1. Let \(f(x) = \frac{2x^2 - 8x}{x^2 - 4x - 21} \).

(a) Determine the domain of \(f(x) \). (3 points)

(b) Determine the vertical asymptote(s) on the graph of \(y = f(x) \). (3 points)

(c) Determine the horizontal asymptote on the graph of \(y = f(x) \). (3 points)

(d) Determine the \(y \)-intercept on the graph of \(y = f(x) \). (3 points)

(e) Determine the \(x \)-intercept(s) on the graph of \(y = f(x) \). (3 points)

(f) Sketch the graph of \(y = f(x) \) showing all asymptotes and \(x \)-intercepts. (5 points)
2. Sketch the graph of \(g(x) = \frac{(2x + 1)(x - 2)^2(x - 5)}{(x - 8)^2(x + 5)(x - 1)} \). Show all asymptotes and x-intercepts.

(8 points)
3. Let \(h(x) = 2 + \frac{1}{x} \).

(a) Determine \(h^{-1}(0) \). (3 points)

(b) Determine \(h^{-1}(x) \). (3 points)

(c) Determine \((h \circ h^{-1})(6) \). (3 points)

(d) Determine the range of \(h(x) \). (3 points)

(e) Determine the range of \(h^{-1}(x) \). (3 points)
4. The graph of a one-to-one function \(P(x) \) is shown below.

(a) Determine \(P(-2) \). (3 points)

(b) Determine \(P^{-1}(-2) \). (3 points)

(c) Determine the domain of \(P^{-1}(x) \). (3 points)

(d) Determine the range of \(P^{-1}(x) \). (3 points)

(e) On the graph with \(P \) draw the graph of \(y = P^{-1}(x) \). (3 points)
5. Match the following rational functions with their descriptions given below. Each question has one correct answer. However, the functions may be used more than once. (3 points each)

A(x) = \(\frac{x^2 + x}{9-x^2} \)

B(x) = \(\frac{(x+1)(x-3)^2}{x+9} \)

C(x) = \(\frac{1-x^3}{x^2-9} \)

D(x) = \(\frac{x+2}{(x+1)(x-3)^2} \)

E(x) = \(\frac{2x^3-4}{2x^2-8} \)

F(x) = \(\frac{x^2-1}{x^2+5x} \)

_____ (a) Has the line \(x = 2 \) as an asymptote

_____ (b) Has no y-intercept

_____ (c) Has the x-axis as an asymptote

_____ (d) Has the line \(y = 1 \) as an asymptote

_____ (e) Looks like on the far left and far right

_____ (f) Passes through the origin

_____ (g) Has exactly one vertical asymptote

_____ (h) Has a y-intercept \((0, b)\) with \(b\) negative

_____ (i) Has a vertical asymptote where the behavior on both sides of the asymptote is the same

_____ (j) Has an oblique asymptote with negative slope

_____ (k) Passes through the point \((-2, 0)\)
6. Let \(H(x) = \frac{(x^2 - 4)(2x^2 - 5x - 3)}{(x^2 - 3x + 2)(x^2 - 25)} \). Determine the following. (3 points each)

(a) Domain of \(H \)
(b) y-intercept on graph of \(H \)

(c) x-intercept(s) on graph of \(H \)
(d) Horizontal asymptote on graph of \(H \)

(e) The coordinates of the “hole” in the graph of \(H \)
7. Let \(f(x) = 16 - 2^x \). Determine each of the following. If the function does not have a particular feature, write NONE. (3 points each)

(a) Domain of \(f \)

(b) Range of \(f \)

(c) \(x \)-intercept(s) on graph of \(f \)

(d) \(y \)-intercept on graph of \(f \)

(e) horizontal asymptote on graph of \(f \)

(f) vertical asymptote(s) on graph of \(f \)

(g) Is the function \(f \) increasing or decreasing?

(h) Describe using shifts and/or reflections how the graph of \(y = f(x) \) is related to the graph of \(y = 2^x \).