Calculus I (Math 251)
Dr. Caldwell, Fall 2003

Test One

name (4 points)

Relax and enjoy this fun fifty-minute 100-point test covering sections 1.1,4-6 and 2.1-4 of Calculus Early Transcendentals by J. Stewart. Clearly indicate your answers—no credit will be given for answers that I cannot find easily. Unless otherwise indicated, all parts of problems are five points.

1. Complete the \(\delta - \varepsilon \) definition of limit: \(\lim_{x \to a} f(x) = L \) if for

2. Each part of this problem is worth 3 points.

 a. Sketch the graph of the function
 \[
 f(x) = \begin{cases}
 x + 2 & \text{if } x \leq -1 \\
 x^2 & \text{if } x > -1
 \end{cases}
 \]

 b. What would be an appropriate viewing rectangle for the function \(500 + \frac{x}{x^2 + 100} \)? \(\underline{______} < x < \underline{______} \); \(\underline{______} < y < \underline{______} \).

 c. What is the domain of \(\frac{1}{1 - e^x} \)?

 d. If \(f(x) = 5 + 2x + e^x \), find \(f^{-1}(6) \).

 e. What is the exact value of \(\log_5 25 \)?
3. If an arrow is shot upward on the moon with a velocity of 23 m/s, its height in meters after t seconds is $h = 23t - 0.83t^2$.

a. What is the average time velocity over the time period [1,2].

b. What is the instantaneous velocity at $t = 1$?

4. Sketch (on the right) the graph of a function f that satisfies the following five conditions.

\[f(0) = 2, \quad f(2) = 2, \quad \lim_{x \to 1} f(x) = \infty \]

\[\lim_{x \to 0^+} f(x) = 4 \quad \text{and} \quad \lim_{x \to 0^-} f(x) = 0. \]

5. Evaluate the following limits (or indicate that they do not exist) (4 points each)

a. $\lim_{x \to 2} \sqrt{2-x}$

b. $\lim_{x \to 2} \frac{3x-6}{|x-2|}$

c. $\lim_{x \to 2} \frac{x^2 + x - 6}{x - 2}$

d. $\lim_{x \to 1} \frac{x^2 - 1}{x - 1}$

e. $\lim_{x \to -4} \frac{1}{x + 4}$

f. $\lim_{x \to 1} \frac{x}{(x - 1)^2}$
6. Near the origin (near \(x = 0 \)), the function \(f(x) \) satisfies \(x - \frac{x^3}{3} \leq f(x) \leq x + \frac{x^3}{3} \). What is \(\lim_{x \to 0} \frac{f(x)}{x} \) ?

7. (Use your calculator to) estimate the value of the limit: \(\lim_{x \to 0^+} \frac{\sin x}{x} \). Express your answer correct to two decimal places.

8. For what value of \(a \) is the function \(f(x) \) continuous on \((-\infty, \infty)\)?

\[
 f(x) = \begin{cases}
 2x & \text{if } x \geq 1 \\
 2 - ax & \text{if } x < 1
\end{cases}
\]

9. Use a graph to find a number \(\delta \) such that \(\frac{x}{(1-x)^2} > 100 \) whenever \(0 < |1-x| < \delta \).

10. \(\lim_{x \to 1} 5x - 2 = 3 \). Find a number \(\delta \) such that

\[
 | f(x) - 3 | < 0.03 \text{ when } 0 < | x - 1 | < \delta .
\]
11. Explain why, using the δ–ε definition of limit, that the floor-function

\[\lfloor x \rfloor = \text{the greatest integer } \leq x \]

does not have a limit as \(x \) approaches 3.

(2 points)

12. Prove that \(\lim_{x \to -2} (2x + 5) = 1 \) using the δ–ε definition of limit.

(10 points)

(Use the phrases you were told to use!)