No notes or texts allowed. You may use a TI-83, TI-84, TI-86 or equivalent calculator. Show all work.

1 (6 points). What value(s) of k, if any, will make this function continuous:

$$f(x) = \begin{cases}
1 + x^2, & x < 1 \\
k \cdot x + 1, & x \geq 1
\end{cases}$$

2 (6 points). Find the equation of the tangent line to the curve $f(x) = \sqrt[3]{x}$ at the point $(8, f(8))$.

3-6 (6 points each): Compute the limits if they exist. If a limit does not exist, state why.

3.
$$\lim_{x \to 2} \frac{x^2 + x - 6}{x^2 - 6x + 8}$$

4.
$$\lim_{x \to -\infty} \frac{3x + 8}{2x^2 - 4}$$

5.
$$\lim_{x \to -\infty} \frac{3x^2 - 5}{4x^2 + 2}$$

6.
$$\lim_{x \to 0} \frac{x^2 + 2x + 3}{5x^2 - 6x + 4}$$

7-9 (6 points each): Compute the derivative $f'(x)$ for each function.

7.
$$f(x) = x^4 + 2x^6 - 5$$

8.
$$f(x) = \sqrt{x^9} + \frac{1}{x^3}$$

9.
$$f(x) = \frac{x^3 + 1}{x}$$
10 (6 points). (a) What is the average rate of change of the function \(f(x) = x^2 - x \) between \(x = 1 \) and \(x = 5 \)? (b) What is the instantaneous rate of change of \(f(x) \) at \(x = 5 \)؟

11-12 (10 points each): For each function below, use the limit definition of the derivative to compute the derivative at the point \(a \). No credit will be given for any other method.

11.
\[
f(x) = 3x^2 - 1 \quad a = 2
\]

12.
\[
f(x) = \frac{1}{x - 3} \quad a = 3
\]

13-15 (6 points each). These problems refer to the function \(f(x) \) whose graph is shown below:

13. (i) At which point(s) \(c \) does \(f(c) \) fail to exist? (ii) At which point(s) \(c \) does \(f(c) \) fail to be continuous?

14. (i) At which points \(c \) does \(\lim_{x \to c} f(x) \) fail to exist? (ii) At which points \(c \) does \(\lim_{x \to c} f(x) = 0 \)?

15. (i) At which points \(c \) does \(f'(c) \) fail to exist? (ii) At which points \(c \) does \(f'(c) = 0 \)?

solutions

1.
\[
2 = k + 1 \implies k = 1
\]

2.
\[
f'(x) = \frac{1}{3}x^{-2/3} \implies f'(8) = \frac{1}{3} \cdot \frac{1}{4} = \frac{1}{12}
\]

Point: \((8, f(8)) = (8, 2)\):

\[
y - 2 = \frac{1}{12}(x - 8) \implies y - 2 = \frac{x}{12} - \frac{2}{3} \implies y = \frac{x}{12} + \frac{4}{3}
\]
3. \[
\lim_{x \to 2} \frac{x^2 + x - 6}{x^2 - 6x + 8} = \lim_{x \to 2} \frac{(x + 3)(x - 2)}{(x - 4)(x - 2)} = \lim_{x \to 2} \frac{x + 3}{x - 4} = \frac{5}{2}
\]

4. \[
\lim_{x \to \infty} \frac{3x + 8}{2x^2 - 4} = 0 \quad \text{(degree of num. is less than degree of den.)}
\]

5. \[
\lim_{x \to \infty} \frac{3x^2 - 5}{4x^2 + 2} = \frac{3}{4} \quad \text{(degree of num. is the same as the degree of den.)}
\]

6. \[
\lim_{x \to 0} \frac{x^2 + 2x + 3}{5x^2 - 6x + 4} = \frac{(0)^2 + 2(0) + 3}{5(0)^2 - 6(0) + 4} = \frac{3}{4}
\]

7. \[f'(x) = 4x^3 + 12x^5\]

8. \[f(x) = x^{9/2} + x^{-3} \implies f'(x) = \frac{9}{2}x^{7/2} - 3x^{-4} = \frac{9}{2} \sqrt{x^7} - \frac{3}{x^4}\]

9. \[f(x) = x^2 + x^{-1} \implies f'(x) = 2x - x^{-2} = 2x - \frac{1}{x^2}\]

10. (a) \[\frac{f(5) - f(1)}{5 - 1} = \frac{20 - 0}{5 - 1} = 5\] \quad (b) \[f'(5) = 2(5) - 2 \implies f'(5) = 9\]

11. \[
f'(2) = \lim_{h \to 0} \frac{f(2+h) - f(2)}{h} = \lim_{h \to 0} \frac{(3(2+h)^2 - 1) - 11}{h} = \lim_{h \to 0} \frac{12 + 12h + 3h^2 - 1 - 11}{h} = \lim_{h \to 0} \frac{12h + 3h^2}{h} = \lim_{h \to 0} (12 + 3h) = 12
\]

12. \[
f'(4) = \lim_{h \to 0} \frac{\frac{1}{1+h} - 1}{h} = \lim_{h \to 0} \frac{1 - (1 + h)}{(1 + h)h} = \lim_{h \to 0} \frac{-h}{(1 + h) \cdot h} = \lim_{h \to 0} \frac{-1}{1 + h} = -1
\]

13. (i) -3 (ii) -3,-1,2
14. (i) -3, -1 (ii) -4, 0, 2, 4

15. (i) -3, -1, 1, 2, 3, (ii) -2