Date:

Directions:

If the answer is yes, write the fraction(s) with the given denominator. If the answer is no, leave the box blank. Fill the GRAY boxes with the answers you observe while comparing fraction rulers.

	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{2} + \frac{1}{3}$
Can the denominator be 2?			
Can the denominator be 3?			
Can the denominator be 4?			
Can the denominator be 5?			
Can the denominator be 6?			
Can the denominator be 8?			
Can the denominator be 10?			
Can the denominator be 12?			

Date:

Directions:

If the answer is yes, write the fraction(s) with the given denominator. If the answer is no, leave the box blank. Fill the GRAY boxes with the answers you observe while comparing fraction rulers.

	$\frac{2}{5}$	$\frac{1}{2}$	$\frac{2}{5} + \frac{1}{2}$
Can the denominator be 2?			
Can the denominator be 3?			
Can the denominator be 4?			
Can the denominator be 5?			
Can the denominator be 6?			
Can the denominator be 8?			
Can the denominator be 10?			
Can the denominator be 12?			

Date:

Directions:

If the answer is yes, write the fraction(s) with the given denominator. If the answer is no, leave the box blank. Fill the GRAY boxes with the answers you observe while comparing fraction rulers.

	$\frac{1}{4}$	$\frac{2}{3}$	$\frac{1}{4} + \frac{2}{3}$
Can the denominator be 2?			
Can the denominator be 3?			
Can the denominator be 4?			
Can the denominator be 5?			
Can the denominator be 6?			
Can the denominator be 8?			
Can the denominator be 10?			
Can the denominator be 12?			

Date:

Directions:

If the answer is yes, write the fraction(s) with the given denominator. If the answer is no, leave the box blank. Fill the GRAY boxes with the answers you observe while comparing fraction rulers.

	$\frac{1}{6}$	$\frac{1}{4}$	$\frac{1}{6} + \frac{1}{4}$
Can the denominator be 2?			
Can the denominator be 3?			
Can the denominator be 4?			
Can the denominator be 5?			
Can the denominator be 6?			
Can the denominator be 8?			
Can the denominator be 10?			
Can the denominator be 12?			

Date:

Directions:

If the answer is yes, write the fraction(s) with the given denominator. If the answer is no, leave the box blank. Fill the GRAY boxes with the answers you observe while comparing fraction rulers.

	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4} + \frac{1}{2}$
Can the denominator be 2?			
Can the denominator be 3?			
Can the denominator be 4?			
Can the denominator be 5?			
Can the denominator be 6?			
Can the denominator be 8?			
Can the denominator be 10?			
Can the denominator be 12?			

Date:

Directions:

If the answer is yes, write the fraction(s) with the given denominator. If the answer is no, leave the box blank. Fill the GRAY boxes with the answers you observe while comparing fraction rulers.

	$\frac{1}{2}$	$\frac{1}{6}$	$\frac{1}{2} + \frac{1}{6}$
Can the denominator be 2?			
Can the denominator be 3?			
Can the denominator be 4?			
Can the denominator be 5?			
Can the denominator be 6?			
Can the denominator be 8?			
Can the denominator be 10?			
Can the denominator be 12?			

Date:

Directions:

If the answer is yes, write the fraction(s) with the given denominator. If the answer is no, leave the box blank. Fill the GRAY boxes with the answers you observe while comparing fraction rulers.

	$\frac{5}{6}$	$\frac{2}{3}$	$\frac{5}{6} - \frac{2}{3}$
Can the denominator be 2?			
Can the denominator be 3?			
Can the denominator be 4?			
Can the denominator be 5?			
Can the denominator be 6?			
Can the denominator be 8?			
Can the denominator be 10?			
Can the denominator be 12?			

Date:

Directions:

If the answer is yes, write the fraction(s) with the given denominator. If the answer is no, leave the box blank. Fill the GRAY boxes with the answers you observe while comparing fraction rulers.

	$\frac{1}{2}$	$\frac{1}{6}$	$\frac{1}{2} - \frac{1}{6}$
Can the denominator be 2?			
Can the denominator be 3?			
Can the denominator be 4?			
Can the denominator be 5?			
Can the denominator be 6?			
Can the denominator be 8?			
Can the denominator be 10?			
Can the denominator be 12?			

Date:

Directions:

If the answer is yes, write the fraction(s) with the given denominator. If the answer is no, leave the box blank. Fill the GRAY boxes with the answers you observe while comparing fraction rulers.

	$\frac{3}{4}$	$\frac{1}{6}$	$\frac{3}{4} - \frac{1}{6}$
Can the denominator be 2?			
Can the denominator be 3?			
Can the denominator be 4?			
Can the denominator be 5?			
Can the denominator be 6?			
Can the denominator be 8?			
Can the denominator be 10?			
Can the denominator be 12?			

Date:

Directions:

If the answer is yes, write the fraction(s) with the given denominator. If the answer is no, leave the box blank. Fill the GRAY boxes with the answers you observe while comparing fraction rulers.

	$\frac{2}{3}$	$\frac{1}{4}$	$\frac{2}{3} - \frac{1}{4}$
Can the denominator be 2?			
Can the denominator be 3?			
Can the denominator be 4?			
Can the denominator be 5?			
Can the denominator be 6?			
Can the denominator be 8?			
Can the denominator be 10?			
Can the denominator be 12?			

Date:

Directions:

If the answer is yes, write the fraction(s) with the given denominator. If the answer is no, leave the box blank. Fill the GRAY boxes with the answers you observe while comparing fraction rulers.

	$\frac{4}{5}$	$\frac{1}{2}$	$\frac{4}{5} - \frac{1}{2}$
Can the denominator be 2?			
Can the denominator be 3?			
Can the denominator be 4?			
Can the denominator be 5?			
Can the denominator be 6?			
Can the denominator be 8?			
Can the denominator be 10?			
Can the denominator be 12?			

Date:

Directions:

If the answer is yes, write the fraction(s) with the given denominator. If the answer is no, leave the box blank. Fill the GRAY boxes with the answers you observe while comparing fraction rulers.

	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{2} - \frac{1}{3}$
Can the denominator be 2?			
Can the denominator be 3?			
Can the denominator be 4?			
Can the denominator be 5?			
Can the denominator be 6?			
Can the denominator be 8?			
Can the denominator be 10?			
Can the denominator be 12?			

Date:

Directions:

If the answer is yes, write the fraction(s) with the given denominator. If the answer is no, leave the box blank. Fill the GRAY boxes with the answers you observe while comparing fraction rulers.

Can the denominator be 2?		
Can the denominator be 3?		
Can the denominator be 4?		
Can the denominator be 5?		
Can the denominator be 6?		
Can the denominator be 8?		
Can the denominator be 10?		
Can the denominator be 12?		