057) 29271 c76 2014 Lucas number,ECPP 5284 U(1404,-1,9209) 28981 CH10 2018 Generalized Lucas number, cyclotomy 5285 U(23396,1,6615)+U(23396,1,6614) 28898 x45 2019 Lehmer number 5286 (2^95369+1)/3 28709 x49 2021 Generalized Lucas number, Wagstaff, ECPP 5287 primV(45922,1,11520) 28644 x25 2011 Generalized Lucas primitive part 5288 primV(205011) 28552 x39 2009 Lucas primitive part 5289 -30*Bern(10264)/262578313564364605963 28506 c94 2021 Irregular, ECPP 5290 U(16531,1,6721)-U(16531,1,6720) 28347 x36 2007 Lehmer number 5291 (V(28286,1,6309)+1)/(V(28286,1,9)+1) 28045 x25 2016 Lehmer primitive part 5292 U(5092,1,7561)+U(5092,1,7560) 28025 x25 2014 Lehmer number 5293 U(132409)/2882138154561602271737 27651 E16 2024 Fibonacci cofactor, ECPP 5294 90825*2^90825+1 27347 Y 1997 Cullen 5295 U(5239,1,7350)-U(5239,1,7349) 27333 CH10 2017 Lehmer number 5296 U(130021) 27173 x48 2021 Fibonacci number, ECPP 5297 primV(5673,1,13500) 27028 CH3 2005 Generalized Lucas primitive part 5298 primV(44368,1,9504) 26768 CH3 2005 Generalized Lucas primitive part 5299 546351925018076058*Bern(9702)/129255048976106804786904258880518941 26709 c77 2021 Irregular, ECPP 5300 22359307*60919#+1 26383 p364 2022 Arithmetic progression (4,d=5210718*60919#) 5301 17148589*60919#+1 26383 p364 2022 Arithmetic progression (3,d=5210718*60919#) 5302 17029817*60919#+1 26383 p364 2022 Arithmetic progression (4,d=1809778*60919#) 5303 15220039*60919#+1 26383 p364 2022 Arithmetic progression (3,d=1809778*60919#) 5304 13410261*60919#+1 26383 p364 2022 Arithmetic progression (2,d=1809778*60919#) 5305 11937871*60919#+1 26382 p364 2022 Arithmetic progression (2,d=5210718*60919#) 5306 11600483*60919#+1 26382 p364 2022 Arithmetic progression (1,d=1809778*60919#) 5307 6727153*60919#+1 26382 p364 2022 Arithmetic progression (1,d=5210718*60919#) 5308 (2^87691-1)/806957040167570408395443233 26371 E1 2022 Mersenne cofactor, ECPP 5309 primV(10986,-1,9756) 26185 x23 2005 Generalized Lucas primitive part 5310 (2^86371-1)/41681512921035887 25984 E2 2022 Mersenne cofactor, ECPP 5311 (2^86137-1)/2584111/7747937967916174363624460881 25896 c84 2022 Mersenne cofactor, ECPP 5312 primV(11076,-1,12000) 25885 x25 2005 Generalized Lucas primitive part 5313 -E(7894)/19 25790 E10 2023 Euler irregular, ECPP 5314 2^85237+2^42619+1 25659 x16 2000 Gaussian Mersenne norm 31, generalized unique 5315 V(122869)/40546771/1243743094029841 25656 E1 2024 Lucas cofactor, ECPP 5316 primU(183537) 25571 E1 2024 Fibonacci primitive part, ECPP 5317 primV(17505,1,11250) 25459 x25 2011 Generalized Lucas primitive part 5318 U(2325,-1,7561) 25451 x20 2013 Generalized Lucas number 5319 U(13084,-13085,6151) 25319 x45 2018 Generalized Lucas number, cyclotomy 5320 (2^84211-1)/1347377/31358793176711980763958121/33146416760423478241695\ 91561 25291 c95 2020 Mersenne cofactor, ECPP 5321 U(120937)/241873/13689853218820385381 25250 E1 2024 Fibonacci cofactor, ECPP 5322 primV(42,-1,23376) 25249 x23 2007 Generalized Lucas primitive part 5323 U(1064,-1065,8311) 25158 CH10 2018 Generalized Lucas number, cyclotomy 5324 primV(7577,-1,10692) 25140 x33 2007 Generalized Lucas primitive part 5325 (2^83339+1)/3 25088 c54 2014 ECPP, generalized Lucas number, Wagstaff 5326 (2^82939-1)/883323903012540278033571819073 24938 c84 2021 Mersenne cofactor, ECPP 5327 primV(194181) 24908 E1 2024 Lucas primitive part, ECPP 5328 primV(119162) 24903 E1 2024 Lucas primitive part, ECPP 5329 -E(7634)/1559 24828 E10 2023 Euler irregular, ECPP 5330 primU(118319) 24553 E1 2024 Fibonacci primitive part, ECPP 5331 U(1766,1,7561)-U(1766,1,7560) 24548 x25 2013 Lehmer number 5332 U(117167)/17658707237 24476 E1 2024 Fibonacci cofactor, ECPP 5333 V(116593)/120790349 24359 E4 2023 Lucas cofactor, ECPP 5334 primV(214470) 23895 E1 2024 Lucas primitive part, ECPP 5335 primU(115373) 23875 E1 2024 Fibonacci primitive part, ECPP 5336 U(1383,1,7561)+U(1383,1,7560) 23745 x25 2013 Lehmer number 5337 798*Bern(8766)/14670751334144820770719 23743 c94 2021 Irregular, ECPP 5338 Phi(11867,-100) 23732 c47 2021 Unique, ECPP 5339 primU(135421) 23725 E1 2024 Fibonacci primitive part, ECPP 5340 primV(143234) 23654 E1 2024 Lucas primitive part, ECPP 5341 (2^78737-1)/1590296767505866614563328548192658003295567890593 23654 E2 2022 Mersenne cofactor, ECPP 5342 Phi(35421,-10) 23613 c77 2021 Unique, ECPP 5343 6917!-1 23560 g1 1998 Factorial 5344 primU(164185) 23524 E1 2024 Fibonacci primitive part, ECPP 5345 2^77291+2^38646+1 23267 O 2000 Gaussian Mersenne norm 30, generalized unique 5346 primU(166737) 23231 E1 2024 Fibonacci primitive part, ECPP 5347 (V(59936,1,4863)+1)/(V(59936,1,3)+1) 23220 x25 2013 Lehmer primitive part 5348 U(1118,1,7561)-U(1118,1,7560) 23047 x25 2013 Lehmer number 5349 primA(275285) 23012 E1 2024 Lucas Aurifeuillian primitive part, ECPP 5350 primV(110723) 22997 E1 2024 Lucas primitive part, ECPP 5351 primV(180906) 22905 E1 2024 Lucas primitive part, ECPP 5352 (V(45366,1,4857)+1)/(V(45366,1,3)+1) 22604 x25 2013 Lehmer primitive part 5353 U(106663)/35892566541651557 22275 E1 2024 Fibonacci cofactor, ECPP 5354 348054*Bern(8286)/1570865077944473903275073668721 22234 E1 2022 Irregular, ECPP 5355 p(398256632) 22223 E1 2022 Partitions, ECPP 5356 U(105509)/144118801533126010445795676378394340544227572822879081 21997 E1 2022 Fibonacci cofactor, ECPP 5357 U(104911) 21925 c82 2015 Fibonacci number, ECPP 5358 primB(282035) 21758 E1 2023 Lucas Aurifeuillian primitive part, ECPP 5359 primA(276335) 21736 E1 2024 Lucas Aurifeuillian primitive part, ECPP 5360 Phi(1203,10^27) 21600 c47 2021 Unique, ECPP 5361 U(19258,-1,5039) 21586 x23 2007 Generalized Lucas number 5362 6380!+1 21507 g1 1998 Factorial 5363 primV(154281) 21495 E4 2023 Lucas primitive part, ECPP 5364 U(43100,1,4620)+U(43100,1,4619) 21407 x25 2016 Lehmer number 5365 -E(6658)/85079 21257 c77 2020 Euler irregular, ECPP 5366 Phi(39855,-10) 21248 c95 2020 Unique, ECPP 5367 (V(23354,1,4869)-1)/(V(23354,1,9)-1) 21231 x25 2013 Lehmer primitive part 5368 primA(296695) 21137 E1 2023 Lucas Aurifeuillian primitive part, ECPP 5369 U(15631,1,5040)-U(15631,1,5039) 21134 x25 2003 Lehmer number 5370 primA(413205) 21127 E1 2023 Lucas Aurifeuillian primitive part, ECPP 5371 U(35759,1,4620)+U(35759,1,4619) 21033 x25 2016 Lehmer number 5372 p(355646102) 21000 E1 2022 Partitions, ECPP 5373 V(100417)/713042903779101607511808799053206435494854433884796747437071\ 9436805470448849 20911 E1 2024 Lucas cofactor, ECPP 5374 p(350199893) 20838 E7 2022 Partitions, ECPP 5375 U(31321,1,4620)-U(31321,1,4619) 20767 x25 2016 Lehmer number 5376 primU(102689) 20715 E1 2024 Fibonacci primitive part, ECPP 5377 primU(105821) 20598 E1 2022 Fibonacci primitive part, ECPP 5378 primU(172179) 20540 E1 2022 Fibonacci primitive part, ECPP 5379 V(98081)/31189759/611955609270431/6902594225498651/641303018340927841 20442 E1 2024 Lucas cofactor, ECPP 5380 U(11200,-1,5039) 20400 x25 2004 Generalized Lucas number, cyclotomy 5381 4404139952163*2^67002+1 20183 p408 2024 Triplet (3) 5382 4404139952163*2^67002-1 20183 p408 2024 Triplet (2) 5383 4404139952163*2^67002-5 20183 E15 2024 Triplet (1), ECPP 5384 Phi(23749,-10) 20160 c47 2014 Unique, ECPP 5385 U(22098,1,4620)+U(22098,1,4619) 20067 x25 2016 Lehmer number 5386 primV(112028) 20063 E1 2022 Lucas primitive part, ECPP 5387 1128330746865*2^66441-1 20013 p158 2020 Cunningham chain (4p+3) 5388 1128330746865*2^66440-1 20013 p158 2020 Cunningham chain (2p+1) 5389 1128330746865*2^66439-1 20013 p158 2020 Cunningham chain (p) 5390 4111286921397*2^66420+5 20008 c88 2019 Triplet (3) 5391 4111286921397*2^66420+1 20008 L4808 2019 Triplet (2) 5392 4111286921397*2^66420-1 20008 L4808 2019 Triplet (1) 5393 U(21412,1,4620)-U(21412,1,4619) 20004 x25 2016 Lehmer number 5394 p(322610098) 20000 E1 2022 Partitions, ECPP 5395 primV(151521) 19863 E1 2022 Lucas primitive part, ECPP 5396 V(94823) 19817 c73 2014 Lucas number, ECPP 5397 U(19361,1,4620)+U(19361,1,4619) 19802 x25 2016 Lehmer number 5398 U(8454,-1,5039) 19785 x25 2013 Generalized Lucas number 5399 (2^64381-1)/1825231878561264571177401910928543898820492254252817499611\ 8699181907547497 19308 E13 2024 Mersenne cofactor, ECPP 5400 U(6584,-1,5039) 19238 x23 2007 Generalized Lucas number 5401 V(91943)/551659/2390519/9687119153094919 19187 E1 2022 Lucas cofactor, ECPP 5402 (V(428,1,8019)-1)/(V(428,1,729)-1) 19184 E1 2022 Lehmer primitive part, ECPP 5403 V(91873)/3674921/193484539/167745030829 19175 E1 2022 Lucas cofactor, ECPP 5404 (2^63703-1)/42808417 19169 c59 2014 Mersenne cofactor, ECPP 5405 primU(137439) 19148 E1 2022 Fibonacci primitive part, ECPP 5406 primU(107779) 18980 E1 2022 Fibonacci primitive part, ECPP 5407 (U(162,1,8581)+U(162,1,8580))/(U(162,1,66)+U(162,1,65)) 18814 E1 2022 Lehmer primitive part, ECPP 5408 V(89849) 18778 c70 2014 Lucas number, ECPP 5409 primV(145353) 18689 c69 2013 ECPP, Lucas primitive part 5410 Phi(14943,-100) 18688 c47 2014 Unique, ECPP 5411 (U(859,1,6385)-U(859,1,6384))/(U(859,1,57)-U(859,1,56)) 18567 E1 2022 Lehmer primitive part, ECPP 5412 Phi(18827,10) 18480 c47 2014 Unique, ECPP 5413 primB(220895) 18465 E1 2022 Lucas Aurifeuillian primitive part, ECPP 5414 primV(153279) 18283 E1 2022 Lucas primitive part, ECPP 5415 42209#+1 18241 p8 1999 Primorial 5416 (V(46662,1,3879)-1)/(V(46662,1,9)-1) 18069 x25 2012 Lehmer primitive part 5417 V(86477)/1042112515940998434071039 18049 c77 2020 Lucas cofactor, ECPP 5418 7457*2^59659+1 17964 Y 1997 Cullen 5419 primB(235015) 17856 E1 2022 Lucas Aurifeuillian primitive part, ECPP 5420 primV(148197) 17696 E1 2022 Lucas primitive part, ECPP 5421 (V(447,1,6723)+1)/(V(447,1,81)+1) 17604 E1 2022 Lehmer primitive part, ECPP 5422 (2^58199-1)/237604901713907577052391 17497 c59 2015 Mersenne cofactor, ECPP 5423 Phi(26031,-10) 17353 c47 2014 Unique, ECPP 5424 primV(169830) 17335 E1 2022 Lucas primitive part, ECPP 5425 (V(561,1,6309)+1)/(V(561,1,9)+1) 17319 x25 2016 Lehmer primitive part 5426 U(9657,1,4321)-U(9657,1,4320) 17215 x23 2005 Lehmer number 5427 (2^57131-1)/61481396117165983261035042726614288722959856631 17152 c59 2015 Mersenne cofactor, ECPP 5428 U(81839) 17103 p54 2001 Fibonacci number 5429 (V(1578,1,5589)+1)/(V(1578,1,243)+1) 17098 E1 2022 Lehmer primitive part, ECPP 5430 V(81671) 17069 c66 2013 Lucas number, ECPP 5431 primV(101510) 16970 E1 2022 Lucas primitive part, ECPP 5432 primV(86756) 16920 c74 2015 Lucas primitive part, ECPP 5433 V(80761)/570100885555095451 16861 c77 2020 Lucas cofactor, ECPP 5434 6521953289619*2^55555+1 16737 p296 2013 Triplet (3) 5435 6521953289619*2^55555-1 16737 p296 2013 Triplet (2) 5436 6521953289619*2^55555-5 16737 c58 2013 Triplet (1), ECPP 5437 primV(122754) 16653 c77 2021 Lucas primitive part, ECPP 5438 U(15823,1,3960)-U(15823,1,3959) 16625 x25 2002 Lehmer number, cyclotomy 5439 p(221444161) 16569 c77 2017 Partitions, ECPP 5440 (V(1240,1,5589)-1)/(V(1240,1,243)-1) 16538 E1 2022 Lehmer primitive part, ECPP 5441 primA(201485) 16535 E1 2022 Lucas Aurifeuillian primitive part, ECPP 5442 U(78919)/15574900936381642440917 16471 c77 2020 Fibonacci cofactor, ECPP 5443 (U(800,1,5725)-U(800,1,5724))/(U(800,1,54)-U(800,1,53)) 16464 E1 2022 Lehmer primitive part, ECPP 5444 17484430616589*2^54201+5 16330 E14 2024 Consecutive primes arithmetic progression (3,d=6), ECPP 5445 17484430616589*2^54201-1 16330 p440 2024 Consecutive primes arithmetic progression (2,d=6) 5446 17484430616589*2^54201-7 16330 E14 2024 Consecutive primes arithmetic progression (1,d=6), ECPP 5447 (V(21151,1,3777)-1)/(V(21151,1,3)-1) 16324 x25 2011 Lehmer primitive part 5448 primV(123573) 16198 c77 2019 Lucas primitive part, ECPP 5449 primB(225785) 16176 E1 2022 Lucas Aurifeuillian primitive part, ECPP 5450 V(77417)/313991497376559420151 16159 c77 2020 Lucas cofactor, ECPP 5451 (2^53381-1)/15588960193/38922536168186976769/1559912715971690629450336\ 68006103 16008 c84 2017 Mersenne cofactor, ECPP 5452 -E(5186)/295970922359784619239409649676896529941379763 15954 c63 2018 Euler irregular, ECPP 5453 primV(121227) 15890 c77 2019 Lucas primitive part, ECPP 5454 Phi(2949,-100000000) 15713 c47 2013 Unique, ECPP 5455 primU(131481) 15695 c77 2019 Fibonacci primitive part, ECPP 5456 primV(120258) 15649 c77 2019 Lucas primitive part, ECPP 5457 (U(9275,1,3961)+U(9275,1,3960))/(U(9275,1,45)+U(9275,1,44)) 15537 x38 2009 Lehmer primitive part 5458 (2^51487-1)/57410994232247/17292148963401772464767849635553 15455 c77 2018 Mersenne cofactor, ECPP 5459 primB(183835) 15368 c77 2019 Lucas Aurifeuillian primitive part, ECPP 5460 primU(77387) 15319 c77 2019 Fibonacci primitive part, ECPP 5461 primB(181705) 15189 c77 2019 Lucas Aurifeuillian primitive part, ECPP 5462 U(71983)/5614673/363946049 15028 c77 2018 Fibonacci cofactor, ECPP 5463 2494779036241*2^49800+13 15004 c93 2022 Consecutive primes arithmetic progression (3,d=6) 5464 2494779036241*2^49800+7 15004 c93 2022 Consecutive primes arithmetic progression (2,d=6) 5465 2494779036241*2^49800+1 15004 p408 2022 Consecutive primes arithmetic progression (1,d=6) 5466 primB(268665) 14972 c77 2019 Lucas Aurifeuillian primitive part, ECPP 5467 Phi(5015,-10000) 14848 c47 2013 Unique, ECPP 5468 2^49207-2^24604+1 14813 x16 2000 Gaussian Mersenne norm 29, generalized unique 5469f 214923707595*2^49073+1 14784 p364 2025 Cunningham chain 2nd kind (4p-3) 5470 primA(284895) 14626 c77 2019 Lucas Aurifeuillian primitive part, ECPP 5471 U(69239)/1384781 14464 c77 2018 Fibonacci cofactor, ECPP 5472 primA(170575) 14258 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5473 V(68213)/7290202116115634431 14237 c77 2018 Lucas cofactor, ECPP 5474 p(158375386) 14011 E1 2022 Partitions, ECPP 5475 p(158295265) 14007 E1 2022 Partitions, ECPP 5476 p(158221457) 14004 E1 2022 Partitions, ECPP 5477 primU(67703) 13954 c77 2018 Fibonacci primitive part, ECPP 5478 U(66947)/12485272838388758877279873712131648167413 13951 c77 2017 Fibonacci cofactor, ECPP 5479 V(66533)/2128184670585621839884209100279 13875 c77 2018 Lucas cofactor, ECPP 5480 6*Bern(5534)/226840561549600012633271691723599339 13862 c71 2014 Irregular, ECPP 5481 4410546*Bern(5526)/9712202742835546740714595866405369616019 13840 c63 2018 Irregular,ECPP 5482c 191279029*32003#+1 13773 p364 2025 Arithmetic progression (5,d=20571563*32003#) 5483c 170707466*32003#+1 13773 p364 2025 Arithmetic progression (4,d=20571563*32003#) 5484c 150135903*32003#+1 13773 p364 2025 Arithmetic progression (3,d=20571563*32003#) 5485c 129564340*32003#+1 13773 p364 2025 Arithmetic progression (2,d=20571563*32003#) 5486c 108992777*32003#+1 13773 p364 2025 Arithmetic progression (1,d=20571563*32003#) 5487 primB(163595) 13675 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5488 6*Bern(5462)/23238026668982614152809832227 13657 c64 2013 Irregular, ECPP 5489 56667641271*2^44441+5 13389 c99 2022 Triplet (3), ECPP 5490 56667641271*2^44441+1 13389 p426 2022 Triplet (2) 5491 56667641271*2^44441-1 13389 p426 2022 Triplet (1) 5492 V(64063)/464426465381142115542697818362662865912299 13347 E1 2024 Lucas cofactor, ECPP 5493 512792361*30941#+1 13338 p364 2022 Arithmetic progression (5,d=18195056*30941#) 5494 494597305*30941#+1 13338 p364 2022 Arithmetic progression (4,d=18195056*30941#) 5495 476402249*30941#+1 13338 p364 2022 Arithmetic progression (3,d=18195056*30941#) 5496 458207193*30941#+1 13338 p364 2022 Arithmetic progression (2,d=18195056*30941#) 5497 440012137*30941#+1 13338 p364 2022 Arithmetic progression (1,d=18195056*30941#) 5498 1815615642825*2^44046-1 13272 p395 2016 Cunningham chain (4p+3) 5499 1815615642825*2^44045-1 13272 p395 2016 Cunningham chain (2p+1) 5500 1815615642825*2^44044-1 13271 p395 2016 Cunningham chain (p) 5501 p(141528106) 13244 E6 2022 Partitions, ECPP 5502 p(141513546) 13244 E6 2022 Partitions, ECPP 5503 p(141512238) 13244 E6 2022 Partitions, ECPP 5504 p(141255053) 13232 E6 2022 Partitions, ECPP 5505 p(141150528) 13227 E6 2022 Partitions, ECPP 5506 p(141112026) 13225 E6 2022 Partitions, ECPP 5507 p(141111278) 13225 E6 2022 Partitions, ECPP 5508 p(140859260) 13213 E6 2022 Partitions, ECPP 5509 p(140807155) 13211 E6 2022 Partitions, ECPP 5510 p(140791396) 13210 E6 2022 Partitions, ECPP 5511 primU(94551) 13174 c77 2018 Fibonacci primitive part, ECPP 5512 primB(242295) 13014 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5513 U(61813)/594517433/3761274442997 12897 c77 2018 Fibonacci cofactor, ECPP 5514 (2^42737+1)/3 12865 M 2007 ECPP, generalized Lucas number, Wagstaff 5515 primU(62771) 12791 c77 2018 Fibonacci primitive part, ECPP 5516 primA(154415) 12728 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5517 primA(263865) 12570 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5518 6*Bern(5078)/643283455240626084534218914061 12533 c63 2013 Irregular, ECPP 5519 (2^41681-1)/1052945423/16647332713153/2853686272534246492102086015457 12495 c77 2015 Mersenne cofactor, ECPP 5520 (2^41521-1)/41602235382028197528613357724450752065089 12459 c54 2012 Mersenne cofactor, ECPP 5521 (2^41263-1)/1379707143199991617049286121 12395 c59 2012 Mersenne cofactor, ECPP 5522 U(59369)/2442423669148466039458303756169988568809269383644075940757020\ 9763004757 12337 c79 2015 Fibonacci cofactor, ECPP 5523 742478255901*2^40069+1 12074 p395 2016 Cunningham chain 2nd kind (4p-3) 5524 996824343*2^40074+1 12073 p395 2016 Cunningham chain 2nd kind (4p-3) 5525 664342014133*2^39840+1 12005 p408 2020 Consecutive primes arithmetic progression (3,d=30) 5526 664342014133*2^39840-29 12005 c93 2020 Consecutive primes arithmetic progression (2,d=30), ECPP 5527 664342014133*2^39840-59 12005 c93 2020 Consecutive primes arithmetic progression (1,d=30), ECPP 5528 V(56003) 11704 p193 2006 Lucas number 5529 primA(143705) 11703 c77 2017 Lucas Aurifeuillian primitive part, ECPP 5530 4207993863*2^38624+5 11637 L5354 2021 Triplet (3), ECPP 5531 4207993863*2^38624+1 11637 L5354 2021 Triplet (2) 5532 4207993863*2^38624-1 11637 L5354 2021 Triplet (1) 5533 primU(73025) 11587 c77 2015 Fibonacci primitive part, ECPP 5534 primU(67781) 11587 c77 2015 Fibonacci primitive part, ECPP 5535 primB(219165) 11557 c77 2015 Lucas Aurifeuillian primitive part, ECPP 5536 198429723072*11^11005+1 11472 L3323 2016 Cunningham chain 2nd kind (4p-3) 5537 U(54799)/4661437953906084533621577211561 11422 c8 2015 Fibonacci cofactor, ECPP 5538 U(54521)/6403194135342743624071073 11370 c8 2015 Fibonacci cofactor, ECPP 5539 primU(67825) 11336 x23 2007 Fibonacci primitive part 5540 3610!-1 11277 C 1993 Factorial 5541 U(53189)/69431662887136064191105625570683133711989 11075 c8 2014 Fibonacci cofactor, ECPP 5542 primU(61733) 11058 c77 2015 Fibonacci primitive part, ECPP 5543 778965587811*2^36627-1 11038 p395 2016 Cunningham chain (4p+3) 5544 778965587811*2^36626-1 11038 p395 2016 Cunningham chain (2p+1) 5545 778965587811*2^36625-1 11038 p395 2016 Cunningham chain (p) 5546 272879344275*2^36622-1 11036 p395 2016 Cunningham chain (4p+3) 5547 272879344275*2^36621-1 11036 p395 2016 Cunningham chain (2p+1) 5548 272879344275*2^36620-1 11036 p395 2016 Cunningham chain (p) 5549 V(52859)/1124137922466041911 11029 c8 2014 Lucas cofactor, ECPP 5550 3507!-1 10912 C 1992 Factorial 5551 V(52201)/70585804042896975505694709575919458733851279868446609 10857 c8 2015 Lucas cofactor, ECPP 5552 V(52009)/39772636393178951550299332730909 10838 c8 2015 Lucas cofactor, ECPP 5553 V(51941)/2808052157610902114547210696868337380250300924116591143641642\ 866931 10789 c8 2015 Lucas cofactor, ECPP 5554 1258566*Bern(4462)/6610083971965402783802518108033 10763 c64 2013 Irregular, ECPP 5555 3428602715439*2^35678+13 10753 c93 2020 Consecutive primes arithmetic progression (3,d=6), ECPP 5556 3428602715439*2^35678+7 10753 c93 2020 Consecutive primes arithmetic progression (2,d=6), ECPP 5557 3428602715439*2^35678+1 10753 p408 2020 Consecutive primes arithmetic progression (1,d=6) 5558 333645655005*2^35549-1 10713 p364 2015 Cunningham chain (4p+3) 5559 333645655005*2^35548-1 10713 p364 2015 Cunningham chain (2p+1) 5560 333645655005*2^35547-1 10713 p364 2015 Cunningham chain (p) 5561 V(51349)/224417260052884218046541 10708 c8 2014 Lucas cofactor, ECPP 5562 V(51169) 10694 p54 2001 Lucas number 5563 U(51031)/95846689435051369 10648 c8 2014 Fibonacci cofactor, ECPP 5564 V(50989)/69818796119453411 10640 c8 2014 Lucas cofactor, ECPP 5565 Phi(13285,-10) 10625 c47 2012 Unique, ECPP 5566 U(50833) 10624 CH4 2005 Fibonacci number 5567 2683143625525*2^35176+13 10602 c92 2019 Consecutive primes arithmetic progression (3,d=6),ECPP 5568 2683143625525*2^35176+7 10602 c92 2019 Consecutive primes arithmetic progression (2,d=6),ECPP 5569 2683143625525*2^35176+1 10602 p407 2019 Consecutive primes arithmetic progression (1,d=6) 5570 3020616601*24499#+1 10593 p422 2021 Arithmetic progression (6,d=56497325*24499#) 5571 2964119276*24499#+1 10593 p422 2021 Arithmetic progression (5,d=56497325*24499#) 5572 2907621951*24499#+1 10593 p422 2021 Arithmetic progression (4,d=56497325*24499#) 5573 2851124626*24499#+1 10593 p422 2021 Arithmetic progression (3,d=56497325*24499#) 5574 2794627301*24499#+1 10593 p422 2021 Arithmetic progression (2,d=56497325*24499#) 5575 2738129976*24499#+1 10593 p422 2021 Arithmetic progression (1,d=56497325*24499#) 5576 24029#+1 10387 C 1993 Primorial 5577 400791048*24001#+1 10378 p155 2018 Arithmetic progression (5,d=59874860*24001#) 5578 393142614*24001#+1 10378 p155 2018 Arithmetic progression (5,d=54840724*24001#) 5579 340916188*24001#+1 10378 p155 2018 Arithmetic progression (4,d=59874860*24001#) 5580 338301890*24001#+1 10378 p155 2018 Arithmetic progression (4,d=54840724*24001#) 5581 283461166*24001#+1 10377 p155 2018 Arithmetic progression (3,d=54840724*24001#) 5582 281041328*24001#+1 10377 p155 2018 Arithmetic progression (3,d=59874860*24001#) 5583 228620442*24001#+1 10377 p155 2018 Arithmetic progression (2,d=54840724*24001#) 5584 221488788*24001#+1 10377 p155 2018 Arithmetic progression (5,d=22703701*24001#) 5585 221166468*24001#+1 10377 p155 2018 Arithmetic progression (2,d=59874860*24001#) 5586 198785087*24001#+1 10377 p155 2018 Arithmetic progression (4,d=22703701*24001#) 5587 176081386*24001#+1 10377 p155 2018 Arithmetic progression (3,d=22703701*24001#) 5588 173779718*24001#+1 10377 p155 2018 Arithmetic progression (1,d=54840724*24001#) 5589 163456812*24001#+1 10377 p155 2018 Arithmetic progression (2,d=10601738*24001#) 5590 161291608*24001#+1 10377 p155 2018 Arithmetic progression (1,d=59874860*24001#) 5591 152855074*24001#+1 10377 p155 2018 Arithmetic progression (1,d=10601738*24001#) 5592 6*Bern(4306)/2153 10342 FE8 2009 Irregular, ECPP 5593 23801#+1 10273 C 1993 Primorial 5594 667674063382677*2^33608+7 10132 c88 2019 Quadruplet (4), ECPP 5595 667674063382677*2^33608+5 10132 c88 2019 Quadruplet (3), ECPP 5596 667674063382677*2^33608+1 10132 L4808 2019 Quadruplet (2) 5597 667674063382677*2^33608-1 10132 L4808 2019 Quadruplet (1) 5598 Phi(427,-10^28) 10081 FE9 2009 Unique, ECPP 5599 9649755890145*2^33335+1 10048 p364 2015 Cunningham chain 2nd kind (4p-3) 5600 32469*2^32469+1 9779 MM 1997 Cullen 5601 8073*2^32294+1 9726 MM 1997 Cullen 5602 E(3308)/39308792292493140803643373186476368389461245 9516 c8 2014 Euler irregular, ECPP 5603 Phi(5161,-100) 9505 c47 2012 Unique, ECPP 5604 V(44507) 9302 CH3 2005 Lucas number 5605 U(43399)/470400609575881344601538056264109423291827366228494341196421 9010 c8 2013 Fibonacci cofactor, ECPP 5606 U(42829)/107130175995197969243646842778153077 8916 c8 2014 Fibonacci cofactor, ECPP 5607 U(42043)/1681721 8780 c56 2012 Fibonacci cofactor, ECPP 5608 Phi(6105,-1000) 8641 c47 2010 Unique, ECPP 5609 Phi(4667,-100) 8593 c47 2009 Unique, ECPP 5610 U(40763)/643247084652261620737 8498 c8 2013 Fibonacci cofactor, ECPP 5611 2^27529-2^13765+1 8288 O 2000 Gaussian Mersenne norm 28, generalized unique 5612 18523#+1 8002 D 1989 Primorial 5613 6*Bern(3458)/28329084584758278770932715893606309 7945 c8 2013 Irregular, ECPP 5614 U(37987)/1832721858208455887947958246414213 7906 c39 2012 Fibonacci cofactor, ECPP 5615 U(37511) 7839 x13 2005 Fibonacci number 5616 -E(2762)/2670541 7760 c11 2004 Euler irregular, ECPP 5617 V(36779) 7687 CH3 2005 Lucas number 5618 U(35999) 7523 p54 2001 Fibonacci number, cyclotomy 5619 V(35449) 7409 p12 2001 Lucas number 5620 -30*Bern(3176)/6689693100056872989386833739813089720559189736259127537\ 0617658634396391181 7138 c63 2016 Irregular, ECPP 5621 2154675239*16301#+1 7036 p155 2018 Arithmetic progression (6,d=141836149*16301#) 5622 2012839090*16301#+1 7036 p155 2018 Arithmetic progression (5,d=141836149*16301#) 5623 1871002941*16301#+1 7036 p155 2018 Arithmetic progression (4,d=141836149*16301#) 5624 1729166792*16301#+1 7036 p155 2018 Arithmetic progression (3,d=141836149*16301#) 5625 1587330643*16301#+1 7035 p155 2018 Arithmetic progression (2,d=141836149*16301#) 5626 1445494494*16301#+1 7035 p155 2018 Arithmetic progression (1,d=141836149*16301#) 5627 -10365630*Bern(3100)/1670366116112864481699585217650438278080436881373\ 643007997602585219667 6943 c63 2016 Irregular ECPP 5628 23005*2^23005-1 6930 Y 1997 Woodall 5629 22971*2^22971-1 6920 Y 1997 Woodall 5630 15877#-1 6845 CD 1992 Primorial 5631 6*Bern(2974)/19622040971147542470479091157507 6637 c8 2013 Irregular, ECPP 5632 U(30757) 6428 p54 2001 Fibonacci number, cyclotomy 5633 E(2220)/392431891068600713525 6011 c8 2013 Euler irregular, ECPP 5634 -E(2202)/53781055550934778283104432814129020709 5938 c8 2013 Euler irregular, ECPP 5635 13649#+1 5862 D 1987 Primorial 5636 274386*Bern(2622)/8518594882415401157891061256276973722693 5701 c8 2013 Irregular, ECPP 5637 18885*2^18885-1 5690 K 1987 Woodall 5638 1963!-1 5614 CD 1992 Factorial 5639 13033#-1 5610 CD 1992 Primorial 5640 289*2^18502+1 5573 K 1984 Cullen, generalized Fermat 5641 E(2028)/11246153954845684745 5412 c55 2011 Euler irregular, ECPP 5642 -30*Bern(2504)/1248230090315232335602406373438221652417581490266755814\ 38903418303340323897 5354 c63 2013 Irregular ECPP 5643 U(25561) 5342 p54 2001 Fibonacci number 5644 -E(1990)/8338208577950624722417016286765473477033741642105671913 5258 c8 2013 Euler irregular, ECPP 5645 33957462*Bern(2370)/40685 5083 c11 2003 Irregular, ECPP 5646 4122429552750669*2^16567+7 5003 c83 2016 Quadruplet (4), ECPP 5647 4122429552750669*2^16567+5 5003 c83 2016 Quadruplet (3), ECPP 5648 4122429552750669*2^16567+1 5003 L4342 2016 Quadruplet (2) 5649 4122429552750669*2^16567-1 5003 L4342 2016 Quadruplet (1) 5650 35734184537*11677#/3+9 5002 c98 2024 Consecutive primes arithmetic progression (4,d=6), ECPP 5651 35734184537*11677#/3+3 5002 c98 2024 Consecutive primes arithmetic progression (3,d=6), ECPP 5652 35734184537*11677#/3-3 5002 c98 2024 Consecutive primes arithmetic progression (2,d=6), ECPP 5653 35734184537*11677#/3-9 5002 c98 2024 Consecutive primes arithmetic progression (1,d=6), ECPP 5654 E(1840)/31237282053878368942060412182384934425 4812 c4 2011 Euler irregular, ECPP 5655 7911*2^15823-1 4768 K 1987 Woodall 5656 E(1736)/13510337079405137518589526468536905 4498 c4 2004 Euler irregular, ECPP 5657 2^14699+2^7350+1 4425 O 2000 Gaussian Mersenne norm 27, generalized unique 5658e 744029027072*10111#-1 4362 p364 2025 Cunningham chain (8p+7) 5659 (2^14479+1)/3 4359 c4 2004 Generalized Lucas number, Wagstaff, ECPP 5660 62399583639*9923#-3399421517 4285 c98 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 5661 62399583639*9923#-3399421547 4285 c98 2021 Consecutive primes arithmetic progression (3,d=30), ECPP 5662 62399583639*9923#-3399421577 4285 c98 2021 Consecutive primes arithmetic progression (2,d=30), ECPP 5663 62399583639*9923#-3399421607 4285 c98 2021 Consecutive primes arithmetic progression (1,d=30), ECPP 5664 49325406476*9811#*8+1 4234 p382 2019 Cunningham chain 2nd kind (8p-7) 5665 276474*Bern(2030)/469951697500688159155 4200 c8 2003 Irregular, ECPP 5666 V(19469) 4069 x25 2002 Lucas number, cyclotomy, APR-CL assisted 5667 1477!+1 4042 D 1984 Factorial 5668 -2730*Bern(1884)/100983617849 3844 c8 2003 Irregular, ECPP 5669 2840178*Bern(1870)/85 3821 c8 2003 Irregular, ECPP 5670 (1049713153083*2917#*(567*2917#+1)+2310)*(567*2917#-1)/210+9 3753 c101 2023 Quadruplet (4),ECPP 5671 (1049713153083*2917#*(567*2917#+1)+2310)*(567*2917#-1)/210+7 3753 c101 2023 Quadruplet (3),ECPP 5672 (1049713153083*2917#*(567*2917#+1)+2310)*(567*2917#-1)/210+3 3753 c101 2023 Quadruplet (2),ECPP 5673 (1049713153083*2917#*(567*2917#+1)+2310)*(567*2917#-1)/210+1 3753 c101 2023 Quadruplet (1),ECPP 5674 12379*2^12379-1 3731 K 1984 Woodall 5675 (2^12391+1)/3 3730 M 1996 Generalized Lucas number, Wagstaff 5676 -E(1466)/167900532276654417372106952612534399239 3682 c8 2013 Euler irregular, ECPP 5677 E(1468)/12330876589623053882799895025030461658552339028064108285 3671 c4 2003 Euler irregular, ECPP 5678 1268118079424*8501#-1 3640 p434 2023 Cunningham chain (8p+7) 5679 101406820312263*2^12042+7 3640 c67 2018 Quadruplet (4) 5680 101406820312263*2^12042+5 3640 c67 2018 Quadruplet (3) 5681 101406820312263*2^12042+1 3640 p364 2018 Quadruplet (2) 5682 101406820312263*2^12042-1 3640 p364 2018 Quadruplet (1) 5683 2673092556681*15^3048+4 3598 c67 2015 Quadruplet (4) 5684 2673092556681*15^3048+2 3598 c67 2015 Quadruplet (3) 5685 2673092556681*15^3048-2 3598 c67 2015 Quadruplet (2) 5686 2673092556681*15^3048-4 3598 c67 2015 Quadruplet (1) 5687 6016459977*7927#-1 3407 p364 2022 Arithmetic progression (7,d=577051223*7927#) 5688 5439408754*7927#-1 3407 p364 2022 Arithmetic progression (6,d=577051223*7927#) 5689 4862357531*7927#-1 3407 p364 2022 Arithmetic progression (5,d=577051223*7927#) 5690 4285306308*7927#-1 3407 p364 2022 Arithmetic progression (4,d=577051223*7927#) 5691 3708255085*7927#-1 3407 p364 2022 Arithmetic progression (3,d=577051223*7927#) 5692 3131203862*7927#-1 3407 p364 2022 Arithmetic progression (2,d=577051223*7927#) 5693 2554152639*7927#-1 3407 p364 2022 Arithmetic progression (1,d=577051223*7927#) 5694 62753735335*7919#+3399421667 3404 c98 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 5695 62753735335*7919#+3399421637 3404 c98 2021 Consecutive primes arithmetic progression (3,d=30), ECPP 5696 62753735335*7919#+3399421607 3404 c98 2021 Consecutive primes arithmetic progression (2,d=30), ECPP 5697 62753735335*7919#+3399421577 3404 c98 2021 Consecutive primes arithmetic progression (1,d=30), ECPP 5698 (2^11279+1)/3 3395 PM 1998 Cyclotomy, generalized Lucas number, Wagstaff 5699 109766820328*7877#-1 3385 p395 2016 Cunningham chain (8p+7) 5700 585150568069684836*7757#/85085+17 3344 c88 2022 Quintuplet (5), ECPP 5701 585150568069684836*7757#/85085+13 3344 c88 2022 Quintuplet (4), ECPP 5702 585150568069684836*7757#/85085+11 3344 c88 2022 Quintuplet (3), ECPP 5703 585150568069684836*7757#/85085+7 3344 c88 2022 Quintuplet (2), ECPP 5704 585150568069684836*7757#/85085+5 3344 c88 2022 Quintuplet (1), ECPP 5705 104052837*7759#-1 3343 p398 2017 Arithmetic progression (6,d=12009836*7759#) 5706 92043001*7759#-1 3343 p398 2017 Arithmetic progression (5,d=12009836*7759#) 5707 80033165*7759#-1 3343 p398 2017 Arithmetic progression (4,d=12009836*7759#) 5708 68023329*7759#-1 3343 p398 2017 Arithmetic progression (3,d=12009836*7759#) 5709 56013493*7759#-1 3343 p398 2017 Arithmetic progression (2,d=12009836*7759#) 5710 44003657*7759#-1 3343 p398 2017 Arithmetic progression (1,d=12009836*7759#) 5711 2072453060816*7699#+1 3316 p364 2019 Cunningham chain 2nd kind (8p-7) 5712 (2^10691+1)/3 3218 c4 2004 Generalized Lucas number, Wagstaff, ECPP 5713 231692481512*7517#-1 3218 p395 2016 Cunningham chain (8p+7) 5714 (1021328211729*2521#*(483*2521#+1)+2310)*(483*2521#-1)/210+19 3207 c100 2023 Consecutive primes arithmetic progression (4,d=6),ECPP 5715 (1021328211729*2521#*(483*2521#+1)+2310)*(483*2521#-1)/210+13 3207 c100 2023 Consecutive primes arithmetic progression (3,d=6),ECPP 5716 (1021328211729*2521#*(483*2521#+1)+2310)*(483*2521#-1)/210+7 3207 c100 2023 Consecutive primes arithmetic progression (2,d=6),ECPP 5717 (1021328211729*2521#*(483*2521#+1)+2310)*(483*2521#-1)/210+1 3207 c100 2023 Consecutive primes arithmetic progression (1,d=6),ECPP 5718 (2^10501+1)/3 3161 M 1996 Generalized Lucas number, Wagstaff 5719 2^10141+2^5071+1 3053 O 2000 Gaussian Mersenne norm 26, generalized unique 5720 121152729080*7019#/1729+19 3025 c92 2019 Consecutive primes arithmetic progression (4,d=6), ECPP 5721 121152729080*7019#/1729+13 3025 c92 2019 Consecutive primes arithmetic progression (3,d=6), ECPP 5722 121152729080*7019#/1729+7 3025 c92 2019 Consecutive primes arithmetic progression (2,d=6), ECPP 5723 121152729080*7019#/1729+1 3025 p407 2019 Consecutive primes arithmetic progression (1,d=6) 5724 V(14449) 3020 DK 1995 Lucas number 5725 3124777373*7001#+1 3019 p155 2012 Arithmetic progression (7,d=481789017*7001#) 5726 2996180304*7001#+1 3019 p155 2012 Arithmetic progression (6,d=46793757*7001#) 5727 2949386547*7001#+1 3019 p155 2012 Arithmetic progression (5,d=46793757*7001#) 5728 2946259686*7001#+1 3019 p155 2012 Arithmetic progression (6,d=313558156*7001#) 5729 2911906960*7001#+1 3019 p155 2012 Arithmetic progression (5,d=3093612*7001#) 5730 2908813348*7001#+1 3019 p155 2012 Arithmetic progression (4,d=3093612*7001#) 5731 2905719736*7001#+1 3019 p155 2012 Arithmetic progression (3,d=3093612*7001#) 5732 2902626124*7001#+1 3019 p155 2012 Arithmetic progression (2,d=3093612*7001#) 5733 2902592790*7001#+1 3019 p155 2012 Arithmetic progression (4,d=46793757*7001#) 5734 2899532512*7001#+1 3019 p155 2012 Arithmetic progression (1,d=3093612*7001#) 5735 2855799033*7001#+1 3019 p155 2012 Arithmetic progression (3,d=46793757*7001#) 5736 2809005276*7001#+1 3019 p155 2012 Arithmetic progression (2,d=46793757*7001#) 5737 2762211519*7001#+1 3019 p155 2012 Arithmetic progression (1,d=46793757*7001#) 5738 2642988356*7001#+1 3019 p155 2012 Arithmetic progression (6,d=481789017*7001#) 5739 2161199339*7001#+1 3019 p155 2012 Arithmetic progression (5,d=481789017*7001#) 5740 1679410322*7001#+1 3019 p155 2012 Arithmetic progression (4,d=481789017*7001#) 5741 1197621305*7001#+1 3019 p155 2012 Arithmetic progression (3,d=481789017*7001#) 5742 715832288*7001#+1 3019 p155 2012 Arithmetic progression (2,d=481789017*7001#) 5743 234043271*7001#+1 3018 p155 2012 Arithmetic progression (1,d=481789017*7001#) 5744 U(14431) 3016 p54 2001 Fibonacci number 5745 138281163736*6977#+1 3006 p395 2016 Cunningham chain 2nd kind (8p-7) 5746 375967981369*6907#*8-1 2972 p382 2017 Cunningham chain (8p+7) 5747 V(13963) 2919 c11 2002 Lucas number, ECPP 5748 284787490256*6701#+1 2879 p364 2015 Cunningham chain 2nd kind (8p-7) 5749 9531*2^9531-1 2874 K 1984 Woodall 5750 -E(1174)/50550511342697072710795058639332351763 2829 c8 2013 Euler irregular, ECPP 5751 -E(1142)/6233437695283865492412648122953349079446935570718422828539863\ 59013986902240869 2697 c77 2015 Euler irregular, ECPP 5752 -E(1078)/361898544439043 2578 c4 2002 Euler irregular, ECPP 5753 V(12251) 2561 p54 2001 Lucas number 5754 974!-1 2490 CD 1992 Factorial 5755 7755*2^7755-1 2339 K 1984 Woodall 5756 772463767240*5303#+1 2272 p308 2019 Cunningham chain 2nd kind (8p-7) 5757 116814018316*5303#+1 2271 p406 2019 Arithmetic progression (7,d=10892863626*5303#) 5758 116746086504*5303#+1 2271 p406 2019 Arithmetic progression (7,d=9726011684*5303#) 5759 116242725347*5303#+1 2271 p406 2019 Arithmetic progression (7,d=10388428124*5303#) 5760 107020074820*5303#+1 2271 p406 2019 Arithmetic progression (6,d=9726011684*5303#) 5761 105921154690*5303#+1 2271 p406 2019 Arithmetic progression (6,d=10892863626*5303#) 5762 105854297223*5303#+1 2271 p406 2019 Arithmetic progression (6,d=10388428124*5303#) 5763 97867278281*5303#+1 2271 p406 2019 Arithmetic progression (5,d=2972005888*5303#) 5764 97348096836*5303#+1 2271 p406 2019 Arithmetic progression (5,d=5447332033*5303#) 5765 97294063136*5303#+1 2271 p406 2019 Arithmetic progression (5,d=9726011684*5303#) 5766 96461651937*5303#+1 2271 p406 2019 Arithmetic progression (4,d=435232416*5303#) 5767 96026419521*5303#+1 2271 p406 2019 Arithmetic progression (3,d=435232416*5303#) 5768 95664304943*5303#+1 2271 p406 2019 Arithmetic progression (4,d=817534485*5303#) 5769 95591187105*5303#+1 2271 p406 2019 Arithmetic progression (2,d=435232416*5303#) 5770 95155954689*5303#+1 2271 p406 2019 Arithmetic progression (1,d=435232416*5303#) 5771 94895272393*5303#+1 2271 p406 2019 Arithmetic progression (4,d=2972005888*5303#) 5772 94846770458*5303#+1 2271 p406 2019 Arithmetic progression (3,d=817534485*5303#) 5773 94029235973*5303#+1 2271 p406 2019 Arithmetic progression (2,d=817534485*5303#) 5774 93984538785*5303#+1 2271 p406 2019 Arithmetic progression (3,d=387018369*5303#) 5775 93597520416*5303#+1 2271 p406 2019 Arithmetic progression (2,d=387018369*5303#) 5776 93211701488*5303#+1 2271 p406 2019 Arithmetic progression (1,d=817534485*5303#) 5777 93210502047*5303#+1 2271 p406 2019 Arithmetic progression (1,d=387018369*5303#) 5778 69285767989*5303#+1 2271 p406 2019 Arithmetic progression (8,d=3026809034*5303#) 5779 66258958955*5303#+1 2271 p406 2019 Arithmetic progression (7,d=3026809034*5303#) 5780 63232149921*5303#+1 2271 p406 2019 Arithmetic progression (6,d=3026809034*5303#) 5781 60205340887*5303#+1 2271 p406 2019 Arithmetic progression (5,d=3026809034*5303#) 5782 57178531853*5303#+1 2271 p406 2019 Arithmetic progression (4,d=3026809034*5303#) 5783 54151722819*5303#+1 2271 p406 2019 Arithmetic progression (3,d=3026809034*5303#) 5784 51124913785*5303#+1 2271 p406 2019 Arithmetic progression (2,d=3026809034*5303#) 5785 48098104751*5303#+1 2270 p406 2019 Arithmetic progression (1,d=3026809034*5303#) 5786 V(10691) 2235 DK 1995 Lucas number 5787 566761969187*4733#/2+4 2034 c67 2020 Quintuplet (5) 5788 566761969187*4733#/2+2 2034 c67 2020 Quintuplet (4) 5789 566761969187*4733#/2-2 2034 c67 2020 Quintuplet (3) 5790 566761969187*4733#/2-4 2034 c67 2020 Quintuplet (2) 5791 566761969187*4733#/2-8 2034 c67 2020 Quintuplet (1) 5792 U(9677) 2023 c2 2000 Fibonacci number, ECPP 5793 7610828704751636272*4679#-1 2020 p151 2024 Cunningham chain (16p+15) 5794 126831252923413*4657#/273+13 2002 c88 2020 Quintuplet (5) 5795 126831252923413*4657#/273+9 2002 c88 2020 Quintuplet (4) 5796 126831252923413*4657#/273+7 2002 c88 2020 Quintuplet (3) 5797 126831252923413*4657#/273+3 2002 c88 2020 Quintuplet (2) 5798 126831252923413*4657#/273+1 2002 c88 2020 Quintuplet (1) 5799 6611*2^6611+1 1994 K 1984 Cullen 5800 U(9311) 1946 DK 1995 Fibonacci number 5801 2738129459017*4211#+3399421637 1805 c98 2022 Consecutive primes arithmetic progression (5,d=30) 5802 2738129459017*4211#+3399421607 1805 c98 2022 Consecutive primes arithmetic progression (4,d=30) 5803 2738129459017*4211#+3399421577 1805 c98 2022 Consecutive primes arithmetic progression (3,d=30) 5804 2738129459017*4211#+3399421547 1805 c98 2022 Consecutive primes arithmetic progression (2,d=30) 5805 2738129459017*4211#+3399421517 1805 c98 2022 Consecutive primes arithmetic progression (1,d=30) 5806 V(8467) 1770 c2 2000 Lucas number, ECPP 5807 5795*2^5795+1 1749 K 1984 Cullen 5808 (2^5807+1)/3 1748 PM 1998 Cyclotomy, generalized Lucas number, Wagstaff 5809 54201838768*3917#-1 1681 p395 2016 Cunningham chain (16p+15) 5810 102619722624*3797#+1 1631 p395 2016 Cunningham chain 2nd kind (16p-15) 5811 394254311495*3733#/2+4 1606 c67 2017 Quintuplet (5) 5812 394254311495*3733#/2+2 1606 c67 2017 Quintuplet (4) 5813 394254311495*3733#/2-2 1606 c67 2017 Quintuplet (3) 5814 394254311495*3733#/2-4 1606 c67 2017 Quintuplet (2) 5815 394254311495*3733#/2-8 1606 c67 2017 Quintuplet (1) 5816 83*2^5318-1 1603 K 1984 Woodall 5817 2316765173284*3593#+16073 1543 c18 2016 Quintuplet (5), ECPP 5818 2316765173284*3593#+16069 1543 c18 2016 Quintuplet (4), ECPP 5819 2316765173284*3593#+16067 1543 c18 2016 Quintuplet (3), ECPP 5820 2316765173284*3593#+16063 1543 c18 2016 Quintuplet (2), ECPP 5821 2316765173284*3593#+16061 1543 c18 2016 Quintuplet (1), ECPP 5822 652229318541*3527#+3399421637 1504 c98 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 5823 652229318541*3527#+3399421607 1504 c98 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 5824 652229318541*3527#+3399421577 1504 c98 2021 Consecutive primes arithmetic progression (3,d=30), ECPP 5825 652229318541*3527#+3399421547 1504 c98 2021 Consecutive primes arithmetic progression (2,d=30), ECPP 5826 652229318541*3527#+3399421517 1504 c98 2021 Consecutive primes arithmetic progression (1,d=30), ECPP 5827 3199190962192*3499#-1 1494 p382 2016 Cunningham chain (16p+15) 5828 4713*2^4713+1 1423 K 1984 Cullen 5829 449209457832*3307#+1633050403 1408 c98 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 5830 449209457832*3307#+1633050373 1408 c98 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 5831 449209457832*3307#+1633050343 1408 c98 2021 Consecutive primes arithmetic progression (3,d=30), ECPP 5832 449209457832*3307#+1633050313 1408 c98 2021 Consecutive primes arithmetic progression (2,d=30), ECPP 5833 449209457832*3307#+1633050283 1408 c98 2021 Consecutive primes arithmetic progression (1,d=30), ECPP 5834 5780736564512*3023#-1 1301 p364 2015 Cunningham chain (16p+15) 5835 2746496109133*3001#+27011 1290 c97 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 5836 2746496109133*3001#+26981 1290 c97 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 5837 2746496109133*3001#+26951 1290 c97 2021 Consecutive primes arithmetic progression (3,d=30), ECPP 5838 2746496109133*3001#+26921 1290 c97 2021 Consecutive primes arithmetic progression (2,d=30), ECPP 5839 2746496109133*3001#+26891 1290 c97 2021 Consecutive primes arithmetic progression (1,d=30), ECPP 5840 898966996992*3001#+1 1289 p364 2015 Cunningham chain 2nd kind (16p-15) 5841 42530119784448*2969#+1 1281 p382 2017 Cunningham chain 2nd kind (16p-15) 5842 22623218234368*2969#+1 1280 p382 2017 Cunningham chain 2nd kind (16p-15) 5843 1542946580224*2851#-1 1231 p364 2023 Cunningham chain (16p+15) 5844 406463527990*2801#+1633050403 1209 x38 2013 Consecutive primes arithmetic progression (5,d=30) 5845 406463527990*2801#+1633050373 1209 x38 2013 Consecutive primes arithmetic progression (4,d=30) 5846 406463527990*2801#+1633050343 1209 x38 2013 Consecutive primes arithmetic progression (3,d=30) 5847 406463527990*2801#+1633050313 1209 x38 2013 Consecutive primes arithmetic progression (2,d=30) 5848 406463527990*2801#+1633050283 1209 x38 2013 Consecutive primes arithmetic progression (1,d=30) 5849 1290733709840*2677#+1 1141 p295 2011 Cunningham chain 2nd kind (16p-15) 5850 U(5387) 1126 WM 1990 Fibonacci number 5851 1176100079*2591#+1 1101 p252 2019 Arithmetic progression (8,d=60355670*2591#) 5852 1115744409*2591#+1 1101 p252 2019 Arithmetic progression (7,d=60355670*2591#) 5853 1055388739*2591#+1 1100 p252 2019 Arithmetic progression (6,d=60355670*2591#) 5854 995033069*2591#+1 1100 p252 2019 Arithmetic progression (5,d=60355670*2591#) 5855 934677399*2591#+1 1100 p252 2019 Arithmetic progression (4,d=60355670*2591#) 5856 874321729*2591#+1 1100 p252 2019 Arithmetic progression (3,d=60355670*2591#) 5857 813966059*2591#+1 1100 p252 2019 Arithmetic progression (2,d=60355670*2591#) 5858 753610389*2591#+1 1100 p252 2019 Arithmetic progression (1,d=60355670*2591#) 5859 (2^3539+1)/3 1065 M 1989 First titanic by ECPP, generalized Lucas number, Wagstaff 5860 2968802755*2459#+1 1057 p155 2009 Arithmetic progression (8,d=359463429*2459#) 5861 2609339326*2459#+1 1057 p155 2009 Arithmetic progression (7,d=359463429*2459#) 5862 2249875897*2459#+1 1057 p155 2009 Arithmetic progression (6,d=359463429*2459#) 5863 1890412468*2459#+1 1056 p155 2009 Arithmetic progression (5,d=359463429*2459#) 5864 1530949039*2459#+1 1056 p155 2009 Arithmetic progression (4,d=359463429*2459#) 5865 1171485610*2459#+1 1056 p155 2009 Arithmetic progression (3,d=359463429*2459#) 5866 812022181*2459#+1 1056 p155 2009 Arithmetic progression (2,d=359463429*2459#) 5867 452558752*2459#+1 1056 p155 2009 Arithmetic progression (1,d=359463429*2459#) 5868d 5963982717*2417#-1 1040 p364 2025 Arithmetic progression (8,d=108526765*2417#) 5869d 5855455952*2417#-1 1040 p364 2025 Arithmetic progression (7,d=108526765*2417#) 5870d 5746929187*2417#-1 1040 p364 2025 Arithmetic progression (6,d=108526765*2417#) 5871d 5638402422*2417#-1 1040 p364 2025 Arithmetic progression (5,d=108526765*2417#) 5872d 5529875657*2417#-1 1040 p364 2025 Arithmetic progression (4,d=108526765*2417#) 5873d 5421348892*2417#-1 1040 p364 2025 Arithmetic progression (3,d=108526765*2417#) 5874d 5312822127*2417#-1 1040 p364 2025 Arithmetic progression (2,d=108526765*2417#) 5875d 5204295362*2417#-1 1040 p364 2025 Arithmetic progression (1,d=108526765*2417#) 5876d 4692090369*2417#-1 1040 p364 2025 Arithmetic progression (8,d=370899838*2417#) 5877d 4321190531*2417#-1 1040 p364 2025 Arithmetic progression (7,d=370899838*2417#) 5878d 3950290693*2417#-1 1040 p364 2025 Arithmetic progression (6,d=370899838*2417#) 5879d 3579390855*2417#-1 1040 p364 2025 Arithmetic progression (5,d=370899838*2417#) 5880d 3208491017*2417#-1 1040 p364 2025 Arithmetic progression (4,d=370899838*2417#) 5881d 2837591179*2417#-1 1040 p364 2025 Arithmetic progression (3,d=370899838*2417#) 5882d 2466691341*2417#-1 1040 p364 2025 Arithmetic progression (2,d=370899838*2417#) 5883d 2095791503*2417#-1 1040 p364 2025 Arithmetic progression (1,d=370899838*2417#) 5884 28993093368077*2399#+19433 1037 c18 2016 Sextuplet (6), ECPP 5885 28993093368077*2399#+19429 1037 c18 2016 Sextuplet (5), ECPP 5886 28993093368077*2399#+19427 1037 c18 2016 Sextuplet (4), ECPP 5887 28993093368077*2399#+19423 1037 c18 2016 Sextuplet (3), ECPP 5888 28993093368077*2399#+19421 1037 c18 2016 Sextuplet (2), ECPP 5889 28993093368077*2399#+19417 1037 c18 2016 Sextuplet (1), ECPP 5890b 64158976085*2399#+1 1034 p41 2025 Arithmetic progression (9,d=6383832302*2399#) 5891b 57775143783*2399#+1 1034 p41 2025 Arithmetic progression (8,d=6383832302*2399#) 5892b 51391311481*2399#+1 1034 p41 2025 Arithmetic progression (7,d=6383832302*2399#) 5893b 45007479179*2399#+1 1034 p41 2025 Arithmetic progression (6,d=6383832302*2399#) 5894b 38623646877*2399#+1 1034 p41 2025 Arithmetic progression (5,d=6383832302*2399#) 5895b 32239814575*2399#+1 1034 p41 2025 Arithmetic progression (4,d=6383832302*2399#) 5896b 25855982273*2399#+1 1034 p41 2025 Arithmetic progression (3,d=6383832302*2399#) 5897b 19472149971*2399#+1 1034 p41 2025 Arithmetic progression (2,d=6383832302*2399#) 5898b 13088317669*2399#+1 1034 p41 2025 Arithmetic progression (1,d=6383832302*2399#) 5899 R(1031) 1031 WD 1985 Repunit 5900 89595955370432*2371#-1 1017 p364 2015 Cunningham chain (32p+31) 5901 116040452086*2371#+1 1014 p308 2012 Arithmetic progression (9,d=6317280828*2371#) 5902 109723171258*2371#+1 1014 p308 2012 Arithmetic progression (8,d=6317280828*2371#) 5903 103405890430*2371#+1 1014 p308 2012 Arithmetic progression (7,d=6317280828*2371#) 5904 97336164242*2371#+1 1014 p308 2013 Arithmetic progression (9,d=6350457699*2371#) 5905 97088609602*2371#+1 1014 p308 2012 Arithmetic progression (6,d=6317280828*2371#) 5906 93537753980*2371#+1 1014 p308 2013 Arithmetic progression (9,d=3388165411*2371#) 5907 92836168856*2371#+1 1014 p308 2013 Arithmetic progression (9,d=127155673*2371#) 5908 92709013183*2371#+1 1014 p308 2013 Arithmetic progression (8,d=127155673*2371#) 5909 92581857510*2371#+1 1014 p308 2013 Arithmetic progression (7,d=127155673*2371#) 5910 92454701837*2371#+1 1014 p308 2013 Arithmetic progression (6,d=127155673*2371#) 5911 92327546164*2371#+1 1014 p308 2013 Arithmetic progression (5,d=127155673*2371#) 5912 92200390491*2371#+1 1014 p308 2013 Arithmetic progression (4,d=127155673*2371#) 5913 92073234818*2371#+1 1014 p308 2013 Arithmetic progression (3,d=127155673*2371#) 5914 91946079145*2371#+1 1014 p308 2013 Arithmetic progression (2,d=127155673*2371#) 5915 91818923472*2371#+1 1014 p308 2013 Arithmetic progression (1,d=127155673*2371#) 5916 90985706543*2371#+1 1014 p308 2013 Arithmetic progression (8,d=6350457699*2371#) 5917 90771328774*2371#+1 1014 p308 2012 Arithmetic progression (5,d=6317280828*2371#) 5918 90149588569*2371#+1 1014 p308 2013 Arithmetic progression (8,d=3388165411*2371#) 5919 86761423158*2371#+1 1014 p308 2013 Arithmetic progression (7,d=3388165411*2371#) 5920 84635248844*2371#+1 1014 p308 2013 Arithmetic progression (7,d=6350457699*2371#) 5921 84454047946*2371#+1 1014 p308 2012 Arithmetic progression (4,d=6317280828*2371#) 5922 83373257747*2371#+1 1014 p308 2013 Arithmetic progression (6,d=3388165411*2371#) 5923 79985092336*2371#+1 1014 p308 2013 Arithmetic progression (5,d=3388165411*2371#) 5924 78284791145*2371#+1 1014 p308 2013 Arithmetic progression (6,d=6350457699*2371#) 5925 78136767118*2371#+1 1014 p308 2012 Arithmetic progression (3,d=6317280828*2371#) 5926 76596926925*2371#+1 1014 p308 2013 Arithmetic progression (4,d=3388165411*2371#) 5927 73208761514*2371#+1 1014 p308 2013 Arithmetic progression (3,d=3388165411*2371#) 5928 71934333446*2371#+1 1014 p308 2013 Arithmetic progression (5,d=6350457699*2371#) 5929 71819486290*2371#+1 1014 p308 2012 Arithmetic progression (2,d=6317280828*2371#) 5930 69820596103*2371#+1 1014 p308 2013 Arithmetic progression (2,d=3388165411*2371#) 5931 66432430692*2371#+1 1014 p308 2013 Arithmetic progression (1,d=3388165411*2371#) 5932 65583875747*2371#+1 1014 p308 2013 Arithmetic progression (4,d=6350457699*2371#) 5933 65502205462*2371#+1 1014 p308 2012 Arithmetic progression (1,d=6317280828*2371#) 5934 61526034135*2371#+1 1014 p308 2011 Arithmetic progression (3,d=1298717501*2371#) 5935 60227316634*2371#+1 1014 p308 2011 Arithmetic progression (2,d=1298717501*2371#) 5936 58928599133*2371#+1 1014 p308 2011 Arithmetic progression (1,d=1298717501*2371#) 5937 533098369554*2357#+3399421667 1012 c98 2021 Consecutive primes arithmetic progression (6,d=30), ECPP 5938 533098369554*2357#+3399421637 1012 c98 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 5939 533098369554*2357#+3399421607 1012 c98 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 5940 533098369554*2357#+3399421577 1012 c98 2021 Consecutive primes arithmetic progression (3,d=30), ECPP 5941 533098369554*2357#+3399421547 1012 c98 2021 Consecutive primes arithmetic progression (2,d=30), ECPP 5942 533098369554*2357#+3399421517 1012 c98 2021 Consecutive primes arithmetic progression (1,d=30), ECPP 5943 113225039190926127209*2339#/57057+21 1002 c88 2021 Septuplet (7) 5944 113225039190926127209*2339#/57057+19 1002 c88 2021 Septuplet (6) 5945 113225039190926127209*2339#/57057+13 1002 c88 2021 Septuplet (5) 5946 113225039190926127209*2339#/57057+9 1002 c88 2021 Septuplet (4) 5947 113225039190926127209*2339#/57057+7 1002 c88 2021 Septuplet (3) 5948f 1184490310627008*2339#+1 1001 p364 2025 Cunningham chain 2nd kind (32p-31) ----- ------------------------------- -------- ----- ---- -------------- KEY TO PROOF-CODES (primality provers): A1 Propper, Srsieve, PrimeGrid, PRST A2 Propper, Srsieve, PRST A3 Atnashev, PRST A5 Gahan, Cyclo, PRST A6 Propper, Gcwsieve, PRST A7 Baur, Cyclo, PRST A8 Baur1, Srsieve, PRST A9 Wright1, Srsieve, CRUS, PRST A10 Grosvenor, Srsieve, CRUS, PRST A11 Anonymous, Srsieve, CRUS, PRST A12 Kruse, Srsieve, CRUS, PRST A13 Marler, Cyclo, PRST A14 Thompson5, Srsieve, CRUS, PRST A15 Sielemann, Srsieve, CRUS, PRST A16 Broer, Srsieve, CRUS, PRST A18 Trunov, Cyclo, PRST A19 Propper, Batalov, Srsieve, PRST A20 Propper, Batalov, Gcwsieve, PRST A21 Piesker, Srsieve, CRUS, PRST A22 Doornink, Cyclo, PRST A23 Brown1, Srsieve, PrimeGrid, PRST A24 Ogawa, MultiSieve, NewPGen, PRST A25 Schmidt2, NewPGen, PRST A26 VISCAPI, Srsieve, CRUS, PRST A27 Piesker, PSieve, Srsieve, NPLB, PRST A28 Gingrich1, Srsieve, CRUS, PRST A29 Kelava1, Srsieve, Prime95, PRST A30 Silva2, Srsieve, PrimeGrid, PRST A31 Dinkel, MultiSieve, PRST A32 Cedric, Srsieve, CRUS, PRST A34 Verhaagen, Srsieve, CRUS, PRST A36 Glotzbach, Srsieve, CRUS, PRST A38 Batalov, PSieve, Srsieve, PRST A39 Majors, Srsieve, CRUS, PRST A41 Gmirkin, Srsieve, PrimeGrid, PRST A42 Dadocad72, Srsieve, CRUS, PRST A43 Propper, MultiSieve, PRST A44 Smith12, Srsieve, CRUS, PRST A45 Kaczala, Srsieve, PrimeGrid, PRST A46 Primecrunch.com, Hedges, Srsieve, PRST A48 Peteri, Srsieve, CRUS, PRST A49 Swerczek, Srsieve, CRUS, PRST A50 Bird2, Srsieve, CRUS, PRST A51 Gahan, NewPGen, PRST A52 Schumacher, Srsieve, CRUS, PRST A54 Lynch, Srsieve, CRUS, PRST A55 Nielsen1, Gahan, PRST A56 Loebmann, Srsieve, CRUS, PRST A57 Busler, Srsieve, CRUS, PRST A58 Schmidt2, PSieve, Srsieve, NPLB, PRST A59 Straleger, Srsieve, CRUS, PRST A60 Presler, Srsieve, PrimeGrid, PRST A61 Williams7, Gcwsieve, MultiSieve, PrimeGrid, PRST A62 Gehrke, Srsieve, CRUS, PRST A63 Davies, Srsieve, CRUS, PRST A64 Freeman.kennethgmail.com, Srsieve, CRUS, PRST A65 Dickinson, Srsieve, CRUS, PRST A66 Terber, Srsieve, CRUS, PRST C Caldwell, Cruncher c2 Water, Primo c4 Broadhurst, Primo c8 Broadhurst, Water, Primo c11 Oakes, Primo c18 Luhn, Primo c39 Minovic, OpenPFGW, Primo c47 Chandler, Primo c54 Wu_T, Primo c55 Gramolin, Primo c56 Soule, Minovic, OpenPFGW, Primo c58 Kaiser1, NewPGen, OpenPFGW, Primo c59 Metcalfe, OpenPFGW, Primo c63 Ritschel, TOPS, Primo c64 Metcalfe, Minovic, Ritschel, TOPS, Primo c66 Steine, Primo c67 Batalov, NewPGen, OpenPFGW, Primo c69 Jacobsen, Primo c70 Underwood, Dubner, Primo c71 Metcalfe, Ritschel, Andersen, TOPS, Primo c73 Underwood, Lifchitz, Primo c74 Lasher, Dubner, Primo c76 Kaiser1, Water, Underwood, Primo c77 Batalov, Primo c79 Batalov, Broadhurst, Water, Primo c81 Water, Underwood, Primo c82 Steine, Water, Primo c83 Kaiser1, PolySieve, NewPGen, Primo c84 Underwood, Primo c88 Kaiser1, PolySieve, Primo c92 Lamprecht, Luhn, Primo c93 Batalov, PolySieve, Primo c94 Gelhar, Ritschel, TOPS, Primo c95 Gelhar, Primo c97 Lamprecht, Luhn, APSieve, OpenPFGW, Primo c98 Batalov, EMsieve, Primo c99 Kruse, Schoeler, Primo c100 DavisK, APTreeSieve, NewPGen, OpenPFGW, Primo c101 DavisK, APTreeSieve, OpenPFGW, Primo CD Caldwell, Dubner, Cruncher CH10 Batalov, OpenPFGW, Primo, CHG CH12 Propper, Batalov, OpenPFGW, Primo, CHG CH13 Propper, Batalov, EMsieve, OpenPFGW, CHG CH14 Wu_T, CM, OpenPFGW, CHG CH2 Wu_T, OpenPFGW, Primo, CHG CH3 Broadhurst, Water, OpenPFGW, Primo, CHG CH4 Irvine, Broadhurst, Water, OpenPFGW, Primo, CHG CH9 Zhou, OpenPFGW, CHG D Dubner, Cruncher DK Dubner, Keller, Cruncher DS Smith_Darren, Proth.exe E1 Batalov, CM E2 Propper, CM E3 Enge, CM E4 Childers, CM E5 Underwood, CM E6 Lasher, Broadhurst, Underwood, CM E7 Lasher, CM E8 Broadhurst, Underwood, CM E9 Mock, CM E10 Doornink, CM E11 Karpovich, CM E12 Enge, Underwood, CM E13 Batalov, Masser, CM E14 Batalov, EMsieve, CM E15 Batalov, PolySieve, CM E16 Propper, Batalov, CM E17 Foreman, Batalov, CM FE8 Oakes, Broadhurst, Water, Morain, FastECPP FE9 Broadhurst, Water, Morain, FastECPP g0 Gallot, Proth.exe g1 Caldwell, Proth.exe G1 Armengaud, GIMPS, Prime95 G2 Spence, GIMPS, Prime95 G3 Clarkson, Kurowski, GIMPS, Prime95 G4 Hajratwala, Kurowski, GIMPS, Prime95 G5 Cameron, Kurowski, GIMPS, Prime95 G6 Shafer, GIMPS, Prime95 G7 Findley_J, GIMPS, Prime95 G8 Nowak, GIMPS, Prime95 G9 Boone, Cooper, GIMPS, Prime95 G10 Smith_E, GIMPS, Prime95 G11 Elvenich, GIMPS, Prime95 G12 Strindmo, GIMPS, Prime95 G13 Cooper, GIMPS, Prime95 G14 Cooper, GIMPS, Prime95 G15 Pace, GIMPS, Prime95 G16 Laroche, GIMPS, Prime95 g23 Ballinger, Proth.exe g25 OHare, Proth.exe g55 Toplic, Proth.exe g124 Crickman, Proth.exe g236 Heuer, GFN17Sieve, GFNSearch, Proth.exe g245 Cosgrave, NewPGen, PRP, Proth.exe g260 AYENI, Proth.exe g267 Grobstich, NewPGen, PRP, Proth.exe g277 Eaton, NewPGen, PRP, Proth.exe g279 Cooper, NewPGen, PRP, Proth.exe g337 Hsieh, NewPGen, PRP, Proth.exe g403 Yoshimura, ProthSieve, PrimeSierpinski, LLR, Proth.exe g407 HermleGC, MultiSieve, PRP, Proth.exe g413 Scott, AthGFNSieve, Proth.exe g414 Gilvey, Srsieve, PrimeGrid, PrimeSierpinski, LLR, Proth.exe g418 Taura, NewPGen, PRP, Proth.exe g424 Broadhurst, NewPGen, OpenPFGW, Proth.exe g427 Batalov, Srsieve, LLR, Proth.exe g429 Underbakke, GenefX64, AthGFNSieve, PrimeGrid, Proth.exe g431 Shenton, Srsieve, Proth.exe gm Morii, Proth.exe K Keller L20 Kapek, LLR L53 Zaveri, ProthSieve, RieselSieve, PRP, LLR L95 Urushi, LLR L99 Underbakke, TwinGen, LLR L124 Rodenkirch, MultiSieve, LLR L129 Snyder, LLR L137 Jaworski, Rieselprime, LLR L158 Underwood, NewPGen, 321search, LLR L161 Schafer, NewPGen, LLR L172 Smith, ProthSieve, RieselSieve, LLR L181 Siegert, LLR L185 Hassler, NewPGen, LLR L191 Banka, NewPGen, LLR L192 Jaworski, LLR L193 Rosink, ProthSieve, RieselSieve, LLR L197 DaltonJ, ProthSieve, RieselSieve, LLR L201 Siemelink, LLR L256 Underwood, Srsieve, NewPGen, 321search, LLR L282 Curtis, Srsieve, Rieselprime, LLR L381 Mate, Siemelink, Rodenkirch, MultiSieve, LLR L384 Pinho, Srsieve, Rieselprime, LLR L426 Jaworski, Srsieve, Rieselprime, LLR L436 Andersen2, Gcwsieve, MultiSieve, PrimeGrid, LLR L447 Kohlman, Gcwsieve, MultiSieve, PrimeGrid, LLR L466 Zhou, NewPGen, LLR L503 Benson, Srsieve, LLR L521 Thompson1, Gcwsieve, MultiSieve, PrimeGrid, LLR L527 Tornberg, TwinGen, LLR L541 Barnes, Srsieve, CRUS, LLR L550 Bonath, Srsieve, CRUS, LLR L587 Dettweiler, Srsieve, CRUS, LLR L591 Penne, Srsieve, CRUS, LLR L606 Bennett, Srsieve, NewPGen, PrimeGrid, 321search, LLR L613 Keogh, Srsieve, ProthSieve, RieselSieve, LLR L622 Cardall, Srsieve, ProthSieve, RieselSieve, LLR L671 Wong, Srsieve, PrimeGrid, LLR L689 Brown1, Srsieve, PrimeGrid, LLR L690 Cholt, Srsieve, PrimeGrid, LLR L753 Wolfram, Srsieve, PrimeGrid, LLR L760 Riesen, Srsieve, Rieselprime, LLR L764 Ewing, Srsieve, PrimeGrid, LLR L780 Brady, Srsieve, PrimeGrid, LLR L801 Gesker, Gcwsieve, MultiSieve, PrimeGrid, LLR L802 Zachariassen, Srsieve, NPLB, LLR L875 Hatland, LLR2, PSieve, Srsieve, PrimeGrid, LLR L917 Bergman1, Gcwsieve, MultiSieve, PrimeGrid, LLR L923 Kaiser1, Klahn, NewPGen, PrimeGrid, TPS, SunGard, LLR L927 Brown1, TwinGen, PrimeGrid, LLR L983 Wu_T, LLR L1056 Schwieger, Srsieve, PrimeGrid, LLR L1115 Splain, PSieve, Srsieve, PrimeGrid, LLR L1125 Laluk, PSieve, Srsieve, PrimeGrid, LLR L1129 Slomma, PSieve, Srsieve, PrimeGrid, LLR L1130 Adolfsson, PSieve, Srsieve, PrimeGrid, LLR L1134 Ogawa, Srsieve, NewPGen, LLR L1141 Ogawa, NewPGen, LLR L1158 Vogel, PSieve, Srsieve, PrimeGrid, LLR L1160 Sunderland, PSieve, Srsieve, PrimeGrid, LLR L1188 Faith, PSieve, Srsieve, PrimeGrid, LLR L1199 DeRidder, PSieve, Srsieve, PrimeGrid, LLR L1201 Carpenter1, PSieve, Srsieve, PrimeGrid, LLR L1203 Mauno, PSieve, Srsieve, PrimeGrid, LLR L1204 Brown1, PSieve, Srsieve, PrimeGrid, LLR L1209 Wong, PSieve, Srsieve, PrimeGrid, LLR L1218 Winslow, PSieve, Srsieve, PrimeGrid, LLR L1223 Courty, PSieve, Srsieve, PrimeGrid, LLR L1230 Yooil1, PSieve, Srsieve, PrimeGrid, LLR L1300 Yama, PSieve, Srsieve, PrimeGrid, LLR L1301 Sorbera, Srsieve, CRUS, LLR L1349 Wallace, Srsieve, NewPGen, PrimeGrid, LLR L1353 Mumper, Srsieve, PrimeGrid, LLR L1355 Beck, PSieve, Srsieve, PrimeGrid, LLR L1372 Glennie, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L1387 Anonymous, PSieve, Srsieve, PrimeGrid, LLR L1412 Jones_M, PSieve, Srsieve, PrimeGrid, LLR L1422 Steichen, PSieve, Srsieve, PrimeGrid, LLR L1444 Davies, PSieve, Srsieve, PrimeGrid, LLR L1448 Hron, PSieve, Srsieve, PrimeGrid, LLR L1455 Heikkila, PSieve, Srsieve, PrimeGrid, LLR L1456 Webster, PSieve, Srsieve, PrimeGrid, LLR L1460 Salah, Srsieve, PrimeGrid, PrimeSierpinski, LLR L1471 Gunn, Srsieve, CRUS, LLR L1474 Brown6, PSieve, Srsieve, PrimeGrid, LLR L1486 Dinkel, PSieve, Srsieve, PrimeGrid, LLR L1492 Eiterig, PSieve, Srsieve, PrimeGrid, LLR L1502 Champ, PSieve, Srsieve, PrimeGrid, LLR L1576 Craig, PSieve, Srsieve, PrimeGrid, LLR L1675 Schwieger, PSieve, Srsieve, PrimeGrid, LLR L1728 Gasewicz, PSieve, Srsieve, PrimeGrid, LLR L1741 Granowski, PSieve, Srsieve, PrimeGrid, LLR L1745 Cholt, PSieve, Srsieve, PrimeGrid, LLR L1754 Hubbard, PSieve, Srsieve, PrimeGrid, LLR L1774 Schoefer, PSieve, Srsieve, PrimeGrid, LLR L1780 Ming, PSieve, Srsieve, PrimeGrid, LLR L1792 Tang, PSieve, Srsieve, PrimeGrid, LLR L1808 Reynolds1, PSieve, Srsieve, PrimeGrid, LLR L1817 Barnes, PSieve, Srsieve, NPLB, LLR L1823 Larsson, PSieve, Srsieve, PrimeGrid, LLR L1828 Benson, PSieve, Srsieve, Rieselprime, LLR L1862 Curtis, PSieve, Srsieve, Rieselprime, LLR L1863 Wozny, PSieve, Srsieve, Rieselprime, LLR L1884 Jaworski, PSieve, Srsieve, Rieselprime, LLR L1885 Ostaszewski, PSieve, Srsieve, PrimeGrid, LLR L1921 Winslow, TwinGen, PrimeGrid, LLR L1932 Dragnev, PSieve, Srsieve, PrimeGrid, LLR L1935 Channing, PSieve, Srsieve, PrimeGrid, LLR L1949 Pritchard, Srsieve, PrimeGrid, RieselSieve, LLR L1959 Metcalfe, PSieve, Srsieve, Rieselprime, LLR L1979 Tibbott, PSieve, Srsieve, PrimeGrid, LLR L2006 Rix, PSieve, Srsieve, PrimeGrid, LLR L2012 Pedersen_K, Srsieve, CRUS, OpenPFGW, LLR L2017 Hubbard, PSieve, Srsieve, NPLB, LLR L2030 Tonner, PSieve, Srsieve, PrimeGrid, LLR L2035 Greer, TwinGen, PrimeGrid, LLR L2042 Lachance, PSieve, Srsieve, PrimeGrid, LLR L2046 Melvold, Srsieve, PrimeGrid, LLR L2051 Reich, PSieve, Srsieve, PrimeGrid, LLR L2054 Kaiser1, Srsieve, CRUS, LLR L2055 Soule, PSieve, Srsieve, Rieselprime, LLR L2074 Minovic, PSieve, Srsieve, Rieselprime, LLR L2085 Dodson1, PSieve, Srsieve, PrimeGrid, LLR L2086 Sveen, PSieve, Srsieve, PrimeGrid, LLR L2103 Schmidt1, PSieve, Srsieve, PrimeGrid, LLR L2117 Karlsteen, PSieve, Srsieve, PrimeGrid, LLR L2121 VanRangelrooij, PSieve, Srsieve, PrimeGrid, LLR L2125 Greer, PSieve, Srsieve, PrimeGrid, LLR L2137 Hayashi1, PSieve, Srsieve, PrimeGrid, LLR L2142 Hajek, PSieve, Srsieve, PrimeGrid, LLR L2158 Krauss, PSieve, Srsieve, PrimeGrid, LLR L2163 VanRooijen1, PSieve, Srsieve, PrimeGrid, LLR L2233 Herder, Srsieve, PrimeGrid, LLR L2235 Mullage, PSieve, Srsieve, NPLB, LLR L2257 Dettweiler, PSieve, Srsieve, NPLB, LLR L2269 Schori, Srsieve, PrimeGrid, LLR L2322 Szafranski, PSieve, Srsieve, PrimeGrid, LLR L2337 Schmalen, PSieve, Srsieve, PrimeGrid, LLR L2366 Satoh, PSieve, Srsieve, PrimeGrid, LLR L2371 Luszczek, Srsieve, PrimeGrid, LLR L2373 Tarasov1, Srsieve, PrimeGrid, LLR L2408 Reinman, Srsieve, PrimeGrid, LLR L2425 DallOsto, LLR L2429 Bliedung, TwinGen, PrimeGrid, LLR L2432 Sutton1, PSieve, Srsieve, Rieselprime, LLR L2484 Ritschel, PSieve, Srsieve, Rieselprime, LLR L2487 Liao, PSieve, Srsieve, PrimeGrid, LLR L2519 Schmidt2, PSieve, Srsieve, NPLB, LLR L2520 Mamanakis, PSieve, Srsieve, PrimeGrid, LLR L2526 Martinik, PSieve, Srsieve, PrimeGrid, LLR L2549 McKay, PSieve, Srsieve, PrimeGrid, LLR L2552 Foulher, PSieve, Srsieve, PrimeGrid, LLR L2561 Vinklat, PSieve, Srsieve, PrimeGrid, LLR L2564 Bravin, PSieve, Srsieve, PrimeGrid, LLR L2583 Nakamura, PSieve, Srsieve, PrimeGrid, LLR L2602 Mueller4, PSieve, Srsieve, PrimeGrid, LLR L2603 Hoffman, PSieve, Srsieve, PrimeGrid, LLR L2606 Slakans, PSieve, Srsieve, PrimeGrid, LLR L2626 DeKlerk, PSieve, Srsieve, PrimeGrid, LLR L2627 Graham2, PSieve, Srsieve, PrimeGrid, LLR L2629 Becker2, PSieve, Srsieve, PrimeGrid, LLR L2659 Reber, PSieve, Srsieve, PrimeGrid, LLR L2664 Koluvere, PSieve, Srsieve, PrimeGrid, LLR L2675 Ling, PSieve, Srsieve, PrimeGrid, LLR L2676 Cox2, PSieve, Srsieve, PrimeGrid, LLR L2691 Pettersen, PSieve, Srsieve, PrimeGrid, LLR L2707 Out, PSieve, Srsieve, PrimeGrid, LLR L2714 Piotrowski, PSieve, Srsieve, PrimeGrid, LLR L2715 Donovan, PSieve, Srsieve, PrimeGrid, LLR L2719 Yost, PSieve, Srsieve, PrimeGrid, LLR L2777 Ritschel, Gcwsieve, TOPS, LLR L2785 Meili, PSieve, Srsieve, PrimeGrid, LLR L2805 Barr, PSieve, Srsieve, PrimeGrid, LLR L2840 Santana, PSieve, Srsieve, PrimeGrid, LLR L2842 English1, PSieve, Srsieve, PrimeGrid, LLR L2873 Jurach, PSieve, Srsieve, PrimeGrid, LLR L2885 Busacker, PSieve, Srsieve, PrimeGrid, LLR L2891 Lacroix, PSieve, Srsieve, PrimeGrid, LLR L2914 Merrylees, PSieve, Srsieve, PrimeGrid, LLR L2959 Derrera, PSieve, Srsieve, PrimeGrid, LLR L2973 Kurtovic, Srsieve, PrimeGrid, LLR L2975 Loureiro, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L2992 Boehm, PSieve, Srsieve, PrimeGrid, LLR L2997 Williams2, PSieve, Srsieve, PrimeGrid, LLR L3023 Winslow, PSieve, Srsieve, PrimeGrid, 12121search, LLR L3029 Walsh, PSieve, Srsieve, PrimeGrid, LLR L3033 Snow, PSieve, Srsieve, PrimeGrid, 12121search, LLR L3035 Scalise, PSieve, Srsieve, PrimeGrid, LLR L3048 Breslin, PSieve, Srsieve, PrimeGrid, LLR L3054 Winslow, Srsieve, PrimeGrid, LLR L3091 Ridgway, PSieve, Srsieve, PrimeGrid, LLR L3101 Reichard, PSieve, Srsieve, PrimeGrid, LLR L3118 Yama, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3125 Rizman, PSieve, Srsieve, PrimeGrid, LLR L3141 Kus, PSieve, Srsieve, PrimeGrid, LLR L3168 Schwegler, PSieve, Srsieve, PrimeGrid, LLR L3171 Bergelt, PSieve, Srsieve, PrimeGrid, LLR L3173 Zhou2, PSieve, Srsieve, PrimeGrid, LLR L3174 Boniecki, PSieve, Srsieve, PrimeGrid, LLR L3183 Haller, Srsieve, PrimeGrid, LLR L3184 Hayslette, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3200 Athanas, PSieve, Srsieve, PrimeGrid, LLR L3203 Scalise, TwinGen, PrimeGrid, LLR L3209 McArdle, GenefX64, AthGFNSieve, PrimeGrid, LLR L3222 Yamamoto, PSieve, Srsieve, PrimeGrid, LLR L3223 Yurgandzhiev, PSieve, Srsieve, PrimeGrid, LLR L3230 Kumagai, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3234 Parangalan, PSieve, Srsieve, PrimeGrid, LLR L3249 Lind, PSieve, Srsieve, PrimeGrid, LLR L3260 Stanko, PSieve, Srsieve, PrimeGrid, LLR L3261 Batalov, PSieve, Srsieve, PrimeGrid, LLR L3262 Molder, PSieve, Srsieve, PrimeGrid, LLR L3267 Cain, PSieve, Srsieve, PrimeGrid, LLR L3278 Fischer1, PSieve, Srsieve, PrimeGrid, LLR L3323 Ritschel, NewPGen, TOPS, LLR L3325 Elvy, PSieve, Srsieve, PrimeGrid, LLR L3329 Tatearka, PSieve, Srsieve, PrimeGrid, LLR L3345 Domanov1, PSieve, Rieselprime, LLR L3372 Ryan, PSieve, Srsieve, PrimeGrid, LLR L3377 Ollivier, PSieve, Srsieve, PrimeGrid, LLR L3378 Glasgow, PSieve, Srsieve, PrimeGrid, LLR L3415 Johnston1, PSieve, Srsieve, PrimeGrid, LLR L3430 Durstewitz, PSieve, Srsieve, PrimeGrid, LLR L3431 Gahan, PSieve, Srsieve, PrimeGrid, LLR L3432 Batalov, Srsieve, LLR L3458 Jia, PSieve, Srsieve, PrimeGrid, LLR L3459 Boruvka, PSieve, Srsieve, PrimeGrid, LLR L3460 Ottusch, PSieve, Srsieve, PrimeGrid, LLR L3483 Farrow, PSieve, Srsieve, PrimeGrid, LLR L3494 Batalov, NewPGen, LLR L3502 Ristic, PSieve, Srsieve, PrimeGrid, LLR L3512 Tsuji, PSieve, Srsieve, PrimeGrid, LLR L3514 Bishop1, PSieve, Srsieve, PrimeGrid, OpenPFGW, LLR L3519 Kurtovic, PSieve, Srsieve, Rieselprime, LLR L3523 Brown1, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3528 Batalov, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3532 Batalov, Gcwsieve, LLR L3539 Jacobs, PSieve, Srsieve, PrimeGrid, LLR L3543 Yama, PrimeGrid, LLR L3545 Eskam1, PSieve, Srsieve, PrimeGrid, LLR L3547 Ready, Srsieve, PrimeGrid, LLR L3548 Ready, PSieve, Srsieve, PrimeGrid, LLR L3549 Hirai, Srsieve, PrimeGrid, LLR L3552 Benson2, Srsieve, PrimeGrid, LLR L3553 Cilliers, Srsieve, PrimeGrid, LLR L3562 Schouten, Srsieve, PrimeGrid, LLR L3564 Jaworski, Srsieve, CRUS, LLR L3566 Slakans, Srsieve, PrimeGrid, LLR L3567 Meili, Srsieve, PrimeGrid, LLR L3573 Batalov, TwinGen, PrimeGrid, LLR L3593 Veit, PSieve, Srsieve, PrimeGrid, LLR L3601 Jablonski1, PSieve, Srsieve, PrimeGrid, LLR L3606 Sander, TwinGen, PrimeGrid, LLR L3610 Batalov, Srsieve, CRUS, LLR L3659 Volynsky, Srsieve, PrimeGrid, LLR L3662 Schawe, PSieve, Srsieve, PrimeGrid, LLR L3665 Kelava1, PSieve, Srsieve, Rieselprime, LLR L3668 Prokopchuk, PSieve, Srsieve, PrimeGrid, LLR L3686 Yost, Srsieve, PrimeGrid, LLR L3719 Skinner, PSieve, Srsieve, PrimeGrid, LLR L3720 Ohno, Srsieve, PrimeGrid, LLR L3735 Kurtovic, Srsieve, LLR L3743 Parker1, PSieve, Srsieve, PrimeGrid, LLR L3749 Meador, Srsieve, PrimeGrid, LLR L3760 Okazaki, PSieve, Srsieve, PrimeGrid, LLR L3763 Martin4, PSieve, Srsieve, PrimeGrid, LLR L3764 Diepeveen, PSieve, Srsieve, Rieselprime, LLR L3770 Tang, Srsieve, PrimeGrid, LLR L3772 Ottusch, Srsieve, PrimeGrid, LLR L3784 Cavnaugh, PSieve, Srsieve, PrimeGrid, LLR L3789 Toda, Srsieve, PrimeGrid, LLR L3802 Aggarwal, Srsieve, LLR L3803 Bredl, PSieve, Srsieve, PrimeGrid, LLR L3810 Radle, PSieve, Srsieve, PrimeGrid, LLR L3813 Chambers2, PSieve, Srsieve, PrimeGrid, LLR L3824 Mazzucato, PSieve, Srsieve, PrimeGrid, LLR L3829 Abrahmi, TwinGen, PrimeGrid, LLR L3839 Batalov, EMsieve, LLR L3849 Smith10, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3859 Clifton, PSieve, Srsieve, PrimeGrid, LLR L3865 Silva, PSieve, Srsieve, PrimeGrid, LLR L3869 Cholt, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3877 Jarne, PSieve, Srsieve, PrimeGrid, LLR L3887 Byerly, PSieve, Rieselprime, LLR L3895 Englehard, PSieve, Srsieve, PrimeGrid, LLR L3898 Christy, PSieve, Srsieve, PrimeGrid, LLR L3903 Miao, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3904 Darimont, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3910 Bischof, PSieve, Srsieve, PrimeGrid, LLR L3917 Rodenkirch, PSieve, Srsieve, LLR L3919 Pickering, PSieve, Srsieve, PrimeGrid, LLR L3924 Kim5, PSieve, Srsieve, PrimeGrid, LLR L3925 Okazaki, Srsieve, PrimeGrid, LLR L3933 Batalov, PSieve, Srsieve, CRUS, Rieselprime, LLR L3941 Lee8, PSieve, Srsieve, PrimeGrid, LLR L3961 Darimont, Srsieve, PrimeGrid, LLR L3964 Iakovlev, Srsieve, PrimeGrid, LLR L3975 Hou, PSieve, Srsieve, PrimeGrid, LLR L3993 Gushchak, Srsieve, PrimeGrid, LLR L3994 Domanov1, PSieve, Srsieve, NPLB, LLR L3995 Unbekannt, PSieve, Srsieve, PrimeGrid, LLR L3998 Rossman, PSieve, Srsieve, PrimeGrid, LLR L4001 Willig, Srsieve, CRUS, LLR L4016 Bedenbaugh, PSieve, Srsieve, PrimeGrid, LLR L4021 Busse, PSieve, Srsieve, PrimeGrid, LLR L4031 Darney, PSieve, Srsieve, PrimeGrid, LLR L4034 Vanc, Srsieve, PrimeGrid, LLR L4036 Domanov1, PSieve, Srsieve, CRUS, LLR L4043 Niedbala, PSieve, Srsieve, PrimeGrid, LLR L4045 Chew, PSieve, Srsieve, PrimeGrid, LLR L4061 Lee, PSieve, Srsieve, PrimeGrid, LLR L4064 Davies, Srsieve, CRUS, LLR L4082 Zimmerman, PSieve, Srsieve, PrimeGrid, LLR L4083 Charrondiere, PSieve, Srsieve, PrimeGrid, LLR L4087 Kecic, PSieve, Srsieve, PrimeGrid, LLR L4088 Graeber, PSieve, Srsieve, PrimeGrid, LLR L4099 Nietering, PSieve, Srsieve, PrimeGrid, LLR L4103 Klopffleisch, Srsieve, PrimeGrid, LLR L4108 Yoshioka, PSieve, Srsieve, PrimeGrid, LLR L4113 Batalov, PSieve, Srsieve, LLR L4114 Bubloski, PSieve, Srsieve, PrimeGrid, LLR L4119 Nelson3, PSieve, Srsieve, PrimeGrid, LLR L4139 Hawker, Srsieve, CRUS, LLR L4142 Batalov, CycloSv, EMsieve, PIES, LLR L4146 Schmidt1, Srsieve, PrimeGrid, LLR L4147 Mohacsy, PSieve, Srsieve, PrimeGrid, LLR L4148 Glatte, PSieve, Srsieve, PrimeGrid, LLR L4155 Jones4, PSieve, Srsieve, PrimeGrid, LLR L4159 Schulz5, Srsieve, PrimeGrid, LLR L4166 Kwok, PSieve, LLR L4185 Hoefliger, PSieve, Srsieve, PrimeGrid, LLR L4187 Schmidt2, Srsieve, CRUS, LLR L4189 Lawrence, Powell, Srsieve, CRUS, LLR L4190 Fnasek, PSieve, Srsieve, PrimeGrid, LLR L4197 Kumagai1, Srsieve, PrimeGrid, LLR L4198 Rawles, PSieve, Srsieve, PrimeGrid, LLR L4200 Harste, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4201 Brown1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4203 Azarenko, PSieve, Srsieve, PrimeGrid, LLR L4204 Winslow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4205 Bischof, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4207 Jaamann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4208 Farrow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4210 Cholt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4226 Heath, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4231 Schneider1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4245 Greer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4249 Larsson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4250 Vogt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4252 Nietering, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4256 Gniesmer, PSieve, Srsieve, PrimeGrid, LLR L4267 Batalov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4273 Rangelrooij, Srsieve, CRUS, LLR L4274 AhlforsDahl, Srsieve, PrimeGrid, LLR L4276 Borbely, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4285 Bravin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4286 Zimmerman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4289 Ito2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4293 Trunov, PSieve, Srsieve, PrimeGrid, LLR L4294 Kurtovic, Srsieve, CRUS, Prime95, LLR L4295 Splain, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4303 Thorson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4307 Keller1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4308 Matillek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4309 Kecic, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4314 DeThomas, PSieve, Srsieve, PrimeGrid, LLR L4316 Nilsson1, PSieve, Srsieve, PrimeGrid, LLR L4326 Steel, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4329 Okon, Srsieve, LLR L4334 Miller5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4340 Becker4, Srsieve, PrimeGrid, LLR L4341 Goetz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4342 Kaiser1, PolySieve, NewPGen, LLR L4343 Norton, PSieve, Srsieve, PrimeGrid, LLR L4347 Schaeffer, PSieve, Srsieve, PrimeGrid, LLR L4348 Burridge, Srsieve, PrimeGrid, LLR L4352 Fahlenkamp1, PSieve, Srsieve, PrimeGrid, LLR L4358 Tesarz, PSieve, Srsieve, PrimeGrid, LLR L4359 Andou, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4362 Mochizuki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4364 Steinbach, PSieve, Srsieve, PrimeGrid, LLR L4371 Schmidt2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4380 Rix, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4387 Davies, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4388 Mena, PSieve, Srsieve, PrimeGrid, LLR L4393 Veit1, Srsieve, CRUS, LLR L4395 Nilsson1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4398 Greer, Srsieve, PrimeGrid, LLR L4404 Stepnicka, PSieve, Srsieve, PrimeGrid, LLR L4405 Eckhard, Srsieve, LLR L4406 Mathers, PSieve, Srsieve, PrimeGrid, LLR L4408 Fricke, PSieve, Srsieve, PrimeGrid, LLR L4410 Andresson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4411 Leudesdorff, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4412 Simpson3, PSieve, Srsieve, PrimeGrid, LLR L4414 Falk, PSieve, Srsieve, PrimeGrid, LLR L4417 Rasp, PSieve, Srsieve, PrimeGrid, LLR L4424 Miyauchi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4425 Weber1, PSieve, Srsieve, PrimeGrid, LLR L4429 Lacroix, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4435 Larsson, Srsieve, PrimeGrid, LLR L4441 Miyauchi, PSieve, Srsieve, PrimeGrid, LLR L4444 Terber, Srsieve, CRUS, LLR L4445 Leudesdorff, PSieve, Srsieve, PrimeGrid, LLR L4454 Clark5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4456 Chambers2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4457 Geiger, PSieve, Srsieve, PrimeGrid, LLR L4459 Biscop, PSieve, Srsieve, PrimeGrid, LLR L4466 Falk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4472 Harvanek, Gcwsieve, MultiSieve, PrimeGrid, LLR L4476 Shane, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4477 Tennant, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4482 Mena, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4488 Vrontakis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4489 Szreter, PSieve, Srsieve, PrimeGrid, LLR L4490 Mazumdar, PSieve, Srsieve, PrimeGrid, LLR L4499 Ohsugi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4501 Eskam1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4504 Sesok, NewPGen, LLR L4505 Lind, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4506 Propper, Batalov, CycloSv, EMsieve, PIES, Prime95, LLR L4510 Ming, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4511 Donovan1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4518 Primecrunch.com, Hedges, Srsieve, LLR L4521 Curtis, Srsieve, CRUS, LLR L4522 Lorsung, PSieve, Srsieve, PrimeGrid, LLR L4523 Mull, PSieve, Srsieve, PrimeGrid, LLR L4525 Kong1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4526 Schoefer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4527 Fruzynski, PSieve, Srsieve, PrimeGrid, LLR L4530 Reynolds1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4531 Butez, PSieve, Srsieve, PrimeGrid, LLR L4537 Mayer1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4544 Krauss, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4548 Sydekum, Srsieve, CRUS, Prime95, LLR L4549 Schick, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4550 Terry, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4552 Koski, PSieve, Srsieve, PrimeGrid, LLR L4559 Okazaki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4561 Propper, Batalov, CycloSv, Cyclo, EMsieve, PIES, LLR L4562 Donovan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4564 DeThomas, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4568 Vrontakis, PSieve, Srsieve, PrimeGrid, LLR L4582 Kinney, PSieve, Srsieve, PrimeGrid, LLR L4583 Rohmann, PSieve, Srsieve, PrimeGrid, LLR L4584 Goforth, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4585 Schawe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4591 Schwieger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4593 Mangio, PSieve, Srsieve, PrimeGrid, LLR L4595 Mangio, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4598 Connaughty, PSieve, Srsieve, PrimeGrid, LLR L4599 Loureiro, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4600 Simbarsky, PSieve, Srsieve, PrimeGrid, LLR L4609 Elgetz, PSieve, Srsieve, PrimeGrid, LLR L4620 Kinney, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4622 Jurach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4623 Dugger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4626 Iltus, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4645 McKibbon, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4649 Humphries, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4654 Voskoboynikov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4656 Beck, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4658 Maguin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4659 AverayJones, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4660 Snow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4664 Toledo, PSieve, Srsieve, PrimeGrid, LLR L4665 Szeluga, Kupidura, Banka, LLR L4666 Slade, PSieve, Srsieve, PrimeGrid, LLR L4667 Morelli, LLR L4668 Okazaki, Gcwsieve, MultiSieve, PrimeGrid, LLR L4669 Schwegler, Srsieve, PrimeGrid, LLR L4670 Drumm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4672 Slade, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4673 Okhrimouk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4675 Lind, Srsieve, PrimeGrid, LLR L4676 Maloney, Srsieve, PrimeGrid, PrimeSierpinski, LLR L4677 Provencher, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4683 Bird2, Srsieve, CRUS, LLR L4684 Sveen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4685 Masser, Srsieve, CRUS, LLR L4687 Campbell1, PSieve, Srsieve, PrimeGrid, LLR L4689 Gordon2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4690 Brandt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4691 Fruzynski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4692 Hajek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4694 Schapendonk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4695 Goudie, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4696 Plottel, PSieve, Srsieve, PrimeGrid, LLR L4697 Sellsted, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4699 Parsonnet, PSieve, Srsieve, PrimeGrid, LLR L4700 Liu4, Srsieve, CRUS, LLR L4701 Kalus, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4702 Charette, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4703 Pacini, PSieve, Srsieve, PrimeGrid, LLR L4704 Kurtovic, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4706 Kraemer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4710 Wiedemann, PSieve, Srsieve, PrimeGrid, LLR L4711 Closs, PSieve, Srsieve, PrimeGrid, LLR L4712 Gravemeyer, PSieve, Srsieve, PrimeGrid, LLR L4713 Post, PSieve, Srsieve, PrimeGrid, LLR L4715 Skinner1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4717 Wypych, PSieve, Srsieve, PrimeGrid, LLR L4718 Brown1, Gcwsieve, MultiSieve, PrimeGrid, LLR L4720 Gahan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4723 Lexut, PSieve, Srsieve, PrimeGrid, LLR L4724 Thonon, PSieve, Srsieve, PrimeGrid, LLR L4726 Miller7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4729 Wimmer1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4730 Bowe, PSieve, Srsieve, PrimeGrid, LLR L4732 Miller7, PSieve, Srsieve, PrimeGrid, LLR L4733 Brazier, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4737 Reinhardt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4738 Gelhar, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4740 Silva1, PSieve, Srsieve, PrimeGrid, LLR L4741 Wong, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4742 Schlereth, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4743 Plsak, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4745 Cavnaugh, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4746 Brech, PSieve, Srsieve, PrimeGrid, LLR L4747 Brech, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4752 Harvey2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4753 Riemann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4754 Calvin, PSieve, Srsieve, PrimeGrid, LLR L4755 Glatte, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4756 Dumange, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4757 Johnson9, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4758 Walling, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4760 Sipes, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4761 Romaidis, PSieve, Srsieve, PrimeGrid, LLR L4763 Guilleminot, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4764 McLean2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4765 Kumsta, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4772 Bird1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4773 Tohmola, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4774 Boehm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4775 Steinbach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4776 Lee7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4783 Marini, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4784 Bertolotti, Gcwsieve, MultiSieve, PrimeGrid, LLR L4786 Sydekum, Srsieve, CRUS, LLR L4787 Sunderland, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4789 Kurtovic, Srsieve, Prime95, LLR L4791 Vaisanen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4793 Koski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4795 Lawson2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4796 White2, PSieve, Srsieve, PrimeGrid, LLR L4799 Vanderveen1, LLR L4800 Doenges, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4802 Jones5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4806 Rajala, Srsieve, CRUS, LLR L4807 Tsuji, Srsieve, PrimeGrid, LLR L4808 Kaiser1, PolySieve, LLR L4809 Bocan, Srsieve, PrimeGrid, LLR L4810 Dhuyvetters, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4814 Telesz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4815 Kozisek, PSieve, Srsieve, PrimeGrid, LLR L4816 Doenges, PSieve, Srsieve, PrimeGrid, LLR L4819 Inci, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4821 Svantner, PSieve, Srsieve, PrimeGrid, LLR L4822 Magklaras, PSieve, Srsieve, PrimeGrid, LLR L4823 Helm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4824 Allivato, PSieve, Srsieve, PrimeGrid, LLR L4826 Soraku, PSieve, Srsieve, PrimeGrid, LLR L4830 Eisler1, PSieve, Srsieve, PrimeGrid, LLR L4832 Meekins, Srsieve, CRUS, LLR L4834 Helm, PSieve, Srsieve, PrimeGrid, LLR L4835 Katzur, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4837 Hines, Srsieve, CRUS, LLR L4840 Ylijoki, PSieve, Srsieve, PrimeGrid, LLR L4841 Baur, PSieve, Srsieve, PrimeGrid, LLR L4842 Smith11, PSieve, Srsieve, PrimeGrid, LLR L4843 Hutchins, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4844 Valentino, PSieve, Srsieve, PrimeGrid, LLR L4848 Adamec, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4849 Burt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4850 Jones5, PSieve, Srsieve, PrimeGrid, LLR L4851 Schioler, PSieve, Srsieve, PrimeGrid, LLR L4854 Gory, PSieve, Srsieve, PrimeGrid, LLR L4858 Koriabine, PSieve, Srsieve, PrimeGrid, LLR L4859 Wang4, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4861 Thonon, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4864 Freihube, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4868 Bergmann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4869 Ogata, PSieve, Srsieve, PrimeGrid, LLR L4870 Wharton, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4871 Gory, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4875 Parsonnet, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4876 Tennant, Srsieve, CRUS, LLR L4877 Cherenkov, Srsieve, CRUS, LLR L4879 Propper, Batalov, Srsieve, LLR L4880 Goossens, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4881 Bonath, Srsieve, LLR L4884 Somer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4889 Hundhausen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4892 Hewitt1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4893 Little, PSieve, Srsieve, PrimeGrid, LLR L4898 Kozisek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4899 Schioler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4903 Laurent1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4904 Dunchouk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4905 Niegocki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4907 Reinhardt, PSieve, Srsieve, PrimeGrid, LLR L4909 Hall, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4911 Calveley, Srsieve, CRUS, LLR L4914 Bishop_D, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4917 Corlatti, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4918 Weiss1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4920 Walsh, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4922 Bulba, Sesok, LLR L4923 Koriabine, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4925 Korolev, Srsieve, CRUS, LLR L4926 Shenton, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4927 Smith12, Srsieve, SRBase, CRUS, LLR L4928 Doornink, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4929 Givoni, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4930 Shintani, PSieve, Srsieve, PrimeGrid, LLR L4932 Schroeder2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4933 Jacques, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4935 Simard, PSieve, Srsieve, PrimeGrid, LLR L4937 Ito2, Srsieve, PrimeGrid, LLR L4939 Coscia, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4942 Matheis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4944 Schori, LLR2, PSieve, Srsieve, PrimeGrid, LLR L4945 Meili, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4948 SchwartzLowe, PSieve, Srsieve, PrimeGrid, LLR L4951 Niegocki, PSieve, Srsieve, PrimeGrid, LLR L4954 Romaidis, Srsieve, PrimeGrid, LLR L4955 Grosvenor, Srsieve, CRUS, LLR L4956 Merrylees, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4958 Shenton, PSieve, Srsieve, PrimeGrid, LLR L4959 Deakin, PSieve, Srsieve, PrimeGrid, LLR L4960 Kaiser1, NewPGen, TPS, LLR L4962 Baur, Srsieve, NewPGen, LLR L4963 Mortimore, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4964 Doescher, GFNSvCUDA, GeneFer, LLR L4965 Propper, LLR L4968 Kaczala, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4970 Michael, PSieve, Srsieve, PrimeGrid, LLR L4972 Greer, Gcwsieve, MultiSieve, PrimeGrid, LLR L4973 Landrum, PSieve, Srsieve, PrimeGrid, LLR L4975 Thompson5, Srsieve, CRUS, LLR L4976 Propper, Batalov, Gcwsieve, LLR L4977 Miller8, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4979 Matheis, PSieve, Srsieve, PrimeGrid, LLR L4980 Poon1, PSieve, Srsieve, PrimeGrid, LLR L4981 MartinezCucalon, PSieve, Srsieve, PrimeGrid, LLR L4984 Hemsley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4985 Veit, Srsieve, CRUS, LLR L4987 Canossi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4988 Harris3, PSieve, Srsieve, PrimeGrid, LLR L4990 Heindl, PSieve, Srsieve, PrimeGrid, LLR L4997 Gardner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4999 Andrews1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5001 Mamonov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5002 Kato, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5005 Hass, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5007 Faith, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5008 Niegocki, Srsieve, PrimeGrid, LLR L5009 Jungmann, Srsieve, LLR L5011 Strajt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5013 Wypych, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5014 Strokov, PSieve, Srsieve, PrimeGrid, LLR L5016 NebredaJunghans, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5018 Nielsen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5019 Ayiomamitis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5020 Eikelenboom, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5021 Svantner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5022 Manz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5023 Schulz6, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5024 Schumacher, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5025 Lexut, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5027 Moudy, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5029 Krompolc, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5030 Calvin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5031 Schumacher, PSieve, Srsieve, PrimeGrid, LLR L5033 Ni, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5036 Jung2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5037 Diepeveen, Underwood, PSieve, Srsieve, Rieselprime, LLR L5039 Gilliland, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5041 Wallbaum, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5043 Vanderveen1, Propper, LLR L5044 Bergelt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5047 Little, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5051 Veit, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5053 Yoshigoe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5056 Chu, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5057 Hauhia, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5061 Cooper5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5063 Wendelboe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5067 Tirkkonen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5068 Silva1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5069 Friedrichsen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5070 Millerick, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5071 McLean2, Srsieve, CRUS, LLR L5072 Romaidis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5076 Atnashev, Srsieve, PrimeGrid, LLR L5077 Martinelli, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5078 McDonald4, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5079 Meditz, PSieve, Srsieve, PrimeGrid, LLR L5080 Gahan, GFNSvCUDA, PrivGfnServer, LLR L5081 Howell, Srsieve, PrimeGrid, LLR L5083 Pickering, Srsieve, PrimeGrid, LLR L5084 Yagi, PSieve, Srsieve, PrimeGrid, LLR L5085 Strajt, PSieve, Srsieve, PrimeGrid, LLR L5087 Coscia, PSieve, Srsieve, PrimeGrid, LLR L5088 Hall1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5089 MARSIN, Srsieve, CRUS, LLR L5090 Jourdan, PSieve, Srsieve, PrimeGrid, LLR L5094 Th�mmler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5099 Lobring, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5100 Stephens, PSieve, Srsieve, PrimeGrid, LLR L5101 Candido, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5102 Liu6, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5104 Gahan, LLR2, NewPGen, LLR L5105 Helm, LLR2, Srsieve, PrivGfnServer, LLR L5106 Glennie, PSieve, Srsieve, PrimeGrid, LLR L5110 Provencher, PSieve, Srsieve, PrimeGrid, LLR L5112 Vanderveen1, Srsieve, CRUS, LLR L5115 Doescher, LLR L5117 Trunov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5120 Greer, LLR2, PrivGfnServer, LLR L5122 Tennant, LLR2, PrivGfnServer, LLR L5123 Propper, Batalov, EMsieve, LLR L5125 Tirkkonen, PSieve, Srsieve, PrimeGrid, LLR L5126 Warach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5127 Kemenes, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5129 Veit, Srsieve, PrimeGrid, LLR L5130 Jourdan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5134 Cooper5, PSieve, Srsieve, PrimeGrid, LLR L5139 Belozersky, PSieve, Srsieve, PrimeGrid, LLR L5143 Dickinson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5144 McNary, PSieve, Srsieve, PrimeGrid, LLR L5155 Harju, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5156 Dinkel, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5157 Asano, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5158 Zuschlag, PSieve, Srsieve, PrimeGrid, LLR L5159 Huetter, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5161 Greer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5162 Th�mmler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5166 Jaros1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5167 Gelhar, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5168 Hawkinson, PSieve, Srsieve, PrimeGrid, LLR L5169 Atnashev, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5171 Brown1, LLR2, Srsieve, PrimeGrid, LLR L5172 McNary, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5173 Bishop_D, PSieve, Srsieve, PrimeGrid, LLR L5174 Scalise, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5175 Liiv, PSieve, Srsieve, Rieselprime, LLR L5176 Early, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5177 Tapper, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5178 Larsson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5179 Okazaki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5180 Laluk, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5181 Atnashev, LLR2, Srsieve, PrimeGrid, LLR L5183 Winskill1, PSieve, Srsieve, PrimeGrid, 12121search, LLR L5184 Byerly, PSieve, Srsieve, NPLB, LLR L5185 Elgetz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5186 Anonymous, GFNSvCUDA, GeneFer, AthGFNSieve, United, PrimeGrid, LLR L5188 Wong, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5189 Jackson1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5191 Kaiser1, NewPGen, LLR L5192 Anonymous, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5194 Jonas, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5195 Ridgway, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5196 Sielemann, Srsieve, CRUS, LLR L5197 Propper, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5198 Elgetz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5199 Romaidis, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5200 Terry, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5201 Ford, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5202 Molne, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5203 Topham, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5205 Zuschlag, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5206 Wiseler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5207 Atnashev, LLR2, PrivGfnServer, LLR L5208 Schnur, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5210 Brech, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5211 Orpen1, Srsieve, CRUS, LLR L5214 Dinkel, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5215 Hawkinson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5216 Brazier, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5217 Wiseler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5220 Jones4, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5223 Vera, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5226 Brown1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5228 Jacques, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5229 Karpenko, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5230 Tapper, LLR2, Srsieve, PrimeGrid, LLR L5231 Veit, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5232 Bliedung, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5233 Sipes, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5234 Greeley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5235 Karpinski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5236 Shenton, LLR2, PSieve, Srsieve, PrivGfnServer, PrimeGrid, LLR L5237 Schwieger, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5238 Jourdan, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5239 Strajt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5242 Krompolc, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5246 Vaisanen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5248 Delgado, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5249 Racanelli, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5250 Nakamura, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5253 Burt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5254 Gerstenberger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5256 Snow, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5260 Ostaszewski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5261 Kim5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5262 Clark5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5263 Ito2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5264 Cholt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5265 Fleischman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5266 Sheridan, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5267 Schnur, LLR2, Srsieve, PrimeGrid, LLR L5269 Clemence, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5270 Hennebert, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5272 Conner, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5273 McGonegal, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5275 Templin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5276 Schawe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5277 McDevitt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5278 Nose, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5279 Schick, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5282 Somer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5283 Hua, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5284 Fischer1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5285 Merrylees, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5286 Reynolds1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5287 Thonon, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5288 Heindl, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5290 Cooper5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5294 Hewitt1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5295 Gilliland, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5296 Piaive, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5297 Nakamura, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5298 Kaczmarek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5299 Corlatti, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5300 Hajek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5301 Harju, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5302 Davies, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5305 Thanry, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5307 Bauer2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5308 Krauss, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5309 Bishop_D, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5310 Hubbard, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5311 Reich, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5312 Tyndall, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5313 Barnes, PSieve, Srsieve, Rieselprime, LLR L5314 Satoh, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5315 Dec, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5316 Walsh, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5317 Freeze, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5318 Ruber, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5319 Abbey, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5320 Niegocki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5321 Dark, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5322 Monnin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5323 Chan1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5324 Boehm, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5325 Drager, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5326 Deakin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5327 Shenton, LLR2, Srsieve, LLR L5332 Mizusawa, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5334 Jones6, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5335 Harvey1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5336 Leblanc, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5337 Kawamura1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5338 Deakin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5342 Rodenkirch, Srsieve, CRUS, LLR L5343 Tajika, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5344 Lowe1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5345 Johnson8, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5346 Polansky, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5348 Adam, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5350 McDevitt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5352 Eklof, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5353 Belolipetskiy, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5354 Doornink, NewPGen, OpenPFGW, LLR L5355 Henriksson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5356 Hsu2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5358 Gmirkin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5359 Ridgway, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5360 Leitch, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5361 Schneider6, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5362 Domanov1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5364 Blyth, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5366 Michael, Srsieve, CRUS, LLR L5367 Hsu2, Srsieve, CRUS, LLR L5368 Valentino, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5369 Schnur, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5370 Piotrowski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5372 Vitiello, Srsieve, CRUS, LLR L5373 Baranchikov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5375 Blanchard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5376 Ranch, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5377 Yasuhisa, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5378 Seeley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5379 Smith4, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5380 Campulka, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5381 Meppiel, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5382 Bulanov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5384 Riemann, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5387 Johns, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5390 Lemkau, Srsieve, CRUS, LLR L5391 Black1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5392 McDonald4, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5393 Lu, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5395 Early, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5399 Kolesov, LLR L5400 Hefer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5401 Champ, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5402 Greer, LLR2, Gcwsieve, MultiSieve, PrimeGrid, LLR L5403 Slade1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5404 Wiseler, LLR2, Srsieve, PrimeGrid, LLR L5405 Gerstenberger, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5406 Jaros, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5407 Mahnken, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5408 Kreth, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5409 Lu, Srsieve, CRUS, LLR L5410 Anonymous, Srsieve, CRUS, LLR L5412 Poon1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5413 David1, Srsieve, CRUS, LLR L5414 Mollerus, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5416 Anonymous, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5418 Pollak, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5421 Iwasaki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5425 Lichtenwimmer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5426 Gilliland, Srsieve, CRUS, LLR L5427 Hewitt1, LLR2, Srsieve, PrimeGrid, LLR L5429 Meditz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5432 Tatsianenka, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5433 Hatanaka, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5434 Parsonnet, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5435 Murphy, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5437 Rijfers, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5438 Tang, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5439 Batalov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5440 McGonegal, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5441 Cherenkov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5442 Moreira, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5443 Venjakob, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5444 Platz, LLR2, Srsieve, PrimeGrid, LLR L5448 Rubin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5449 Reinhardt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5450 Mizusawa, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5451 Wilkins, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5452 Morera, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5453 Slaets, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5456 Gundermann, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5457 Iwasaki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5459 Sekanina, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5460 Headrick, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5461 Anonymous, LLR2, Srsieve, PrimeGrid, LLR L5462 Raimist, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5463 Goforth, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5464 Pickering, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5465 Hubbard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5466 Furushima, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5467 Tamai1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5470 Latge, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5471 Dunchouk, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5472 Ready, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5473 StPierre, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5476 Steinbach, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5477 Meador, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5480 Boddener, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5482 Raimist, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5485 Mahnken, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5488 Kecic, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5491 Piaive, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5492 Slaets, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5493 Liu6, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5497 Goetz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5499 Osada, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5500 Racanelli, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5501 Seeley, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5502 Floyd, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5503 Soule, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5504 Cerny, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5505 Chovanec, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5507 Brandt2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5508 Gauch, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5509 Nietering, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5512 Akesson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5514 Cavnaugh, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5516 Piesker, PSieve, Srsieve, NPLB, LLR L5517 Cavecchia, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5518 Eisler1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5523 Sekanina, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5524 Matillek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5526 Kickler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5527 Doornink, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5529 Baur1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5530 Matillek, LLR2, Srsieve, PrimeGrid, LLR L5531 Koci, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5532 Morera, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5534 Cervelle, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5535 Skahill, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5536 Bennett1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5537 Schafer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5540 Brown6, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5541 Parker, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5543 Lucendo, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5544 Byerly, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5545 Kruse, PSieve, Srsieve, NPLB, LLR L5546 Steinwedel, PSieve, Srsieve, NPLB, LLR L5547 Hoonoki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5548 Steinberg, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5549 Zhang, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5550 Provencher, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5553 DAmico, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5554 Lucendo, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5555 Parangalan, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5556 Javens, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5557 Drake, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5558 Lee7, LLR2, Srsieve, PrimeGrid, LLR L5559 Roberts, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5560 Amberg, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5562 Cheung, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5563 Akesson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5564 Lee7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5565 Bailey, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5566 Latge, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5567 Marshall1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5568 Schioler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5569 Michael, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5570 Arnold, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5571 Williams7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5572 Sveen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5573 Friedrichsen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5574 Laboisne, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5575 Blanchard, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5576 Amorim, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5577 Utebaev, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5578 Jablonski1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5579 Cox2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5581 Pickles, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5582 Einvik, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5583 Tanaka3, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5584 Barr, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5585 Faith, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5586 Vultur, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5587 AverayJones, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5588 Shi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5589 Kupka, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5590 Schumacher, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5592 Shintani, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5594 Brown7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5595 Hyvonen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5596 Kozisek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5600 Steinberg, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5601 Sato1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5604 Takahashi2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5606 Clark, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5607 Rodermond, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5608 Pieritz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5609 Sielemann, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5610 Katzur, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5611 Smith13, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5612 Lugowski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5613 Delisle, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5614 Becker2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5615 Dodd, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5616 Miller7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5617 Sliwicki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5618 Wilson4, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5619 Piotrowski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5620 He, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5621 Millerick, LLR2, Srsieve, PrimeGrid, LLR L5624 Farrow, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5625 Sellsted, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5626 Clark, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5627 Bulanov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5629 Dickinson, Srsieve, CRUS, LLR L5631 Mittelstadt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5632 Marler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5634 Gao, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5636 Santosa, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5637 Bestor, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5638 Piskun, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5639 Cavecchia, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5640 Xu2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5641 Kwok, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5645 Orpen1, SRBase, LLR L5646 Dickey, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5647 Soraku, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5648 York, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5649 Dietsch, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5650 Ketamino, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5651 Lexut, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5652 Wilson5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5653 Beck1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5655 Hoffman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5656 McAdams, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5657 Alden, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5658 Sloan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5662 OMalley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5663 Li5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5666 Wendelboe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5667 Totty, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5668 Finn, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5670 Heindl1, Srsieve, CRUS, LLR L5671 Rauh, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5676 Fnasek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5679 Shane, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5682 Floyd, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5683 Glatte, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5685 Bestor, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5686 Pistorius, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5687 Wellck, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5690 Eldred, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5693 Huan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5694 Petersen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5696 Earle, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5697 Black2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5698 Stenschke, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5703 Koudelka, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5704 Hampicke, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5705 Wharton, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5706 Wallbaum, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5707 Johns, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5710 Hass, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5711 Gingrich1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5712 Stahl, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5714 Loucks, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5715 Calvin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5718 Ketamino, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5720 Trigueiro, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5721 Fischer1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5722 Rickard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5723 Fergusson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5724 Pilz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5725 Gingrich1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5726 Noxe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5727 Headrick, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5731 Michael, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5732 Monroe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5735 Kobrzynski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5736 Riva, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5738 Schaeffer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5740 Chu, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5742 Steinmetz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5745 Saladin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5746 Meister1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5748 Norbert, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5749 Gahan, LLR2, LLR L5750 Shi, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5752 Wissel, LLR L5754 Abad, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5755 Kwiatkowski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5756 Wei, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5758 Bishop1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5763 Williams7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5764 Tirkkonen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5765 Propper, Gcwsieve, LLR L5766 Takahashi2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5767 Xu2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5768 Lewis2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5769 Welsh1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5770 Silva1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5771 Becker-Bergemann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5772 Tarson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5773 Lugowski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5774 Chambers, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5775 Garambois, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5776 Anonymous, LLR2, PSieve, Srsieve, United, PrimeGrid, LLR L5778 Sarok, Srsieve, CRUS, LLR L5780 Blanchard, Srsieve, CRUS, LLR L5782 Kang, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5783 Bishop1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5784 Coplin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5787 Johnson10, Srsieve, CRUS, LLR L5789 Williams8, LLR L5790 Kolencik, Srsieve, CRUS, LLR L5791 Rindahl, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5793 Wang5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5794 Morgan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5796 Hall1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5797 Ivanovski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5798 Schoeberl, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5799 Lehmann1, LLR2, Srsieve, PrimeGrid, LLR L5802 Borgerding, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5803 Kwok, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5804 Bowe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5805 Belozersky, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5807 Krauss, Srsieve, PrimeGrid, PRST, LLR L5808 Propper, Batalov, PSieve, Srsieve, LLR L5809 Zhao, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5810 Meister1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5811 Dettweiler, LLR2, Srsieve, CRUS, LLR L5812 Song, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5814 Chodzinski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5816 Guenter, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5817 Kilstromer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5818 Belozersky, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5819 Schmidt2, LLR2, PSieve, Srsieve, NPLB, LLR L5820 Hoonoki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5821 Elmore, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5825 Norton, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5826 Morávek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5827 Yasuhisa, TwinGen, NewPGen, TPS, LLR L5829 Dickinson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5830 McLean2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5831 Chapman2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5833 Russell2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5834 Roberts, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5836 Becker2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5837 Lin1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5839 Stewart1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5841 Yarham, Srsieve, CRUS, LLR L5842 Steenerson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5843 Vink, Kruse, Kwok, TwinGen, NewPGen, TPS, LLR L5844 Kadowaki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5847 Eldredge, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5848 Bressani, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5851 Liskay, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5852 Kwiatkowski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5853 Simard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5854 Lehmann1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5855 Williams9, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5858 GervaisLavoie, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5860 Joseph, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5862 Oppliger, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5863 Duvinage, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5864 Amberg, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5865 Mendrik1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5866 Kim3, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5869 Arnold, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5870 Bodlina, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5871 Yakubchak, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5875 Monroe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5878 Klinkenberg, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5879 Sanner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5880 Gehrke, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5881 Medcalf, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5882 Basil, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5888 Presler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5894 Tamai1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5904 Rix, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5913 Burtner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5923 Ryabchikov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5929 Bauer2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5938 Philip, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5945 Bush, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5948 Meuler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5956 Garnier1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5960 Jayaputera, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5961 Carlier, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5969 Kang, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5971 Da_Mota, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5974 Presler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5977 Brockerhoff, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5984 Desbonnet, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5986 Wolfe1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5989 Williams10, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5995 Lee10, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5997 Smith15, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5998 Da_Mota, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6005 Overstreet, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6006 Propper, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6010 Chaney, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6011 Mehner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6015 Uehara1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6019 Anonymous, GFNSvCUDA, GeneFer, AthGFNSieve, Rechenkraft, PrimeGrid, LLR L6026 Bruner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6027 Johnson10, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6029 Schmidt2, Kwok, LLR2, TwinGen, NewPGen, TPS, LLR L6033 Tang3, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6035 Garrison1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6036 Hogan1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6038 Schafer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6040 Garland, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6042 Fink, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6043 Podsada, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6044 Chesnut, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6047 Wheeler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6049 Chen4, LLR L6057 Kim7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6058 StGeorge, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6064 Adrian, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6065 Yakubchak1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6067 O’Hara, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6070 Mumper, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6072 Lundström, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6073 Rojas, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6075 Chodzinski, LLR2, Srsieve, PrimeGrid, LLR L6076 Yakubchak2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6077 Vink, Schmidt2, Kwok, TwinGen, NewPGen, TPS, LLR L6078 Zhaozheng, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6080 Sondergard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6082 Mckinley, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6083 Yagi, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6084 Criswell, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6085 Granowski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6086 Pastierik, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6087 Osaki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6088 Abad, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6089 Lynch, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6090 Champ, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6091 Paniczko, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6092 Boerner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6093 Wagner1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6094 Skendelis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6095 Stach, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6096 Biggs, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6102 Yakubchak3, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6123 Mukanos, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6129 Slade2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6159 Weinberg, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6163 Drozd, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6166 Carquillat, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6170 Liang, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6176 Shriner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6177 Mostad, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6178 Hua, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6182 Jans, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6183 Lack, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6185 Abromeit, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6187 Deram, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6189 Mohacsy, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6201 Lein, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6202 Stach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6204 Probst, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6205 McDonald3, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6207 Allen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6215 Vykouril, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6217 Keskitalo, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6220 Sandhop, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6221 Wu2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6227 Zhao1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6229 Dean1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6230 Gnann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6235 Rosick, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6236 Neujahr, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6237 Steffens, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6238 Pabsch, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6245 Perek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6248 Hui, Srsieve, CRUS, LLR L6249 Puada, MultiSieve, PRST, LLR L6250 Gulliver, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6252 Carlin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6255 Kim8, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6256 Sariyar, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6259 Baker2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6260 Cui, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR M Morain MM Morii MP1 Durant, GIMPS, GpuOwl O Oakes p3 Dohmen, OpenPFGW p8 Caldwell, OpenPFGW p12 Water, OpenPFGW p16 Heuer, OpenPFGW p21 Anderson, Robinson, OpenPFGW p41 Luhn, OpenPFGW p44 Broadhurst, OpenPFGW p49 Berg, OpenPFGW p54 Broadhurst, Water, OpenPFGW p58 Glover, Oakes, OpenPFGW p65 DavisK, Kuosa, OpenPFGW p85 Marchal, Carmody, Kuosa, OpenPFGW p137 Rodenkirch, MultiSieve, OpenPFGW p148 Yama, Noda, Nohara, NewPGen, MatGFN, PRP, OpenPFGW p151 Kubota, NewPGen, OpenPFGW p155 DavisK, NewPGen, OpenPFGW p158 Paridon, NewPGen, OpenPFGW p168 Cami, OpenPFGW p170 Wu_T, Primo, OpenPFGW p189 Bohanon, LLR, OpenPFGW p193 Irvine, Broadhurst, Primo, OpenPFGW p235 Bedwell, OpenPFGW p236 Cooper, NewPGen, PRP, OpenPFGW p247 Bonath, Srsieve, CRUS, LLR, OpenPFGW p252 Oakes, NewPGen, OpenPFGW p255 Siemelink, Srsieve, CRUS, OpenPFGW p259 Underbakke, GenefX64, AthGFNSieve, OpenPFGW p268 Rodenkirch, Srsieve, CRUS, OpenPFGW p269 Zhou, OpenPFGW p279 Domanov1, Srsieve, Rieselprime, Prime95, OpenPFGW p286 Batalov, Srsieve, OpenPFGW p290 Domanov1, Fpsieve, PrimeGrid, OpenPFGW p295 Angel, NewPGen, OpenPFGW p296 Kaiser1, Srsieve, LLR, OpenPFGW p301 Winskill1, Fpsieve, PrimeGrid, OpenPFGW p302 Gasewicz, Fpsieve, PrimeGrid, OpenPFGW p308 DavisK, Underwood, NewPGen, PrimeForm_egroup, OpenPFGW p309 Yama, GenefX64, AthGFNSieve, PrimeGrid, OpenPFGW p310 Hubbard, Gcwsieve, MultiSieve, PrimeGrid, OpenPFGW p312 Doggart, Fpsieve, PrimeGrid, OpenPFGW p314 Hubbard, GenefX64, AthGFNSieve, PrimeGrid, OpenPFGW p332 Johnson6, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p334 Goetz, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p338 Tomecko, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p342 Trice, OpenPFGW p346 Burt, Fpsieve, PrimeGrid, OpenPFGW p350 Koen, Gcwsieve, GenWoodall, OpenPFGW p355 Domanov1, Srsieve, CRUS, OpenPFGW p360 Kinne, Exoo, OpenPFGW p362 Snow, Fpsieve, PrimeGrid, OpenPFGW p363 Batalov, OpenPFGW p364 Batalov, NewPGen, OpenPFGW p365 Poplin, Srsieve, CRUS, OpenPFGW p373 Morelli, OpenPFGW p378 Batalov, Srsieve, CRUS, LLR, OpenPFGW p379 Batalov, CycloSv, Cyclo, EMsieve, PIES, OpenPFGW p382 Oestlin, NewPGen, OpenPFGW p384 Booker, OpenPFGW p387 Zimmerman, GeneFer, AthGFNSieve, PrimeGrid, OpenPFGW p391 Keiser, NewPGen, OpenPFGW p394 Fukui, MultiSieve, OpenPFGW p395 Angel, Augustin, NewPGen, OpenPFGW p396 Ikisugi, OpenPFGW p398 Stocker, OpenPFGW p405 Propper, Cksieve, OpenPFGW p406 DavisK, Luhn, Underwood, NewPGen, PrimeForm_egroup, OpenPFGW p407 Lamprecht, Luhn, OpenPFGW p408 Batalov, PolySieve, OpenPFGW p409 Nielsen1, OpenPFGW p413 Morimoto, OpenPFGW p414 Naimi, OpenPFGW p416 Monnin, LLR2, PrivGfnServer, OpenPFGW p417 Tennant, LLR2, PrivGfnServer, OpenPFGW p418 Sielemann, LLR2, PrivGfnServer, OpenPFGW p419 Bird1, LLR2, PrivGfnServer, OpenPFGW p421 Gahan, LLR2, PrivGfnServer, OpenPFGW p422 Kaiser1, PolySieve, OpenPFGW p423 Propper, Batalov, EMsieve, OpenPFGW p425 Propper, MultiSieve, OpenPFGW p426 Schoeler, NewPGen, OpenPFGW p427 Niegocki, GeneFer, AthGFNSieve, PrivGfnServer, OpenPFGW p428 Trunov, GeneFer, AthGFNSieve, PrivGfnServer, OpenPFGW p430 Propper, Batalov, NewPGen, OpenPFGW p431 Piesker, Srsieve, CRUS, OpenPFGW p433 Dettweiler, LLR2, Srsieve, CRUS, OpenPFGW p434 Doornink, MultiSieve, OpenPFGW p435 Dettweiler, LLR2, PSieve, Srsieve, NPLB, OpenPFGW p436 Schwieger, OpenPFGW p437 Propper, Batalov, EMsieve, PIES, OpenPFGW p439 Trice, MultiSieve, OpenPFGW p440 Batalov, EMsieve, OpenPFGW p441 Wu_T, CM, OpenPFGW p442 Presler, MultiSieve, PrimeGrid, PRST, OpenPFGW p443 Brochtrup, Srsieve, CRUS, OpenPFGW p444 Kadowaki, MultiSieve, PrimeGrid, PRST, OpenPFGW p445 Merrylees, MultiSieve, PrimeGrid, PRST, OpenPFGW p446 Greer, MultiSieve, PrimeGrid, PRST, OpenPFGW p447 Wallbaum, MultiSieve, PrimeGrid, PRST, OpenPFGW p448 Little, MultiSieve, PrimeGrid, PRST, OpenPFGW p449 Rodriguez2, OpenPFGW PM Mihailescu SB10 Agafonov, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB11 Sunde, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB12 Szabolcs, Srsieve, SoBSieve, ProthSieve, Ksieve, PrimeGrid, LLR, SB SB6 Sundquist, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB7 Team_Prime_Rib, SoBSieve, ProthSieve, Ksieve, PRP, SB SB8 Gordon, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB9 Hassler, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SG Slowinski, Gage WD Williams, Dubner, Cruncher WM Morain, Williams x13 Renze x16 Doumen, Beelen, Unknown x20 Irvine, Broadhurst, Water x23 Broadhurst, Water, Renze, OpenPFGW, Primo x24 Jarai_Z, Farkas, Csajbok, Kasza, Jarai, Unknown x25 Broadhurst, Water, OpenPFGW, Primo x28 Iskra x33 Carmody, Broadhurst, Water, Renze, OpenPFGW, Primo x36 Irvine, Carmody, Broadhurst, Water, Renze, OpenPFGW, Primo x38 Broadhurst, OpenPFGW, Primo x39 Broadhurst, Dubner, Keller, OpenPFGW, Primo x44 Zhou, Unknown x45 Batalov, OpenPFGW, Primo, Unknown x46 Otremba, Fpsieve, OpenPFGW, Unknown x47 Szekeres, Magyar, Gevay, Farkas, Jarai, Unknown x48 Asuncion, Allombert, Unknown x49 Facq, Asuncion, Allombert, Unknown x50 Propper, GFNSvCUDA, GeneFer, Unknown x51 Lexut1, Srsieve, CRUS, Unknown x52 Batalov, PolySieve, OpenPFGW, Unknown x54 Gallot, GeneFer, Unknown Y Young