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The prime counting function, π(x), counts exactly how many primes there are less than or 
equal to x.  The second author discovered the following �curio� (see [1]): 
 
  π(6521) = 6! + 5! + 2! + 1!. 
 
If we write the positive integer x in base 10: 
 
  x  =  ak � a2 a1 a0 (with ak ≥ 0) 
 
are there any other prime solutions to 
 

 f(x)  :=  ∑
i=0

k
  ai!  =  π(x) ? (1) 

 
How many solutions could be generated if we allow x to be composite?  Is there an upper 
bound on how far we would need to look?  What if we work in a base other than 10 or 
use other functions?  Below we provide answers to these questions, and then pose new 
areas for further investigation. 
 
Searching for another 
 
By the prime number theorem [2, pp. 225-227], the prime counting function π(x) is 
asymptotic to x /ln x.  In fact, Dusart [3] has shown that, when x > 599,  
  

x
 ln x 



1 + 

0.992
ln x    <   π(x)  <  

x
 ln x 



1 + 

1.2762
ln x  . (2) 
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The factorial ai! is at most 9! for each of the [1+log x ] digits of x, so any solution x to (1) 
must satisfy 
 

x
 ln x 



1 + 

0.992
ln x    <  π(x)  =  f(x)  ≤  



 +

10ln
ln1!9 x . (3) 

 
This statement is false for x > 48,657,759, so this is an upper bound for solutions.  If x is 
an eight-digit solution beginning with 4, then the second digit is at most 8 and we can use 
the tighter bound 
 
  f(x)  ≤  4! + 8! + 9! 6  <  π(40,000,000)  =  2,433,654 
 
to see that there are no such solutions.  Now we know x < 40,000,000.  After checking to 
see that 39,999,999 does not work, we note that for N1 = (3.8)107 ≤ x < 39,999,999 we 
have 
 
  f(x)  ≤  3! + 8! + 9! 6  < π(N1)  =  2,318,966. 
 
Similarly for N2 = (3.6)107 ≤ x < N1 we have 
 
  f(x)  ≤  3! + 7! + 9! 6  <  π(N2)  =  2,204,262. 
 
Therefore there are no solutions with x ≥ N2. 
 For N3 = (3.0)107 ≤ x < N2, first we check the cases where x ends in six �9�s 
individually; then for the remaining integers x we have 
 
  f(x)  ≤  3! + 5! + 8! + 9! 5  < π(N3)  =  1,857,859. 
 
A check of the integers x ≤ N3 using the public domain program UBASIC [4] shows the 
following 23 solutions: 
 

6500, 6501, 6510, 6511, 6521, 12066, 50372, 175677, 553783, 5224903, 
5224923, 5246963, 5302479, 5854093, 5854409, 5854419, 5854429, 5854493, 
5855904, 5864049, 5865393, 10990544, 11071599  [5, seq.  A049529].  

 
Of these, only 6,521 and 5,224,903 are prime [6, p. 11]. 
 
 

Bases other than 10 
 
We can write x in a base B other than 10  
 
  x  =  bk � b2 b1 b0  (with bk > 0) 

 
and ask whether the equation 
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  g(x)  :=  ∑
i=0

k
  bi!  =  π(x) (4) 

 
has any solutions.  Now bi! ≤ (B−1)! so we can replace the inequality (3) with 
 

  
x

 ln x  <  π(x)  =  g(x)  ≤  



 +−

B
xB

ln
ln1)!1( . (5) 

 
Omitting the factor 1+0.992/ln x from (3) ensures that the leftmost inequality holds for 
x ≥ 11 rather than x ≥ 599. 
 For each value of B the right side of (5) grows like a multiple of  ln x, whereas the 
left-hand side grows like x/ln x, therefore the inequality is false for all large x.  So there is 
a value xo(B) such that any solution satisfies x ≤ xo(B).  We will show that we can take 
xo(B) = 2 B B! ln B for all bases B > 2.  Since (5) is already false at x = 13 for B = 2, we 
may take xo(2) = 13. 
 First note for any solution x we have x ≥ B (otherwise x! = π(x)), so (5) yields 
 

  
x

ln x  <  (B−1)! 



1 + 

ln x
ln B   ≤  

2 (B−1)! ln x
ln B  .  (6) 

 
We next show that  x < BB (for B ≥ 3).  Otherwise, since x/(ln x)2 is an increasing function 
for x > e2, the inequality above divided by ln x gives: 
 

  
BB

B
2
(ln B)

2  ≤  
x

(ln x)
2  <  

2 (B−1)!
ln B   <  

2B
ln B 



B

e
B−1

 . 

 
The last inequality comes from ln (n−1)! ≤ n ln n � n +1 (see [7, p. 79]).  But this reduces 
to   
 
  eB-1 < 2B2 ln B,  
 
which is false for B ≥ 6.   For the remaining bases 3, 4 and 5, we can verify x < BB 
individually using (5). 
 Finally, upon multiplying (6) by ln x and using our result  ln x < B ln B, we have 
 
  x  <  2 (B−1)! B2 ln B, 
 
which is the desired bound. 
 We used UBASIC and a slightly sharpened form of the bound above to lists all of the 
solutions for various small bases, the result of this search is in Table 1.   

 
Insert Table 1 near here 
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 Alternately we could choose an integer x and ask if there is any base B for which the 
equation (4) has a solution.  Clearly x ≥ B.  If we find the least integer n such that n! ≥ 
π(x), then we know b0 = (x mod B) ≤ n, so B is a divisor of x−i for some i ≤ n.  For each x 
we then have a relative short list of possible bases.  In this way we find all of the prime 
integers x ≤ 160,000,000 such that (4) holds (x and B are written in base 10): 

 
(x,B) = (3,2), (3,3), (5,2), (5,3), (17,14), (19,4), (19,8), (97,24), (97,93), (101,5), 
(103,9), (229,5), (661,132), (661,656), (673,334), (701,232), (5449,908), 
(5449,5443), (5501,7), (6473,1078), (6521,10), (6719,7), (6733,7), (49037,49030), 
(49043,24518), (49277,7039), (56809,9467), (64921,8), (114599,8), 
(484061,484053), (485909,60738), (495491,9), (560437,9), (5222447,5222438), 
(5222501,2611246), (5222837,1305707), (5224451,580494), (5224903,10), 
(5378437,15), (6480811,15), (61194733,61194723), (61285057,6128505), 
(62009933,11) and (67717891,7524209). 
 
There are infinitely many such solutions!  To see this, let pn be the nth prime, then 

(x,B) = (pn!+1, pn!+1−n) is a solution to (4). 
    

The multifactorials   
 
Instead of the factorial function, we could use the double factorial function n!! [8, p. 258] 
or its generalization�the multifactorial function.  These are defined for integers n as 
follows. 
 
 n! = 1  for n < 1,    otherwise  n! = n · (n−1)! (n factorial) 
 n!! = 1  for n < 1,    otherwise  n!! = n · (n−2)!!  (n double-factorial) 
 n!!! = 1  for n < 1,    otherwise  n!!! = n · (n−3)!!!  (n triple-factorial) 
 
and in general 
 
 n!k = 1  for n < 1,    otherwise  n!k = n · (n−k)!k (n k-factorial). 
 
For example, 13!!! = 13!3 = 13·10·7·4·1 and 23!4 = 23·19·15·11·7·3. 
 The approach above can also be used to bound the integers to check for the multi-
factorials.  Using the double factorial function, we have four solutions: 34, 6288, 10982, 
and 11978.  For the triple factorial function, we have these four solutions: 45, 117, 127, 
and 2199.  If we restrict ourselves to prime solutions, then there are only two additional 
solutions provided by all of the multifactorial functions: 
 
  π(127) = 1!!! + 2!!! + 7!!! 
and 
  π(97) = 9!7 + 7!7.  
 
 

Other functions  
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If we just count the digits, there is one solution: 2 (π(2) = 1, and 2 has 1 digit).  If we add 
the digits then there are four solutions:  0, 15, 27, and 39 (none of which is prime).  Using 
higher powers, we find the following prime solutions: 
 
 

  π(93701) = 94 + 34 + 74 + 04 + 14 

  π(1776839) = 15 + 75 + 75 + 65 + 85 + 35 + 95 

  π(1264061) = 16 + 26 + 66 + 46 + 06 + 66 + 16 

  π(34543) = 33 + 44 + 55 + 44 + 33.  
 

Note that 34543, found by the first author, is also palindromic [9]. 
 

Questions for the reader 
 
Why add the terms corresponding to each digit?  We could multiply: 
 
  π(1321) = 13 · 33 · 23 · 13   

 

or alternate signs: 
 
  π(19) = −1 + 9 
 
  π(53) = 52 − 32,    π(227) = 22 − 22 + 72,    π(929) = 92 − 22 + 92 

 

  π(47501) = − 4! + 7! � 5! + 0! � 1!. 
 
How about backwards exponentiation: π(17) = 71 and π(23) = 32? 
 Exploring other functions such as the sum of divisors function, may also prove 
interesting.  In all such cases, the authors would be pleased to hear of your results. 
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Table 1:  Solutions in other bases 
base B solutions written in base 10 (primes in boldface) 

2 3, 5, 6, 8, 9, 10 
3 3, 4, 5, 6, 8 
4 4, 6, 10, 19, 27, 63 
5 101, 229, 374 
6 18, 20, 134, 731, 737, 789, 1547 
7 5501, 5690, 6530, 6719, 6726, 6733, 13180, 14395 
8 19, 844, 5530, 13174, 49336, 49337, 58341, 58348, 

64921, 106108, 114599  
9 21, 103, 364, 851, 105712, 105721, 105730, 493832, 

494055, 494056, 495491, 495524, 550620, 550622, 
550654, 560437, 1029375, 1029376, 1029459, 
1031285, 1041084, 1041085, 1041128, 1041411 

11 5704, 5715, 6705, 106022, 107114, 5456695, 
5927793, 5927804, 5927815, 5927825, 16981728, 
61924436, 61934787, 62009933, 63370216, 
67733027, 67733038, 129294118, 134549464, 
134549475, 134549486, 134551268, 136058582, 
136058583, 197958265 

    
 


	CHRIS K. CALDWELL
	University of Tennessee at Martin
	Martin, TN 38238 USA
	Bristol, VA 24201 USA
	The prime counting function, ((x), counts exactly how many primes there are less than or equal to x.  The second author discovered the following “curio” (see [1]):
	Searching for another
	Bases other than 10
	The multifactorials
	Other functions
	Questions for the reader
	References



