MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Decide whether the limit exists. If it exists, find its value.

1) Find \(\lim_{x \to 0^-} f(x) \) and \(\lim_{x \to 0^+} f(x) \).

A) -3; -1
B) -1; 3
C) 3; 1
D) 3; -1

Determine the continuity of the function at the given points.

2) \(f(x) = \begin{cases} 3, & \text{for } x = 1, \\ 2 - \frac{1}{3}x^3, & \text{for } x \neq 1 \end{cases} \)

at \(x = 1 \) and \(x = 2 \)

A) The function \(f \) is continuous at both \(x = 2 \) and \(x = 1 \).
B) The function \(f \) is continuous at \(x = 2 \) but not at \(x = 1 \).
C) The function \(f \) is continuous at \(x = 1 \) but not at \(x = 2 \).
D) The function \(f \) is continuous at neither \(x = 2 \) nor \(x = 1 \).

Find the limit, if it exists.

3) \(\lim_{x \to 1} \frac{3x^2 + 7x - 2}{3x^2 - 4x - 2} \)

A) Does not exist
B) -\(\frac{8}{3} \)
C) -\(\frac{7}{4} \)
D) 0
4) \[\lim_{x \to 3} \sqrt{x^2 + 8x + 16} \]

A) 7
B) \(\pm 7 \)
C) Does not exist
D) 49

5) \[\lim_{x \to \infty} \frac{3x - 3x^2 + 4x^3}{6 - 2x - x^3} \]

A) 4
B) -4
C) \(\infty \)
D) \(\frac{3}{2} \)

6) \[\lim_{x \to -\infty} \frac{2x^3 + 2x^2}{x - 6x^2} \]

A) 2
B) \(\infty \)
C) \(-\frac{1}{3} \)
D) \(-\infty \)

Evaluate or determine that the limit does not exist for each of the limits (a) \(\lim_{x \to d^-} f(x) \), (b) \(\lim_{x \to d^+} f(x) \), and (c) \(\lim_{x \to d} f(x) \) for the given function \(f \) and number \(d \).

7) \[f(x) = \begin{cases}
\frac{1}{x + 1}, & \text{for } x > -1, \\
x^2 - 2x, & \text{for } x \leq -1
\end{cases} \]

\(d = -1 \)

A) (a) 3
(b) Does not exist
(c) Does not exist
D) (a) Does not exist
(b) 3
(c) Does not exist

Find the limit, if it exists.

8) \[\lim_{x \to 3} \frac{x^2 + 7x - 30}{x - 3} \]

A) 13
B) 7
C) Does not exist
D) 0

Answer the question.

9) \[\text{What conditions, when present, are sufficient to conclude that a function } f(x) \text{ has a limit as } x \text{ approaches some value of } a? \]

A) The limit of \(f(x) \) as \(x \to a \) from the left exists, the limit of \(f(x) \) as \(x \to a \) from the right exists, and these two limits are the same.

B) \(f(a) \) exists, the limit of \(f(x) \) as \(x \to a \) from the left exists, and the limit of \(f(x) \) as \(x \to a \) from the right exists.

C) The limit of \(f(x) \) as \(x \to a \) from the left exists, the limit of \(f(x) \) as \(x \to a \) from the right exists, and at least one of these limits is the same as \(f(a) \).

D) Either the limit of \(f(x) \) as \(x \to a \) from the left exists or the limit of \(f(x) \) as \(x \to a \) from the right exists.
List the x-values in the graph at which the function is not differentiable.

A) Function is differentiable at all points.
C) x = 0

B) x = -2, x = 2
D) x = -2, x = 0, x = 2

Find the derivative.

11) \(f(x) = 9x^{7/5} - 5x^2 + 10^4 \)
A) \(\frac{63}{5} x^{12/5} - 10x \)
C) \(\frac{63}{5} x^{6/5} - 10x + 4000 \)
B) \(\frac{63}{5} x^{12/5} - 10x + 4000 \)
D) \(\frac{63}{5} x^{6/5} - 10x \)

12) \(f(x) = 3\sqrt{x} + \frac{3}{5}\sqrt{x} - 2\sqrt{x} + \frac{5}{6}\sqrt{x} \)
A) \(\frac{3}{2}x^{1/2} + \frac{1}{3}x^{2/3} - \frac{1}{2}x^{3/4} + \frac{6}{5}x^{4/5} \)
C) \(\frac{1}{2}x^{-1/2} + \frac{1}{3}x^{-2/3} + \frac{1}{4}x^{-3/4} + \frac{1}{5}x^{-4/5} \)
B) \(\frac{3}{2}x^{-1/2} + \frac{1}{3}x^{-2/3} - \frac{1}{2}x^{-3/4} + \frac{6}{5}x^{-4/5} \)
D) \(\frac{3}{2}x^{-1/2} + \frac{1}{3}x^{-2/3} - \frac{1}{2}x^{-3/4} + \frac{6}{5}x^{-4/5} \)

13) \(y = 8x^{-2} + 5x^3 - 8x \)
A) \(-16x^{-3} + 15x^2 - 8\)
C) \(-16x^{-1} + 15x^2\)
B) \(-16x^{-3} + 15x^2\)
D) \(-16x^{-1} + 15x^2 - 8\)

Find \(f'(a) \) for the given value of \(a \).

14) \(f(x) = -4x^2 + 7x, \ a = 5 \)
A) 33
C) -13
B) 3
D) -33

15) \(f(x) = -8x^{-1} + 5x^{-2}, \ a = 2 \)
A) \(-\frac{3}{4} \)
C) \(\frac{13}{4} \)
B) \(\frac{3}{4} \)
D) \(-\frac{13}{4} \)

Given the distance function, \(s(t) \), where \(s \) is in feet and \(t \) is in seconds, find the velocity function, \(v(t) \), and the acceleration function, \(a(t) \).

16) \(s(t) = 3t^2 + t + 10 \)
A) \(v(t) = 6t + 1; a(t) = 2 \)
C) \(v(t) = 6t + 1; a(t) = 6 \)
B) \(v(t) = 6t + 11; a(t) = 6 \)
D) \(v(t) = 2t + 1; a(t) = 6 \)
Solve the problem.

17) The profit from the expenditure of x thousand dollars on advertising is given by \(P(x) = 740 + 25x - 3x^2 \). Find the marginal profit when the expenditure is \(x = 20 \).

A) 380 thousand dollars
B) 500 thousand dollars
C) -95 thousand dollars
D) 740 thousand dollars

Differentiate.

18) \(f(x) = (x^2 - 4x + 2)(3x^3 - x^2 + 5) \)

A) \(f'(x) = 15x^4 - 48x^3 + 30x^2 + 6x - 20 \)
B) \(f(x) = 3x^4 - 52x^3 + 30x^2 + 6x - 20 \)
C) \(f'(x) = 3x^4 - 48x^3 + 30x^2 + 6x - 20 \)
D) \(f'(x) = 15x^4 - 52x^3 + 30x^2 + 6x - 20 \)

19) \(f(x) = (2x^3 + 3)(5x^2 - 8) \)

A) \(f'(x) = 8x^9 + 105x^6 - 48x^2 \)
B) \(f'(x) = 100x^9 + 105x^6 - 48x \)
C) \(f'(x) = 8x^9 + 105x^6 - 48x \)
D) \(f'(x) = 100x^9 + 105x^6 - 48x^2 \)

20) \(g(x) = \frac{x^2}{x - 11} \)

A) \(g'(x) = \frac{x^2}{(x - 11)^2} \)
B) \(g'(x) = \frac{x^2 - 22x}{(x - 11)^2} \)
C) \(g'(x) = \frac{x^2 + 22x}{(x - 11)^2} \)
D) \(g'(x) = \frac{22x}{(x - 11)^2} \)

21) \(y = \frac{x^2 - 3x + 2}{x^7 - 2} \)

A) \(y' = -5x^8 + 19x^7 - 14x^6 - 4x + 6 \)
B) \(y' = -5x^8 + 18x^7 - 14x^6 - 4x + 6 \)
C) \(y' = -5x^8 + 18x^7 - 13x^6 - 4x + 6 \)
D) \(y' = -5x^8 + 18x^7 - 14x^6 - 3x + 6 \)

Write an equation of the tangent line to the graph of \(y = f(x) \) at the point on the graph where \(x \) has the indicated value.

22) \(f(x) = (-5x^2 + 5x + 2)(-2x - 5) \), \(x = 0 \)

A) \(y = -29x - 10 \)
B) \(y = -29x + 10 \)
C) \(y = -\frac{1}{29}x + 10 \)
D) \(y = -\frac{1}{29}x - 10 \)

23) \(f(x) = \frac{-4x^2 - 4}{4x - 1} \), \(x = 0 \)

A) \(y = 16x + 4 \)
B) \(y = 16x - 4 \)
C) \(y = 16x + 4 \)
D) \(y = -16x - 4 \)
Differentiate.

24) \(g(x) = \left(\frac{6x^4 + 7x + 3}{x^2} \right)^{9/5} \)

A) \(g'(x) = \frac{9}{5} \left(\frac{6x^4 + 7x + 3}{x^2} \right)^{4/5} \)

B) \(g'(x) = \frac{9}{5} \left(\frac{6x^4 + 7x + 3}{x^2} \right)^{4/5} \left(\frac{24x^3 + 7 - \frac{6}{x}}{x^3} \right) \)

C) \(g'(x) = \frac{9}{5} \left(\frac{6x^4 + 7x + 3}{x^2} \right)^{4/5} \left(\frac{24x^3 + 7 - \frac{6}{x}}{x^3} \right) \)

D) \(g'(x) = \frac{9}{5} \left(\frac{6x^4 + 7x + 3}{x^2} \right)^{4/5} \)

Find \(\frac{d^2y}{dx^2} \).

25) \(y = 6x^4 - 6x^2 + 2 \)

A) \(24x^2 - 12x \)
B) \(72x^2 - 12x \)
C) \(24x^2 - 12 \)
D) \(72x^2 - 12 \)

Find the derivative of the function.

26) \(y = \ln (7 + x^2) \)

A) \(\frac{1}{2x + 7} \)
B) \(\frac{14}{x} \)
C) \(\frac{2}{x} \)
D) \(\frac{2x}{x^2 + 7} \)

27) \(y = \ln (\ln 7x) \)

A) \(\frac{1}{7x} \)
B) \(\frac{1}{\ln 7x} \)
C) \(\frac{1}{x} \)
D) \(\frac{1}{x \ln 7x} \)

Differentiate.

28) \(f(x) = -4e^{7x} \)

A) \(-28e^{7x} \)
B) \(-28e^x \)
C) \(-4e^{7x} \)
D) \(7e^{7x} \)

29) \(y = e^{6 - 9x} \)

A) \(6e^{6 - 9x} \)
B) \(e^{-9} \)
C) \(-9e^{6 - 9x} \)
D) \(-9 \ln (6 - 9x) \)

Find the derivative of the function.

30) \(y = \ln (8 + x^2) \)

A) \(\frac{2x}{x^2 + 8} \)
B) \(\frac{1}{2x + 8} \)
C) \(\frac{16}{x} \)
D) \(\frac{2}{x} \)
31) Suppose that y is a function of u, and that u is itself a function of x. How does one find the derivative of y in terms of x?

A) The sum rule: $\frac{d(y + u)}{dx} = \frac{dy}{dx} + \frac{du}{dx}$

B) The difference rule: $\frac{d(y - u)}{dx} = \frac{dy}{dx} - \frac{du}{dx}$

C) The product rule: $\frac{d(y \cdot u)}{dx} = y \cdot \frac{du}{dx} + u \cdot \frac{dy}{dx}$

D) The chain rule: $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$

Find the relative extrema of the function, if they exist.

32) $f(x) = x^3 - 12x + 2$

A) (2, -14), (-2, 18) B) None

C) (0, 0) D) (-2, 18), (0, 0), (2, -14)

33) $f(x) = 3x^4 + 16x^3 + 24x^2 + 32$

A) (-2, 32) B) (-2, 48), (0, 32)

C) (2, 48) D) (-2, 32), (0, 32)

34) $f(x) = \frac{1}{x^2 - 1}$

A) (1, 0), (-1, 0) B) None

C) (1, 0), (0, -1), (-1, 0) D) (0, -1)

Find the points of inflection.

35) $f(x) = x^3 + 3x^2 - x - 24$

A) (1, 8) B) (-1, 3)

C) (-1, -21) D) (-1, 0)

36) $f(x) = \frac{2}{3}x^3 - 6x^2 + x$

A) (3, -33) B) (-3, -17)

C) (3, -17) D) (3, 0)

Solve the problem.

37) The annual revenue and cost functions for a manufacturer of precision gauges are approximately $R(x) = 500x - 0.01x^2$ and $C(x) = 120x + 100,000$, where x denotes the number of gauges made. What is the maximum annual profit?

A) $3,610,000$ B) $3,710,000$

C) $3,810,000$ D) $3,510,000$

Find the absolute maximum and absolute minimum values of the function, if they exist, on the indicated interval.

38) $f(x) = x^3 - 3x - 2; [-5, 1]$

A) Absolute minimum: -6

B) Absolute maximum: -4, absolute minimum: -6

C) Absolute maximum: 0, absolute minimum: -112

D) Absolute maximum: 0
Answer the question.

39) Consider this graph.

Determine which points on the graph are critical points and describe why each of the points is a critical point.

A) Since the point at \(x = a \) is the only one for which the first derivative does not exist, this is the only critical point.

B) The only critical points are those at \(x = b, d, \) and \(e \), because the derivative is zero only at these points.

C) The points on the function at \(x = a, b, d, \) and \(e \) are critical points, because the derivative is zero at each of these points.

D) The points on the function at \(x = a, b, d, \) and \(e \) are critical points, because at \(x = a \) the first derivative does not exist and at \(x = b, d, \) and \(e \) the derivative is zero.

Solve the problem.

40) An architect needs to design a rectangular room with an area of 81 ft\(^2\). What dimensions should he use in order to minimize the perimeter? Round to the nearest hundredth, if necessary.

A) 16.2 ft x 81 ft
B) 20.25 ft x 20.25 ft
C) 9 ft x 9 ft
D) 9 ft x 20.25 ft

41) If the price charged for a candy bar is \(p(x) \) cents, then \(x \) thousand candy bars will be sold in a certain city, where \(p(x) = 88 - \frac{x}{16} \). How many candy bars must be sold to maximize revenue?

A) 1408 candy bars
B) 1408 thousand candy bars
C) 704 candy bars
D) 704 thousand candy bars

Find dy/dx by implicit differentiation.

42) \(xy^2 = 4 \)

A) \(\frac{x}{2y} \)
B) \(\frac{2x}{y} \)
C) \(-\frac{y}{2x} \)
D) \(-\frac{2y}{x} \)

Solve the problem.

43) Water is falling on a surface, wetting a circular area that is expanding at a rate of 10 mm\(^2\)/s. How fast is the radius of the wetted area expanding when the radius is 123 mm? (Round approximations to four decimal places.)

A) 0.0129 mm/s
B) 0.0813 mm/s
C) 77.2831 mm/s
D) 0.0259 mm/s
Find the elasticity of the demand function at the given price and state whether the demand is elastic, inelastic, or whether it has unit elasticity.

44) \(x = D(p) = 800 - 4p; \$43 \)

A) 628; elastic
B) \(\frac{43}{157} \); elastic
C) \(\frac{1}{157} \); inelastic
D) \(\frac{157}{43} \); inelastic

Evaluate.

45) \(\int (4x^{11} - 7x^3 + 4) \, dx \)

A) \(\frac{1}{3} x^{12} - \frac{7}{4} x^4 + 4x + C \)
B) \(\frac{1}{4} x^{12} - \frac{7}{3} x^4 + 4x + C \)
C) \(12x^{12} - \frac{7}{4} x^4 + 4x + C \)
D) \(12x^{12} - \frac{7}{3} x^4 + 4x + C \)

Find \(f \) such that the given conditions are satisfied.

46) \(f(x) = x^2 + 6, \ f(3) = 55 \)

A) \(f(x) = \frac{x^3}{3} + 6x \)
B) \(f(x) = \frac{x^3}{3} + 6x + 28 \)
C) \(f(x) = x^3 + 6x + 10 \)
D) \(f(x) = x^3 + 6x^2 + 28 \)

Evaluate the indefinite integral.

47) \(\int \frac{x^4 - 5x + 7}{x^2} \, dx \)

A) \(\frac{x^3}{3} + \frac{5}{x^2} - \frac{14}{x^3} + C \)
B) \(\frac{x^3}{3} - 5 \ln |x| - \frac{7}{x} + C \)
C) \(\frac{x^3}{3} - \frac{5}{2} x^2 - \frac{7}{x} + C \)
D) \(x^3 - 5 \ln |x| + \frac{7}{x} + C \)

Solve the problem.

48) Find: \(\int \left[5e^x - \frac{1}{x} \right] \, dx \)

A) \(5e^x - \frac{2}{x^2} + C \)
B) \(5e^x - \frac{1}{2x^2} + C \)
C) \(5e^x - \ln |x| + C \)
D) \(5xe^x - \ln |x| + C \)

Find the shaded area under the given curve.

49) \(y = x^2 + 3 \)

A) \(\frac{23}{3} \)
B) \(\frac{25}{3} \)
C) \(\frac{22}{3} \)
D) \(\frac{26}{3} \)
Solve the problem.

50) Find the area bounded by \(f(x) = x^2 - 1 \) and \(g(x) = 2x + 2 \) (Round answer to two decimal places, if necessary.)

A) 13.33 B) 5.33 C) 2.67 D) 10.67

Find the average value over the given interval.

51) \(y = x^2 - 4x + 3; [0, 4] \)

A) -1 B) \(\frac{1}{3} \) C) 3 D) \(\frac{28}{3} \)

Solve the problem.

52) Suppose the supply function of a certain item is given by \(p = S(q) = 50 + \frac{2}{3}q^2 \) and the demand function is \(p = D(q) = 131 - \frac{1}{3}q^2 \). Find the consumer's surplus at the equilibrium price level.

A) $220 B) $104 C) $324 D) $162
Answer Key
Testname: PRACTICE 160 FINAL S2005

1) D
2) B
3) B
4) A
5) B
6) B
7) A
8) A
9) A
10) D
11) A
12) D
13) A
14) D
15) B
16) C
17) C
18) D
19) D
20) B
21) B
22) A
23) C
24) B
25) D
26) D
27) D
28) A
29) C
30) A
31) D
32) A
33) B
34) D
35) C
36) A
37) D
38) C
39) D
40) C
41) D
42) C
43) A
44) B
45) A
46) B
47) B
48) C
49) D
50) D
Answer Key
Testname: PRACTICE 160 FINAL S2005

51) B
52) D