General Description

The LM101A series are general purpose operational amplifiers which feature improved performance over industry standards like the LM709. Advanced processing techniques make possible an order of magnitude reduction in input currents, and a redesign of the biasing circuitry reduces the temperature drift of input current. Improved specifications include:

- Offset voltage 3 mV maximum over temperature (LM101A/LM201A)
- Input current 100 nA maximum over temperature (LM101A/LM201A)
- Offset current 20 nA maximum over temperature (LM101A/LM201A)
- Guaranteed drift characteristics
- Offsets guaranteed over entire common mode and supply voltage ranges
- Slew rate of 10V/μs as a summing amplifier

This amplifier offers many features which make its application nearly foolproof: overload protection on the input and output, no latch-up when the common mode range is exceeded, and freedom from oscillations and compensation with a single 30 pF capacitor. It has advantages over internally compensated amplifiers in that the frequency compensation can be tailored to the particular application. For example, in low frequency circuits it can be overcompensated for increased stability margin. Or the compensation can be optimized to give more than a factor of ten improvement in high frequency performance for most applications.

In addition, the device provides better accuracy and lower noise in high impedance circuits. The low input currents also make it particularly well suited for long interval integrators or timers, sample and hold circuits and low frequency waveform generators. Further, replacing circuits where matched transistor pairs buffer the inputs of conventional IC op amps, it can give lower offset voltage and a drift at a lower cost.

The LM101A is guaranteed over a temperature range of -55°C to +125°C, the LM201A from -25°C to +85°C, and the LM301A from 0°C to +70°C.

Connection Diagrams (Top View)

-Dual-In-Line Package

-Ceramic Flatpack Package

-Metal Can Package

-Note: Pin 4 connected to case.

*Available per JM39510/10103.
Absolute Maximum Ratings
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>LM101A/LM201A</th>
<th>LM301A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>±22V</td>
<td>±18V</td>
</tr>
<tr>
<td>Differential Input Voltage</td>
<td>±30V</td>
<td>±30V</td>
</tr>
<tr>
<td>Input Voltage (Note 1)</td>
<td>±15V</td>
<td>±15V</td>
</tr>
<tr>
<td>Output Short Circuit Duration (Note 2)</td>
<td>Continuous</td>
<td>Continuous</td>
</tr>
<tr>
<td>Operating Ambient Temp. Range</td>
<td>55°C to 125°C (LM101A)</td>
<td>0°C to 70°C</td>
</tr>
<tr>
<td></td>
<td>25°C to 85°C (LM201A)</td>
<td></td>
</tr>
<tr>
<td>TJ Max</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-Package</td>
<td>150°C</td>
<td>100°C</td>
</tr>
<tr>
<td>N-Package</td>
<td>150°C</td>
<td>100°C</td>
</tr>
<tr>
<td>J-Package</td>
<td>150°C</td>
<td>100°C</td>
</tr>
<tr>
<td>Power Dissipation at TJ = 25°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-Package (Still Air)</td>
<td>500 mW</td>
<td>300 mW</td>
</tr>
<tr>
<td>(400 LF/Min Air Flow)</td>
<td>1200 mW</td>
<td>700 mW</td>
</tr>
<tr>
<td>N-Package</td>
<td>900 mW</td>
<td>500 mW</td>
</tr>
<tr>
<td>J-Package</td>
<td>1000 mW</td>
<td>650 mW</td>
</tr>
<tr>
<td>Thermal Resistance (Typical) θJA</td>
<td>H-Package (Still Air)</td>
<td>165°C/W</td>
</tr>
<tr>
<td></td>
<td>(400 LF/Min Air Flow)</td>
<td>165°C/W</td>
</tr>
<tr>
<td></td>
<td>N Package</td>
<td>67°C/W</td>
</tr>
<tr>
<td></td>
<td>J Package</td>
<td>135°C/W</td>
</tr>
<tr>
<td></td>
<td>(Typical) θJC</td>
<td>25°C/W</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>65°C to 150°C</td>
<td></td>
</tr>
<tr>
<td>Lead Temperature (Soldering, 10 sec.)</td>
<td>25°C/W</td>
<td></td>
</tr>
<tr>
<td>Metal Can or Ceramic</td>
<td>300°C</td>
<td>300°C</td>
</tr>
<tr>
<td>Plastic</td>
<td>260°C</td>
<td>260°C</td>
</tr>
<tr>
<td>ESD Tolerance (Note 5)</td>
<td>2000V</td>
<td>2000V</td>
</tr>
</tbody>
</table>

Electrical Characteristics (Note 3) TA = TJ

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>LM101A/LM201A</th>
<th>LM301A</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Offset Voltage</td>
<td>TA = 25°C, RS ≤ 50 kΩ</td>
<td>0.7</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Input Offset Current</td>
<td>TA = 25°C</td>
<td>1.5</td>
<td>10</td>
<td>3.0</td>
</tr>
<tr>
<td>Input Bias Current</td>
<td>TA = 25°C</td>
<td>30</td>
<td>75</td>
<td>70</td>
</tr>
<tr>
<td>Input Resistance</td>
<td>TA = 25°C</td>
<td>1.5</td>
<td>4.0</td>
<td>0.5</td>
</tr>
<tr>
<td>Supply Current</td>
<td>VS = ±20V</td>
<td>1.8</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VS = ±15V</td>
<td>1.8</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>Large Signal Voltage Gain</td>
<td>TA = 25°C, VS = ±15V, VOUT = ±10V, RL ≥ 2 kΩ</td>
<td>50</td>
<td>160</td>
<td>25</td>
</tr>
<tr>
<td>Input Offset Voltage</td>
<td>RS ≤ 50 kΩ</td>
<td>3.0</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Average Temperature Coefficient of Input Offset Voltage</td>
<td>RS ≤ 50 kΩ</td>
<td>3.0</td>
<td>15</td>
<td>6.0</td>
</tr>
<tr>
<td>Input Offset Current</td>
<td></td>
<td>20</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Average Temperature Coefficient of Input Offset Current</td>
<td>25°C ≤ TA ≤ TMAX, TMIN ≤ TA ≤ 25°C</td>
<td>0.01</td>
<td>0.1</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.02</td>
<td>0.2</td>
<td>0.02</td>
</tr>
</tbody>
</table>
Electrical Characteristics (Note 3) $T_A = T_J$ (Continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>LM101A/LM201A</th>
<th>LM301A</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
</tr>
<tr>
<td>Input Bias Current</td>
<td></td>
<td>0.1</td>
<td></td>
<td>0.3</td>
</tr>
<tr>
<td>Supply Current</td>
<td>$T_A = T_{MAX}, V_S = \pm 20V$</td>
<td>1.2</td>
<td></td>
<td>2.5</td>
</tr>
<tr>
<td>Large Signal Voltage Gain</td>
<td>$V_S = \pm 15V, V_{OUT} = \pm 10V$</td>
<td>25</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>$R_L \geq 2k$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Voltage Swing</td>
<td>$V_S = \pm 15V$</td>
<td>\pm 12</td>
<td>\pm 14</td>
<td>\pm 12</td>
</tr>
<tr>
<td></td>
<td>$R_L = 10 , k\Omega$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$R_L = 2 , k\Omega$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Voltage Range</td>
<td></td>
<td></td>
<td></td>
<td>\pm 15</td>
</tr>
<tr>
<td></td>
<td>$V_S = \pm 15V$</td>
<td></td>
<td></td>
<td>\pm 15</td>
</tr>
<tr>
<td>Common-Mode Rejection Ratio</td>
<td>$R_S \leq 50 , k\Omega$</td>
<td>80</td>
<td>96</td>
<td>70</td>
</tr>
<tr>
<td>Supply Voltage Rejection Ratio</td>
<td>$R_S \leq 50 , k\Omega$</td>
<td>80</td>
<td>96</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: For supply voltages less than $\pm 15V$, the absolute maximum input voltage is equal to the supply voltage.

Note 2: Continuous short circuit is allowed for case temperatures to $125^\circ C$ and ambient temperatures to $75^\circ C$ for LM101A/LM201A, and $70^\circ C$ and $55^\circ C$ respectively for LM301A.

Note 3: Unless otherwise specified, these specifications apply for $C_1 = 30 \, pF$, $5 \, V \leq V_S \leq 20 \, V$ and $-55^\circ C \leq T_A \leq +125^\circ C$ (LM101A), $-55^\circ C \leq T_A \leq +70^\circ C$ (LM301A)

Note 4: Refer to RETS101AX for LM101A military specifications and RETS101X for LM101 military specifications.

Note 5: Human body model, 100 pF discharged through 1.5 kΩ.

Guaranteed Performance Characteristics LM101A/LM201A

![Input Voltage Range](image1)

![Output Swing](image2)

![Voltage Gain](image3)

Guaranteed Performance Characteristics LM301A

![Input Voltage Range](image1)

![Output Swing](image2)

![Voltage Gain](image3)
Typical Performance Characteristics

Supply Current

Voltage Gain

Maximum Power Dissipation

Input Current, LM101A/LM201A/LM301A

Current Limiting

Input Noise Voltage

Common Mode Rejection

Power Supply Rejection

Input Noise Current

Mean Square Noise Current (μA/√Hz)

Closed Loop Output Impedance

Frequency (Hz)

Frequency (Hz)

Frequency (Hz)

Frequency (Hz)
Typical Performance Characteristics for Various Compensation Circuits

Single Pole Compensation

\[C_1 \geq \frac{R_1 C_s}{R_1 + R_2} \]
\[C_s = 30 \text{ pF} \]

Two Pole Compensation

\[C_1 > \frac{R_1 C_s}{R_1 + R_2} \]
\[C_s = 30 \text{ pF} \]
\[C_2 = 10 C_1 \]

Feedforward Compensation

\[C_2 = \frac{1}{2\pi f_0 R_2} \]
\[f_0 = 3 \text{ MHz} \]

Pin connections shown are for 8-pin packages.
Typical Applications**

Variable Capacitance Multiplier

\[C = 1 + \frac{R_a}{R_b} C_1 \]

Simulated Inductor

\[L = R_1 R_2 C_1 \]

Fast Inverting Amplifier with High Input Impedance

Inverting Amplifier with Balancing Circuit

May be zero or equal to parallel combination of \(R_1 \) and \(R_2 \) for minimum offset.

Sine Wave Oscillator

Integrator with Bias Current Compensation

\[f_0 = 10 \text{ kHz} \]

*Adjust for zero integrator drift. Current drift typically 0.1 nA/°C over -55°C to +125°C temperature range.

Pin connections shown are for 8-pin packages.
Although the LM101A is designed for trouble free operation, experience has indicated that it is wise to observe certain precautions given below to protect the devices from abnormal operating conditions. It might be pointed out that the advice given here is applicable to practically any IC op amp, although the exact reason why may differ with different devices.

When driving either input from a low-impedance source, a limiting resistor should be placed in series with the input lead to limit the peak instantaneous output current of the source to something less than 100 mA. This is especially important when the inputs go outside a piece of equipment where they could accidentally be connected to high voltage sources. Large capacitors on the input (greater than 0.1 \(\mu \)F) should be treated as a low source impedance and isolated with a resistor. Low impedance sources do not cause a problem unless their output voltage exceeds the supply voltage. However, the supplies go to zero when they are turned off, so the isolation is usually needed.

The output circuitry is protected against damage from shorts to ground. However, when the amplifier output is connected to a test point, it should be isolated by a limiting resistor, as test points frequently get shorted to bad places. Further, when the amplifier drives a load external to the equipment, it is also advisable to use some sort of limiting resistance to preclude mishaps.

Precautions should be taken to insure that the power supplies for the integrated circuit never become reversed—even under transient conditions. With reverse voltages greater than 1V, the IC will conduct excessive current, fusing internal aluminum interconnects. If there is a possibility of this happening, clamp diodes with a high peak current rating should be installed on the supply lines. Reversal of the voltage between \(V^+ \) and \(V^- \) will always cause a problem, although reversals with respect to ground may also give difficulties in many circuits.

The minimum values given for the frequency compensation capacitor are stable only for source resistances less than 10 k\(\Omega \), stray capacitances on the summing junction less than 5 pF and capacitive loads smaller than 100 pF. If any of these conditions are not met, it becomes necessary to overcompensate the amplifier with a larger compensation capacitor. Alternately, lead capacitors can be used in the feedback network to negate the effect of stray capacitance and large feedback resistors or an RC network can be added to isolate capacitive loads.

Although the LM101A is relatively unaffected by supply bypassing, this cannot be ignored altogether. Generally it is necessary to bypass the supplies to ground at least once on every circuit card, and more bypass points may be required if more than five amplifiers are used. When feed-forward compensation is employed, however, it is advisable to bypass the supply leads of each amplifier with low inductance capacitors because of the higher frequencies involved.

Pin connections shown are for 8-pin packages.
Typical Applications

(Continued)

Standard Compensation and Offset Balancing Circuit

Fast Summing Amplifier

Power Bandwidth: 250 kHz
Small Signal Bandwidth: 3.5 MHz
Slew Rate: 10V/μs

Fast Voltage Follower

Power Bandwidth: 15 kHz
Slew Rate: 1V/μs

Bilateral Current Source

\[\text{I}_{\text{OUT}} = \frac{R_3 \cdot V_{\text{IN}}}{R_1 \cdot R_5} \]
R3 = R4 = R5
R1 = R2

Fast AC/DC Converter

Feedforward compensation can be used to make a fast full wave rectifier without a filter.

Pin connections shown are for 8-pin packages.
Typical Applications** (Continued)

Instrumentation Amplifier

\[
\begin{align*}
R1^* &\quad 1M \\
R2^* &\quad 10K \\
R3^* &\quad 10K \\
R4^* &\quad 1M \\
C1 &\quad 30 \mu F \\
C2 &\quad 30 \mu F \\
V_{IN} &\quad + \\
\text{OUTPUT} &\quad - \\
\end{align*}
\]

**Matching determines CMRR.

Integrator with Bias Current Compensation

\[
\begin{align*}
R1 &\quad 2.2M \\
R3 &\quad 20K \\
R4 &\quad 15K \\
C1 &\quad 30 \mu F \\
\text{VIN} &\quad - \\
\text{VOUT} &\quad + \\
\end{align*}
\]

*Adjust for zero integrator drift. Current drift typically 0.1 nA/°C over 0°C to +70°C temperature range.

Voltage Comparator for Driving RTL Logic or High Current Driver

Low Frequency Square Wave Generator

**Pin connections shown are for 8-pin packages.
Typical Applications

Low Drift Sample and Hold

Voltage Comparator for Driving DTL or TTL Integrated Circuits

Schematic

Pin connections shown are for 8-pin packages.
Physical Dimensions inches (millimeters) (Continued)

Ceramic Dual-In-Line Package (J)
Order Number LM101AJ-14/883
NS Package Number J14A

Molded Dual-In-Line Package (N)
Order Number LM201AN or LM301AN
NS Package Number N08E
LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.