This is our third fun test. Relax and do well. All parts of problems are four points unless otherwise indicated.

1. Find the absolute maximum and absolute minimum of \(f(x) = x^4 - 4x^2 + 2 \) on the interval \([-3, 2]\) (6 points)

2. Let \(f(x) = x^3 + x - 1 \). Find all of the numbers which satisfy the conclusion of the Mean Value Theorem on the interval \([0, 2]\).

3. Show that \(x^5 - 6x + c = 0 \) has at most one real zero in the interval \([-1, 1]\). (Hint: suppose it has two…)

4. On the right is a graph of the second derivative \(f'' \) of a function. How many points of inflection does the original function \(f \) have?
5. On the right a graph of the first derivative f' of a function is shown.
 a. On what intervals is the function f increasing?

 b. What are the x-values of the local extrema of the function f (if any)?

6. Let $f(x) = x\sqrt{x + 1}$.
 a. Find the derivative of $f(x)$.

 b. Find the critical numbers of $f(x)$ (if any).

 c. Find the intervals of increase and decrease of $f(x)$.

 d. Find the local extrema of $f(x)$ (if any).

 e. Draw the graph of $f(x)$. Label the relative extrema and the intercepts.
7. Let \(y = \frac{1 + 5x^3}{x^3 - x} \).

 a. Find the vertical asymptotes (if any).

 b. Find the horizontal asymptotes (if any).

8. Draw a graph of a function \(f(x) \) so that the following six conditions hold.

 (6 points)

 \(f(0) = 0 \) \hspace{1cm} \(f(3) = 0 \)

 \(f'(1) = 0 \) \hspace{1cm} \(f'(x) > 0 \) if \(x > 2 \)

 \(f''(x) > 0 \) if \(x < 4 \) \hspace{1cm} \(\lim_{x \to \infty} f(x) = 5 \)

9. Draw the graph of \(f(x) = 4x^4 - 7x^2 - 2x + 5 \) and label the extreme values, the inflection points and the asymptotes (if any). (You may approximate to two decimal places.)
10. Find a positive number such that the sum of the number and twice its reciprocal is as small as possible.

11. A rancher wants to fence in 120 square miles with a rectangular fence and then divide it into four equal parts with fences parallel to one side. What dimensions will minimize the amount of fence?